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The purpose of this paper is to outline some important 

similarities in, and differences between, predictive discriminant 

analysis (DA) and multiple regression (MR), The areas covered are 

estimates of model accuracy, hypothesis testing, and non-least 

squares models, Some of the parallels are well known, some are 

leas well known, and aome appear to have not yet been considered 

at all, 

It ia well known that when (I) only two groupa are involved, 

(2) the two population predictor covariance matricea are assumed

equal, and (3) the two prior probabilities of group membership are 

taken to be equal, the popular "minimum chi-aquare rule" 

(Tatauoka, 1971, p. 218) associated with discriminant analysis 

(DA) is equivalent to predicting a dichotomous criterion via 

multiple regression (MR) methods and classifying a subject into 

the group for which the predicted criterion is riearer the actual. 
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An especially enlightening examination of this and some other 

multivariate techniques from the general perspective of MR is 

provided by Flury and Riedwyl (1985). 

However, a precaution about the equivalence of two-group 

classification and multiple regression with a dichotomous 

criterion is appropriate. In a two-group situation, there is one 

linear discriminant function (LDF) and there are two linear 

classification functions (LCFs); an LDF and an LCF are simply 

linear composites of the predictors, It is true in a two-group 

context that the regression weights are proportional to the single 

set of LDF weights, When a'linear regression function (LRF) or an 

DLF is used for classification purposes a cut-off criterion needs 

to be determined--with an LRF it is midway between the two values 

by which the dichotomous criterion is coded, with an LDF it ia 

midway between the LDF means for the two groupu. With the use of 

I.Cf's, there 1a not cut-oft per ■o; rethcr a unit h clusified

into the group with which ia aaaociatod the larger LCF score, It 

turns out that the respective LCF waight difCerencea are propor­

tional to the corresponding LDF and (iherafora) tho LRr welghta, 

Input acorea for an LRF, and LDF, and and LCF arc typically 

predictor variable maaaures, [A� stated above, any of the three 

linear composite types may be used for a two-group claeelfication 

problem,) It turns out that another, still equivalent, approach 
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to two-group classification may be employed. Here, one uses LDF 

scores for each unit as input for an LCF; we thus have, in 

essence, a single predictor score for each unit. 

When generalizing from a two-group problem to a k-group 

problem, it is advisable to forget the LRF and LDF approaches and 

focus on the LCF approach, with predictor measures as input 

scores. 

Estimates of Model Accuracy 

Estimation of the cross-validated accuracy of the prediction 

model offers similarities and differences between MR and DA 

methods. In both DA and MR the researcher l)IUSt decide what type 

of cross-validated accuracy is of concern. For instance, is 

interest in simply estimating an accuracy index parameter from the 

associated statistic, that is, estimating the index of accuracy 

(R2 or percent of "hits," respectively) that would obtt1i11 in the 

population from that same index in the sample, or is interest in 

the accuracy that would obtain on application of sample optimized 

weights to alternate 1amples from tho aamo population? Tho 

conc•rn in this paper will be with the latter typo of accuracy, 

Aa in an estimate of cross-validated R2 in MR, a Judgment of 

DA ''hit-rate" based on the calibration sample is optimistically 

biased in reference to application to alternate samples. To 

estimate a cross-validated result in MR, anothet decision that 

must be made is whether interest is in relative accuracy, as 

manifested in the correlation of Y and Y, or in absolute accuracy, 
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as manifested in the MSE. In either case, several formula 

estimates are available (see Huberty & Mourad, 1980; Rozeboom, 

1978). It is probable that most of the predictive uses of MR in 

the behavioral sciences, such as in personnel selection, are 

concerned with relative accuracy, 

Unlike in MR, the concern in predictive DA is in 

classification accuracy; this ia implicitly a concern of absolute 

accuracy, A formula estimate for cross-validated hit-rate in the 

general k-group case has largely eluded methodologists. However, 

a useful, although complicated, formula estimate for cross­

validated hit-rate in the two-group case was derived by Mclachlan 

(1957), According to that estimator, the hit rate, r
8 

for group 

g, where g • 1 or 2 isl 

P
g

• