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Ploneerinq technlcelucontrlbutlons to the epplled‘
statistical lltereture by Grizzle.‘stermer, end Koch
(1969), Blehop (1969)._F1enberq (1970). Goodnen (1970),
Koch and Relnfurt (1971). end. more recently. dldectlc'.
contributlone by Forthofer &_Lehnen (19681) and by
Kennedy (1963) heve helped focee gﬂe‘ettention ot neny
research prectltlonere 1n theibehevlorel eclencee on
the potentjal for sophisticated analysis of cetoqorlcel
response data.- In coneequence. there is a growing

awareness that a richer analysis can be performed on

. responses measured on the nominal or ordinal scale than

is customarily permitted by simple crosstabulation and

chi-square partitioning. v



This awareness has led to the ever Iincreasing

popularltv of strategies for the analvsis of

asymmetrxc, categorical data models--that i{s, mnodels

‘having at ledsti‘one VQriable ldentified as 'a response”
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.varjable. ‘In partlcular, strategies that foilow eithe{;

¥ . \,..t

the method of. maximum likelihood (ML) in the Goodmdnw”@

tradition, such as logﬁlinear (loglt) and logistic
regression analysis, or the method of weighted least
ol 1o o Bl

squares {n the Grizzle,@Starmer,“andkxoch (GSK)

tradition have been strongly gaining' in acceptance.

Parenthetlcally. two points need now be made .
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before proceeding to the maln course of the narratlve.m”_'l
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First, the ltrategles mentioned above also allow for
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the analyais of aymmetric models--that ls, modelc for
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1dentifled. Howovor,'for tho purpose of dlacuasion,””
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the tocus hore wlll bo on asymmotric models.
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50condly, the GSK strategy §ubsumeb ah\apbkouch

that Is known by some as Minimum Chi-Square Estimatlon

(c€. Aldrich and Nelson, 1984) and is a specific,

direct, weighted least-squares approach emplBYing’

categorlcdl_lndependent variables only. fhio:polnt is

made to call attention to the fact that the lﬁbel,



weighted least-squares, is a general descriptor for any
weighted regression procédufeﬁhsina.pny wéightihg
factor whatsoever. Since differential selection of
weighting schemes will produce diffetentgfegréssion"

results, all weighte& regression probeddred'are not

equivalently effective. But, because of an unfortunate

tendency to group any and all wéighted7b§oceddtés under
a single label, the GSK prdééddfé'hésmhddjééﬁéf
undeserved bad press, in the form of guilt by
assoéiatldn;.froh'those ivhbﬁ-gdrisp&fége“thé\i"e.é'x"essiérl\=

analysis of categorlcal data’ in general. The upshot of: 

¥ ’f . -‘ A

this digression is to odmit thot the GSK approach is a

welghted regression approach wlth the turther cdnissionl 

that {t ls tundamentally sound.

: ' :vﬂ*“ “

As mlght be oxpocted slnco the ML and the GSK

approaches use dlttorent mathematlcal bases in thelrl
foundation, and thuo cen load to difforlng ltatlltlcal
judgments, some dispute rogarding their relative merits

has begun to appear. Advocates ot ML based strategies

typically highly value log-lli near and lqglitlc

regression analysis but look askance at the use of

linear regression for the _analyuls of categorical
outcomes. This. position |s partlcﬁlarly likely to |
develop amongst analysts who pursue lo«-linear problems
from the mental framework of the Deming-Stephan
iterative proportional fitting (IPF) algorithm (see

Kennedy, 1983, for a particularly lucid description of



'the a1gor1thm) e D LA anan T o sRe i asal
| f By employing the IPF technique, a soundkstrategy
”in and of itself, it is unfortunately qulte possible to
‘miss the pointﬁthat;logﬁlinear”analysis: is essentially
a linear modeling}arocess,_T)More“eoepigically, it is
altogethermtoo easy to oyerlook-the:tautoloquthat logT:
i-linear models really are,‘ in fact,:linear models, and
as such they can be structurally coded and resolyed as
linear models. _‘Thosedfamiliargwith the”altergativeﬁto )
IPF, the Newton;Raphgon w’iteratively reweighted;

regression algorithm i'orw achieving ML estimates (seeﬁ

Haberman, 1978, tor a full description), recoqnize the
“3 DRI TR I BRI T S A YRR & NPT

truth ot this perspective much more readily.

In realityjn—that thzhr‘:eparate:f ML from GSK
_ analysis is not that one employs linearﬁmodels.andkthe
other does not, nor iszitrthat’one emoloy;*a&regression
strategy and the othzr“Idoes”not,;ﬂcaothvwi;i}act, aref
rooted Iin a regrEhifbh basis. what!reallyyseparates:'
the two {s that their methods of i:m;;'leme?nting the
regression strateqy difrer. - o

On the one hand, GSK seecks' to'achieve'barametor
estimates through minimizing. a model's residual chi-
square, It does so noniteratively under'lthe mechanism
- of weighted least 'squares regression by adopting a
weighting matrix formed as the inverse of the variance
of a researcher speci{flied response ‘function' (see

Forthofer and Lehnen, 1981, for a very thorough



description). = =

ML, on the other hand,-seeks‘to'achleve'porameter
estimates byl maximizing. the 1likelihood ‘function and
does so {teratively under the mechanism of reweighted
least squares reoresslon. Per force, the weighting
matrix; the basis matrix, and the form of the response

variable for ML dlffer from those used under GSK.

.Both strategles avold the ‘well- known problems thatkj'
plague ordlnary least squares ln thls context by not
making untenable dlstrlbutlonal assumptlons. Nelther
assumes normality nor honooene1t§ of varlanro:”' ‘e
residual. Both aasume !ndependence and both typically

A

assume a product-multlnomial parent data distrlbutlon'

Sabn B

tor asymmetrlc problems.-'~

PO

A Technical Overview Of The GSK And ML Categorical Data

"Analysis Strategies

B

To help flx the idea that both the GSK and ML
procedures for analyzing categorical data are, in fact,
| regression based technlques, & summary overview of both
.prooedures is otfered on the followlng four pages. The
technical description of each is hdghly condensed and
is meant to glue a reference'polnt to the reader rather

than a full, didactic exposition. The text underscores



'that'both procedures rest solidly on the foundation.of

‘wgightéd'least squares (WLS). . pages six and seven

““descyibe major aspects of the GSK strategv while pages

~ eight and nine deal with the ML approach.

The GSK Approach e syt el

Weighted Least Squares (WLS) analysis, employs a mathematical ‘ ‘model that

- adopts the following notatjon:

(' LLE Ny
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1. p a vector of proportions. Each pd is computed &s the
ratio of a response frequency fi, lo [, = z (TIR

. =1 _ _
where the subscript | indexes a particular .independent variable
level or combination of levels, the subscript j addresses a
particular level of the response measure, and r denoles the =
- number of levels present in the response measure. The elements of
p are arranged 0 that the £ proportions corresponding Lo a -

value of | are contiguous and in ascending order of J
2. A a vector of contrast coefficients with elements a, .

3. Y a vector of contrasts such that Y = Ap for 3dditive models.

Each Y, is formed as Y, = Z 3 P, - Alternatively

intrinsically multiplicative models can be formulated by first
taking the nalural lTog ol the Py - In this case, the vector Y is

formed as Y = A In(p). For such models, Y, = z 3 ln(pul.

4. X an independent variable coding matrix. For, WLS results to
approximate those of a log-linear analysis, the matrix X is
coded using effect codes ({.e., 1,0,~1) :

5. B a vector of regression weights.
6. € a vector of residuals.

7. W a matrix of weights such that. W = V()™



In the case of an a addjtive model, V(Y,) = i’l,' [i‘ aj ’u t aj pu)]

Should r=2 and A = {1 0] or A = [0 1}, V[Y) = A pl ror' fl or ,t-z

b o i L

In the case of a multiplicative model, V(Y,) = %- (# e,) Here
should r=2 and A = (I -1] or A = [-1 1], (the logit runctlon] then i follows

that V[Y;] = ?—nl——] for either i'l or 1-2 .
RV PRI

Using these conventions, the regression model can he wrltten as:
v - Xp+e€ S R R
(x'wx1' lx‘wv)
vtb) = (X'wx)™’
v =%

| V(Y) = X [XTWX]'l x A W
The Lﬁ&!ﬂ!_l chl-squere for such models ls:

- (Y - Xo)'W(Y - Xbl
with dr ek-m

where k = the number of Independent cells
(l.e, rows in X) - -

and m = the number of peremeterl
(l.e., columns in X)

Given a contrast matrix C that has dimensions ¢ X m, component
chi-squares (i.e. corresponding to the general linear mmmﬂr&’ﬂ)
can be computed as:

B Y -

- (Co)"lcwx) e " cb
with df = c

Approximations to component chi-squares, can also be computed by taking the
- difference in residual chi-squares for competing models with df equal to

the difference in the respective number of parameters. This approximation
method is not as effective here as it is in log-linear analyses since the
chi-square estimates are the classical Pearsonian rathes than the maximum
likelihood ratio chi-squares developed by Fisher and are, consequently, not
precisely additive.



The ML Approach

_’Iterative Weighted Least Squares (WLS) can be used to achieve Maximum
_]upod M.) estimates. The strategy assumes the following notauonal \

L A diagonal matrix F of dimensionality (kr x kr) where k is the
mmber of independent variable cells and [ is the number of
response variable levels. The elements of F are individual
f, where | <= | <= kr. They are arranged on the major djagonal
so that the order of rotaton is through the response levels for

a particular independent variable cell before the next cell ls
represented.

2. A diagonal matrix £ whose entries e, are the expected A
frequencies for a given model in corresmndence to the f,.

3. A design matrix X of dimensionality (kr x m) where @ is equal S
to the sum (k-1)+(r-1)+(k-1)o(r-1). Note that m represents the
total component degrees of freedom in a given model excluding the
intercept (or grand mean) which is not coded The design matrix
X is composed of effect codes (1.0,-1) and {s formed as:

a The first k-1 columns of X are effect codes on the
independent variables-- each row of which is repllcated
contiguously r times. i

b. The next r-1 columns of X are formed by block
replicating effect codes on the response measure k tlmes
Each .block is of dimensionality r x r-l.

c. The remaining (k-))s(r~1) columns represent the
independent-dependent variable interaction terms and

are formed by multiplication of the corresponding prior
columns.

4. The subscript ¢ represents the currcnt {teration and the subscrlpt
p represents the prior lteration

TP

S. Vector Y = diag (In[El +(F-E )E"] On the first lterauon.

this procedure (s replaced by compuung each element Y to be
Y, = In(e) where ¢, = f, + .05.

6. A matrix ) of the same dimensionalily as X formed by -
row replicates of the vector d with elements d, (I <= § <= m)

Sm, :

where

ol
given the ¢ are from the prior iteration



The {terative process, given X and F, is as follows:
1. Compute Y as described

. 2 Compute D as described

3. Generate the matrix A = X:- D,

4. Estimate the regression welgl)ts f as

b = (AT E, AJ" ATE, Y,

a = In

z’-

)

I=}

;‘:’u

5. Estimate the i element of Et as e

6. If the estimates b converge on b then etOp {teration
otherwise return to step 1. S -

Given convergence, the following additional estimates can be made:

1. V(b) = (A] E, A)"
2. Standardized residuals are (f, - ¢)/[&

3. Residual L* « 2 i f, Inf {t )

2
4, Residual x’ 2 fice,

~ both with df = kr -



Comparing ‘GSK And ML Methods =

As the reader can readijy see, both approaches

permit point and interval estlnatlon of regresslon

- parameters. To help profile how the strategies compare

with one another, their relative nerit from the
author 8 polnt of view will now be examined along

several dimensions. - Those dlmens;ons are:

1) Abllity to deal with symmetric models.
2) Facillty for testing hypdtheses.
3) Statistical proparties of astimators.

’- mf 1 f x~i ® 5‘,“ N2 .‘.E,

q) Relqtive computatlonal requirenonts.
11; * ; m\ -

5) Ease ot interpretation of ost!n@fora.
6) Robustness with reqpqcp_tq_qxpgemgmxz;ues.

7) Cabaclty for handling 4ntef§q; var;ables.

Svopmetrjic Models. With regard to doing data

analysis where no individual variable is ‘parceivod to
be a response (dependent) va;iable,.the ML method has a
clear edge{ In:fact}‘log~11ﬁear‘analysls. having its
roots in the fleld of soclological methodology, a field
that does not often enjoy the luxury of experimental
manipulation of independent variables, is exceptionally
well-geared for coping with marginal and partial

associations among var{ables.



Ih.cbntrasf, tHe GSK approdbh, aﬁlhppfo;éh tﬁat
emanates from the blostat{stical world, is focused
directly on exploring the gffects’of one or more
independent on one or more dependént erlabies: Unlike
the log linear strategy, GSK forces séléctlon of a
response varlable This does not mean that thé GSK
approach.can not handle symmetrlc problems--lt can.
However, an analyst must systematlcally rotate throuqh
a pfoblem”shvariables choosing different variables,
individually, as the response measire. ECdﬁééQuéHfiQ;

the GSK method {s not as desirable in such a context.

Eacility for_Testing .Hypq.th 808, Assuming the
asymmetric environment for the remainder of this
narfotlve, how do the strategies compare on the bhasis
of teitlng hypothéses? In this writer's opinion, the
GSK approdch 1s.prob;bly'otrong6r but not
overpoweringly so., GSK, on the surface, appears to
have far greater flexibllity because the anolyat ls
pormitted to establish nearly any linear combination on
nearly any transformation of the response meaédfe{
Such flexibillty permits definition of a respouse
function {n terms of raw proportfohs, or logqged

'

proportions (the latter leading directly to odds

ratios), or even exponentiated proportions.

11



Sy In',comporlson, .the log -linear opprooch forces a
= &;!{; o

x_i.deflnitlon of the response functlon in terms of logged

S I

l'fproportlons. However, what ls often overlooked during

'uo log llnear onolysls ls thot expected frequencies are

‘generated and that the analyst i{s free to establish any

deslred tronsformotlon and linear combination on those
frequencies he'or she wishes. This lmplles that the ML
"methodhcgn be as rich onalytlcully as the GsK method
(cf. Hober, 1984). | In' folrness,l though the more

extended mode of analysls under ML 1is not typical and

is more mechanlcally difficult,

Statistical Propertles.r | Wlth respect to the

stotlstlcol propertles of th: eotlmatoro produced by -
GSK and ML, a slight edge. hos to be awarded ML since
the ML estlmators are _wellfknown to be asymptotically
consistent and .relatluoly efficlent, What 18 not as
well known {s that the GSK estimators are simjlarly
asymptotically conslltent and, for that matter,
aysmptotically oqulvalont to ML eatlmatoro. They are,

in fact, best asymptotic normol estimators (BAN),

~ For fully saturated models of any sample size, the
two methods deliver identical results, For unsaturated
models on large samples, differences in the estimators

tend to be trivial. However, as sample sizes decrease,

12



the GSK and the ML estimators can be disparate with the
ML estimators tending to have smaller variance: the
question'of how large ‘iszaarge enough to feel fairly
comfortable that similar results will be Iafforded by_
both strategies is not precisely known. .however, it is
generally recommended that samples ‘be of sufficient
siie':pefore wemploying either'approach;‘:éorlspeciric
guidelines 'under‘ CSK}: the reader is referred '£¢
Forthofer and Lehnen (1981) and for guidelines under“

ML, to Haberman (1978).

Computational‘Reguirements.. Ffbh' a computational
. 1 - . e
perspective, GSK has a clear edge. In the first place,

it is non-iterative. 1In the second its basls'matrix

*

is a‘ factor of rvr smaller where r denotes the number'

¥

of categories present in the response varlab]e. 'For
problems involving polytomous | responsei measures;
computational resource requirements heavily favor‘GSk.
While such considerations may not Jbe critical for
mainframe appiications. the resource implications for)

microcomputing are clear.

Ease of Interpretation. With regard to estimator

interpretability, ML estimates are glightly easier for
a novice to make sense of |f a canned log-linear

strategy Is being employed. This is the case because

13
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#theparanetersﬁfare conceptually well identified in the

*L,paradigm of analysis of_;variance effects on 1ogged

expected cell frequencies If, 'however, the more

flexible ;egréssion coding scheme afforded by the

Newton- Raphson strategy is' employed to deviate from

traditional effect definitions, this edge evaporate |
SR et

and both ML and GSK estimates must _be carefuily

identified by the analyst.

Robustness for Extreme Values} From the

perspective of extreme values. the_ GSK and the ML
strategies ehare common problems. Both must cope with
empty celle. by either..making a numeric replacement or

)

collapsing categories. Further, both reiv on having
larqe -amplel to ettect robuetnell in the etatistical
propertiee ot their ‘eetimatore. From this author s
viewpoint. neither procedure haa an edge with regard to
this probiem.: However. it should be noted that 1t ls
recommended that the GSK approach engage a 1logq
tranetormation'hon proportione when proportione. are
extreme rather than operating upon.them in their.native
metric (see Forthofer & Lehnen, 1981). Intultively,

the same caveat should apply to followup contrasts on

ML estimates.

14



" Interval Independent Variables. With regard to
interval independent ‘variables, ‘one variant of ML,
namely logistic regression ana}YSIS; has a distinctive
advantage. It has the capacity for coping with a mix
of both categorical and continuous variables with the

provision that the response measure be a dichotomous

variable.

Neither the GSK rmot traditional log-linear ML - °
wethods ‘can’ dupl idits “this apacity. "Even %5, Ei
analyst could approach’ the'situationcf interval’
variables with either logd-1inear or GSK analysis hy
meaningfully categorizing all interval variables

present.

.Synghgglg."GiVen this profile, which procedure
then 1s preferable? From the author's perspective
nelther complotely dominates the other. Both are

powerful and are well worth mastering.

Should the research purposo be to examine marginal
and partial assoclations symmetrically, the ML approach
embodied bv log-linear analysis is preferable. Should
the researéh purpdée be £6 test hypotheses on response
level proportions or on complexIQunctidns. the GSK

approach s preferable. If interval level independent

15



arisbles are present and recoding is not desirable,

RS R e G 2 VA

théfﬁid@}égig‘jregress}on_ ML approach 1is promising--

bré&ihihé_npi more than two levels are present in the

response variable.

" should computing facilities be highly restricted,
the GSK approach can be preferable. If the analyst is
unsophisticated with respect to the analyéls of linear
models, a traditional log-linear analysis will be
easler to pursue. If sample sizes are small or empty
cells _arg‘-presgnt.‘cneither syggtegy_}s particularly
safe,  If _extreme proportions arelipresent. “both

apprpachgs,qhquld,makq appropriate adjustments.

In the final analysis, both approaches have
specific strengths as well as detractions, Both offer
strong analytic capabilities and both belong i(n our

repertoire.
An Analysais of Hypothetical Data By ML And By GSK

For the purpose of illustrating the similarity ot
the two methods fh ah‘uappiled scenario and for the
purpose of demonstrating thelr versatility, the
following simple numeric example is offered. The data

shown below were constructed by John J. Kennedy, of The

16



Ohio State University, as"a_didactic example to show
how effect contrasts might be estimated through chi-
square partitioning. With. his kind permission, the
data will be employed here to show (1) how both ‘ML and
GSK can be used to estimate linear and quadratic

effects and (2) how both the ML and GSK procedures can

pursue traditional log-linear effects.

The data are giveﬁ in Table 1 and consist of
frequency counts that have been.crossfabﬁlatedffon the
basis of student sex (A;= ‘'Males,!” Ap= Females), an
unspecified treatment = variable (B;= Treatment, B8jp=
Control), &nd a trichotomous outcome measure (Cj= Poor,

Co= Satisfactory, and Cy= Good).

Table 1. A Hypothetical 2x2x3 Data Example.

_._Outcome Description:
Poor Satisfactory Good Sum

Sex Treatmoent
M
M

T 8 © 19 4 20

c 3 6 13 22

F T 6 - 16 6 28
F c 2 8 ' 12 22
Sum 16 49 33 100

17



Page 19 demonstrates a linear and quadratic effect
coding setup used ,as _input to an author prepared
Newton-Raphson ML program thqt has been  designed to
teach the flow of the ML procedure. The inpu% consists
of (1) the number of rows {in the regression basis
matrix, (2) the number of columns in that matrix--note

the omission of a unit vector for the grand mean, (3)

" the basis matrix, itself, arranged in column order:

a) Sex vector.,.:-

b) Treatment vector.
~c) .Sex X Treatment.

d) Linear Response Contrast, .

e) Quadratic Response Contraét.

f) Linear Effect of Sex.

'g) Quadratic Effect of Sex.

h) Linegr\Eﬁfggpwéf;T:eatmgnt._

1) .Quadrathgggtgptﬁpt Treatment.

J) Linear Effect of Sex x Treatment.

k) Quadratic Effect of Sex x Treatment .
and (4) the raw: frequencies .themselves with the
response variable rotating most rapidly,. followed by
treatment, and sex {n thﬁt.order. Pages 20 and 21 show
the ML analysis with page 21 being the more interestiﬁg
since it delivers parameter estimates. Pages 22 and 23
show the corresponding GSK analysis with page 22

delivering the linear analysis and 23, the quadratic.

18



ML Analysis of 2x2*$ Data Sewasing‘tineérﬂéquadfatic Codingé

12 ,
1 .
11 1 1 -,5-,3333383 ~-.5 -.333333 -.5 -,333333 -.5 -.333333
1 1 1 0O .666667 ‘ O .666667 O .666667 O .666667
1 1 1 .5 -,333333 .5 -,333333 .5 -,333333 .5 -.,333333
{-1-1-,5 -.333333 -.5 -,333333 .5 ,333333 .5 .333333
1 -1 -1 0O .666667 0 .,666667 O -.666667 0 -.666667
{1 -1-1 .5 -,333333 . % -.,333333. -.5 ,333333 -.5 ,333333
-1 1 -1-,5 -,333333. .8 ,333333 -.5 -,333333 .5 .,333333
-1 1 -1 0 ,666667 . 0O -.666667 - 0 ,666667 - 0 .-,666667
-4 1 -1 ,5-,333333 ° -.5 ,333333 ¢ =,333333 -.5 .333333
‘-1{’-1 1 -,5 -,333333 .8 ,333333. .5 ,333333 +-,5 -,333333
-1 -1 1 0O .666667 - 0 -,666667 0O -.666667 . . 0..,666667
Fff—l 1 ,5 -,333333 ; -.8 ,333333 -, ,333333.  ,5 -.,333333
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ML Ana

cell
cell
cell
cell
cell
cell
cell
cell
cell
cell
cell
cell

=>
=>
=>

=>
=>

Dvector Iteration

column
column
column
column
column
column
column
column
column
column
column

=>
=> .
=) -
=> -
=>"

-’

CONONBDN -

10
11
12

|
v
OO EWLWN»

ﬁé of 2x2x

3 Data

[l ¢ DA

Cell Ffequencies Iteration is ¢

obs
obs
obs
obs
obs
obs
obs
obs
obs
obs
obs
obs

freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq
freq

is

value
value
value
value
value
value
value
value
. value
value
value

Amatrix Iteration s

1.000
1.000
1.000
1.000
1.000
1.000
-1.000
-1.000
-1.000
-1.000
-1.000
-1.000

0.880
0.880
0.880
-1.120
-1.120
-1.120
0.880
0.880
0.880
-1.120
-1.120
-1.120

1.000
1.000
1.000
-1.000
-1.000
-1.000
-1.000
-1.000
'=-1,000
1.000
1.000
1.000

=> 5.0000
=> 19.0000
=> 4.0000
=> 3.0000
=> 6.0000
=> 13.0000
=> 6.0000
=> 16.0000
=> 6.0000
=> 2.0000
=> 8.0000
=> 12.0000
4
=) -0.0000
"> 0.1200
"> 0.0000
-> 0.0980
-> 0.1867
u> -0.0080
-> 0.0100
=) -0.1080
- 0.1700
-> -0.0050
"> 0.0500
4
'00696 -0.490
-0.098 0.810 -
0.405 -0.490
-01696 -0.490
-0.095%5 0.810
0.405 -0.490
-0.595 -0.490
-0.095 0.6810
0.405 -0.490
-0.595 -0.490
-0.095 0.510
0.405 =0.490

exp
exp
exp
exp
exp
_@Xp
exp
exp
exp
exp
exp

exp

'00496
0.008

0.808

-00496
0.008
0.808
0.805
0.005

-0.498
0.505
0.005

-0.495
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freq
freq
freq
freq
freq
freq

freq

freq

-freq
freq
‘freq

freq

=)

=>
=)
=>
=>
=>
=>

=>
=>
=>
=>

-0.343
0.657

=0.343
0.687
-0.343
0.323
-0.677
0.323
0.323
-0.677
0.323

-0.395
0.108
0.608
'0.608
0.105
-0.39%8
-0.395
0.10%
0.605
0.605
0.105
-0.395

Set Using Linear & Quadratic Codings

5.0000
19.0000
4.0000
3.0000
6.0000
13.0000
6.0000
16.0000
6.0000
2.0000

8.0000

12,0000

-00503
0.497
-0.803
0.163
-0.837
0.163
-0.503
0.497
-0.503
0.163
-0.837
0.163

=0.495
0.005
0.508%
0.505
0.005%
-0.495
0.505%
0.005%
-0.495
-0.495%
0.005
0.5%05%

-Q

-0

-0

-C

-C

-C



inalysis of 2x2x3 Data Set Using Linear & Quadratic Codings

;s Iteration is 4

arcept 1is 1.917424 old value was 1.917424

mn => 1 A value => -0.018176 Change 0.000000
imn => 2 B value => 0.131958 Change *0.000000
mn => 3 AB value => - -0,051147 -Change - -0,000000
mn => 4 C1 value => 0.758738 Change 0.000000
mn => 5 C2 value => 0.719449 Change 0.000000
mn => 6 ACl value => -0.137141 Change -0.000000
mn => 7 AC2 value => -0,016173 Change -0.000000
mn => 8 BC1 value => -0.870310 Change -0.000000
mn => 9 BC2 value => 0.494252 Change -0.000000

mn => 10 ABCl1 value => ~0,028870 “'Change " * 0.000000
mn => 11 ABC2 value => 0.24904§ »Change 0.000000

of changes 0.000000
iance Iteration is ¢

)182 0.0017-0.0027 00,0044 0.0013-0.0130-0.0100-0.,0023-0.0041 0,0151-0,00158
017 0.,0152-0.0002 0.0151-0.0018-0.,0023-0,0041-0.0130~-0.0100 0.0044 0.0013
)027-0.0002 0.0152-0.0023-0.0041 0.0151-0.00185 0.0044 0.0013-0.0130-0.0100
044 0,0151-0.0023 0.1111 0.0195-0,0035-0.0066-0.0131~0.0226 0.0181 0.0034
013-0.,0015-0.0041 0.019% 0.0832-0.0066 0.0011-0.0226-0.0143 0.0034 0.0013
)130-0,0023 0.01851-0,0035-0.,0066 0.1111 0.0195 0.0181 0.0034-0.0131-0.0226
)100-0.0041-0.0015-0,0066 00,0011 0.01985 0.0832 0.0034 0.0013-0.,0226-0.0143
)023-0,0130 0,0044-0,0131-0,0226 00,0181 0.0034 0.1111 0.0195-0,0035-0.0066
)041-0,0100 0.0013-0.0226-0.0143 0.0034 0.0013 0,0198 0.08532-0,0066 0.001x
J181 0,0044-0.0130 0,0181 0.0034-0.0131-0,0226-0.0035-0,0066 0.1111 0.0198
015 0.,0013-0.0100 0.0034 0.0013-0,0226-0.0143-0.0066 0.0011 0.0195%5 0.0832

[teration is ¢

mn => 1 value => 3.2242
mn => 2 value => 12,4921
amn => 3 value => 4.1241
umn => 4 . value => 6.0796
umn => § value => 14.6828
umn => @ value => 0.7101
umn => 7 value => 2.3169
umn => 8 value => -6.2753 '
umn => 9 value => 20.3232
umn => 10 value => -0.9058
amn => 11 value => 4.%616
r'sonian 0,0000

herian 0.0000
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GSK Linear Analysis Page 22

B The Pattern Matrix x as Entered

: 1,00 1.00
1. 00 pf1 00 -1.,00 =-1.00
1;00“5-1 00 ‘1,00 -1.00
1, oojﬁ;z 00 -1.00 - 1.00

| c ' The Parameter Coefficient Matrix:
0.25"70.25 0.25 0.25

0.25 " 0,25 =-0.25 -0,25

0}2577;0,25 -0.25 0.25

The Fre@ﬁencies aé,Entéred

CATEGORY:

1 2 K)
5 19 4
: < 6 - 13
;o 6 16 v 6 .
e R 2 - 8., 12 .
SO PR S Co S
CONTRAST: =1,00 0,00 - :1,00. . e L R
PARAMETER - LOG EST LOG SE = ODDS EST ODDS SE 2Z ESTIMATE
INTERCEPT "0.789 - 0.333 2,136 = 1,396 2.277
AC1 ' : -0.137 © 0,333 o.872 1,396 =0.412
BCl -0.870 0.333 0,419 1,396 -2,612

ABCl 0.026 0,333 1.026 1,396 0.077
PERFECT FIT --- SATURATED MODEL
RESIDUAL CHI-SQUARE = ., 0.000 DF = O ALPHA = 1.00

LOG-P FUNCTION PREDICTED RESIDUAL
-0,223 -0,223 0.000
1,466 1.466 0,000
0.000 0.000  0.000
1.792 1.792 " 0.000
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GSK Quadratic Analysis p 23

The Pattern Matrix X as Entered

00 1.00 1.00 1.00
‘OO 1-00 -1.00 -1000
00 -1.00 1.00 -1.00
00 -1.00 -1.00 1.00
The Parameter Coéfticient Matrix:
.25 0.25 0.25 0.2%
.25 0.25 -0.25 -0.25
25 -0.25 0.25 -0.25
25 -0.25 -0.25 ' 0.25%
' The Frequencies as Entered
" CATEGORY:
Sy e 1' 4 2 3 i A : -
8 19 4
3 6 13
) 16 6
| 2 8 12
RAST: <-0,80 1.00 . =0,50 : ,
METER LOG EST LOQ SE ODDS EST ODDS SE Z ESTIMATE
RCEPT " 0.719 0.231 2,053 1.259 3.120
0.494 0.231 1.639 1,259 - 2,143
0.249 0.231 1,283 1,259 1.080
PERFECT PFIT --- SATURATED MODEL
RESIDUAL CHI-SQUARE = 0.000 DF = O ALPHA = 1.00
LOG=-P PUNCTION PREDICTED RESIDUAL
1.447 1,447 0.000
-OOO‘O -00040 0.000
0.981 _ 0.981 _ 0.000
0.490 0.490 o ' 0.000
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_Cpllecting the effect estimates from the runs just
}presented lets us produce Table 2, Note .that two
iseparate analyses had to be performed by GSK to produce

first‘the linear and then the quadratic results.

Table 2. Summary of ML & GSK Analysis of Linear &

Quadratic Effects In ths gxzxa_Example.

Y A . ..GSK
Effect b SE Page b SE Page
AC,  -.14 .33 2{f_' -.14 .33 22
AC, -.02 .23 21 ~-,02 .23 23
BC,** -.87 .33 21 - -i87 .33 22
BC,* .49 .23 21 . .49 .23 23
ABC, 03 .33 21 03 .33 22
ABC, .25 .23 21 28 .23 23
"% p L01
*p o . 08

Clearly the two sets of results are isomorphic with
each revealing both a linear and quadratic effect Cfor
the treathenﬁ variable on the respsnse frequencies,
With respect to the linear trend, the odds favoring a
response of "good" over a response of "poor" are better

in the control group than In the treatment.
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With respect to the quadratic trend, ﬁhe tré;tdeﬁt
group average odds favoring a "satisfactory'" response
over the other two response qategarles are bettgr than
the “correspondlng odds for the <control coﬁdltlon.
Obvlousiy, if this were a true fesearch situation, an
analyst would suddenly get gray hair but the data do

serve the purpose of l;lustratloh.

Repeéting tﬁe exerclsé .wlth linear - codings
established to produce traditional log-linear
parameters, the ML input file is shown on page 26 and
follows exactly the same pattern as before. This tinme,
however, the linear and quadratic codes give way to

average effect codes,

Pages 27 and 28 reproduce the regulta from the Ml
analysis with page 28 being the more tnteresting. The
GSK output {8 eshown on pages 29, 30, and 31. This time
three runs were made under GSK {n order to directly
estimato the parametors associated with the third level
of the response ‘variable. These could, admittedly,
have been determined by subtraction. However, the
variance estimates for the parometers'on page 31 would
have had to have been inferred rather than obtained

from inspection.
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:nalysis of 2x2x3 Data Set Using Lod-tine&f‘Codiﬁés

el

Cell Frequencies Iteration is ¢

exp
exp
exp
exp
exp

exp

exp
exp
exp
exp
exp

0.990
-0.010
-1.010

0.990
-0.010
-1.010
-1.010
-0.010

0.990
-1.010
-0.010

0.990

C=> 1 obs freq => 5.0000
oo=> 2 obs freq => 19,0000
. => 3 obs freq => 4.0000
. => 4 obs freq => 3.0000
.=m> 8§ obs freq => 6.0000
. => 6 obs freq => 13.0000
.=> 7 obs freq => 6.0000
_=> 8 obs freq => 16,0000
. => 9 obs freq => 6.0000
. => 10 obs freq => 2.0000
. => 11 obs freq => 8.0000
Co=> 12 obs freq => 12,0000
‘tor Iteration is 4

mn => 1 value => -0.0000
mn => 2 value => 0.1200 .
mn => 3 value => 0.0000
mn => ¢ value => -0.1900
mn => § value => 0.1400
mn => 6 value => 0.0100
mn => 7 value => 0.0200
mn => @ value => 0.2100
mn => 9 value => 00,3600
mn => 10 value => 0.0100
mn => 11 value => 0,00600
triX Iteration s ¢

.000 0.880 1,000 1,190 =-0.140
.000 0.880 1.000 0.190 0.6860
.000 0.880 1.000 -0.810 -1,140
000 -1,120 -1,000 1.190 -0.140
.000 -1.,120 -1.000 0.190 0.860
000 -1,120 -1.000 -0.810 -1.,140
000 0.880 -1.000 1.190 -0.140
000 0.880 -1.000 0.190 0.860
000 0.880 -1.000 -0.810 -1.140
000 -1,120 1,000 1.190 -0.140
000 -1,120 1.000 0.190 0.860
000 -1,120 1.000 -0.810 -1.140

exp’

=)
=)

freq
freq
freq
freq
freq
freq
freq
freq
freq
~freq
-freq
freq

‘-
=>

=)
=)
=>
-)>

-0 1020
0.980
-1.020
=-0.020
0.980
-1.020
-0.02q
-1.020
0.980
-0.020
-1.020
0.980
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=>
=) .

=)>

= .

5.0000
-19,0000

4.0000
3.0000

6.0000

~.13.0000

- 6.,0000

16,0000 -

. 2,0000 - ..
. 8,0000 -
12,0000

0.790
-0.210
-1.210
-1.210
-0.210

0.790

0.790
-0.210
-1 0210
-1 0210
-0.210

0.790

-0.360
0.640
-1.360
=0.360
-1.360
0.640
-0.360
0.640
-1 0360
-0.360
-1.360
0.640

0.990
-0.010
-1.010

-1.010

-0.010
0.990
-1.010
-0.010
0.990
0.990
-0.010
-1.010

-0.080
0.920
-1.080
-0.080
-1.080
0.920
-0.080
-1.080
0.920

=0.080

0.920
-1.080



ML Analysis of 2x2x3 Data Set Using Log-Linear Codings

' Bwts Iteration is 4

intercept is 1.917425 old value was 1.917425

column => 1 A value => -0.,018176 Change 0.000000
column => 2 B value = 0.131955 Change 0.000000
column => 3 AB value => -0.051147 Change -0.000000
column => 4 C1 value = -0.619185 Change -0.000000
column => :§ C2 value => 0.479633 Change 0.000000
column => .6 ACl value => 0.073962 Change 0.000000
column => 7 AC2 value => -0.010782 Change -0.000000
column = 8 BC1 value => 0.270404 Change" 0.000000

9

column => BC2 value => 0.329501 Change -0.000000
column => 10 ABC1 value => -0.095800 Change -0.000000
column => 11 ABC2 value => 0.166030 Change 0.000000
Sum of changes 0.000000

Variance Iteration is 4

‘0.0152 0.0017-0.0027-0,0026 0.0008 0,0098-0.0067 0.0028-0,0027-0.0070-0.

0.0017 0.0152-0.0002-0.0070-0.0010 0,0025-0.0027 0.0098-0,0087-0.0026 O.
-0.0027-0.0002 0.0182 0.0028-0.0027-0.0070-0.0010~0.0026 '0.0008 0.0098-0.
-0.0026-0,0070 0.0025 0.0402-0,0183-0,0029 0,0019-0,0124 0.0107 0,0088-0.

0.,0008-0,0010-0.0027-0.0183 0,0236 0.0019 0,0008 0,0107-0,0064-0.0014 O.

0.0098 0,00285-0.0070-0.0029 0.0019 0.0402-0.0183 0.0088-0,0014-0.0124 O.
-0,0067-0,0027-0.0010 0.0019 0.0005-0,0183 0.0236-0,0014 0,0006 0.0107-0.

0.0028 0.0098-0.0026-0.0124 0.0107 0.0088-0.0014 0.0402-0.0183~-0.0029 0.
-0.0027-0.0067 0.0008 0.0107-0.0064-0,0014 0,0006-0,0183 0,0236 0.,0019 0.
-0.0070-0.0026 0.0098 0.0088-0.0014-0.0124 0.0107-0.0029 0.0019 0.,0402-0.
-0.0010 0.0008-0.0067-0.0014 0.0006 0.0107-0.0064 0.0019 0.0005-0,0183 O

XY Iteration is 4

column => | value => 3.2242
column s> 2 value => 12,4921
column => 3 value => 4.1241
column => ¢ value => =12,1692
column => 8 value => 15.9446
~column => @ value => -1.4202
column => 7 value => - 2.7682.
column => 8 value => 12,5807
column => 9 value => 36.7601
column => 10 value => 1.8116
column => 11 value => 7.7483
Pearsonian 0.0000

Fisherian 0.0000
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GSK Log-linear: Cl1 odds p 29
The Pattern Matrix X as Entered
0 1.00 1.00 1.00
0 1.00 -1,00 -1.00
0 =-1.00 1.00 -1.00
% =1.00 -1.,00 1.00

The Parameter Coefficient Matrix;

15 0.25 0.25  0.25 E e
25 0.25 -0.25 -0.25
The Frequencies as Entered
CATEGORY;
1 2 -3
5 19 4
3 6 13
6 16 6
” 2 8 12
AST: 0,67 =-0.33 =-0.33 R S
YETER ~LOG EST  LOG SE ~ ODDS EST ODDS SE Z ESTIMATE
ACEPT -0.619 0.200 . ' '0.%538 1,222 ~ =3.090
) © 0.074 0.200 1,077 ¢ 1.222 0.369
i 0.270 © 0,200 1,310 1,222 1,349
& -0.0986 0.200 0.909 1,222  -0.478
PERFECT FIT --- SATURATED MODEL
RESIDUAL CHI-SQUARE = = 0,000 DF = O ALPHA = 1,00
LOG-P FUNCTION PREDICTED RESIDUAL
i -0.371 ‘ -0.371 0.000
W -0.720 -0.720 0.000
= . =0.327 : -0.327 -~ 0.000
e -1.089 - =1.059 0.000
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GSK Log-linear: C2 odds p 30
The Pattern Matrix X as Entered

1.00 ~
-1.00
-1.00

1.00

The Parameter Coefficient Matrix:

0.25 ,0.25 0.25 0.25
0.25 - 0.25 -0.25 -0,25
0.25 =-0.25 0.25 -0.25
0.25 ~-0.25 -0.25 0.25

The frequehbiés as Enteredﬁ

" CATEGORY:
1 2 3
5 19 4
3 .6 13
| 6 .16 . 6
s 2 %23 12
' CONTRAST: =0.33 0.67 =0.33 e
PARAMETER LOG EST  LOG SE oDDS EST 0DDS SE .
INTERCEPT 0.480 . 0,184 .. 1,616 . . 1,166
AC2 . -0.011 ° | 0.184  0.989 1,166
BC2 0.330 0,184 . 1,390 1,166
ABC2 . ~ 0.166  0.184 ., 1,181 1.166
PERFECT FIT ~--- SATURATED MODEL
RESIDUAL CHI-SQUARE = 0,000 DF = O ALPHA
LOG-P PUNCTION PREDICTED
0.964  0.964
-0.027 -0.027
0.654 0.684¢
0.327 - 0.3217
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Z ESTIMATE
.. 3,120
R -00070

2.143
1.080

- 1.00
RESIDUAL

0.000
0.000
0.000
0.000



Again collecting fhé 6ombuted results pfdduces

Table 3. Once more the profile is consistent.
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Table 3. Summary of ML & GSK Analysis of Log-linear

"Effects in the 2x2x3 Example.

ML © L esK

Effect b SE Page b SE Page
AC, .07 .20 28 ,07 .20 29
AC, -.01 .13 28 " -,01 .15 30
AC,  -.06 .16 - -.06 .16 3l
BC, .27 .20 28 27 .20 29
BC,* .33 .15 .28 . .33 .15 30
BC,*% -.60. .16 -.60 .16 31
ABC, -.10 .20 28 -,.10 .20 29
ABC, .17 .15 28 17 .18 30
ABC, -.07 .16 -,07 .16 3l

x* p ¢ ,01

*p'¢ ,098

‘Once more we clearly have identICQi results but now
In terms of log-linear estlmateg. By way of

interpretation, the significant BC, term indicatey that

2
the geometric average odds favoring a "satisfactory"

response over all possible response categories are
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0. 25 O 25

0. 25 "0,25
0. 25 '-o 25,

. 1.00
" -1.00
-1000

‘00 -1.00 1.00

GSK'L&QQlinear-

C3 odds p 31

‘ The Pattern Matrix X as Enterea

The Parameter Coefficient Matrix:

0.25 0.25
-0.25 -0.25
0.25 =-0,25
-C.25 0.25

The Frequencies as Entered

[

NDOOLO

Z:WT’AS -0,33  =-0.33 0.67 .

pnnamzrzny
INTERCEPT
AC3

BC3

ABC3

LOG EST LOG SE
0.140. 0.168

-0,063 0.168
-0.,600 0,168
-0,070 0.168

CATEGORY:
2 3
19 4
6 13
- 16 6
I 12

ODDS EST ODDS SE . Z ESTIMATE

1,180
0.939
0.849
0.932

1,179 - 0,846
1,179 -0.383
1,179 -3,639
1,179 -00‘26

PERFECT FIT =--- SATURATED MODEL

RESIDUAL CHI~-SQUARE =

LOG~P FUNCTION

=0.594
0.747
-0.327
0.732

0.000 D¥ = O ALPHA = 1,00
PREDICTED RESIDUAL
-0.894 0.000

0.747 0.000
-0.327 0.000
0.732 0.000
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stronger for the treatment group than the controls.
The significant BCj rge:p ;indigates ﬁthat’ the average )
odds favoring -a '"good" ~response are befter in the
control condition., The results are conslstent_with the

findings from  the linear-quadratic analysis but reveal

a slightly different aspect of the data based on the

ol U

differential <coding. Again, thankfully, the results

C b

are fictitious.

‘anc}uglng Remarks
The author hopes -that a relatiye;y convlnc(ng case
.has been built for ‘'embracing both the ML and GSK
technologlep and_i‘for appreglattngfi ;hg§, bpth are
tundaméntally_regression bqsed strateg}es. ‘Further, he
hopes that the polint has been adequately made that to
argue which is better ia, at best, a:contoxtually bound

Issue which begs the question for a unlversal answer.

Certainly, much more could have been dlscussed
regarding relqtlve applications, for example,  w};h
respect to nested and 'blocking design - or with respecp
to followups to omnibus tests. These matters are
relevant and important .but beyond tﬁe__scope of the
material presented here. Obviously the applicatlion

arena |s large and the applicatlion tools are superb.
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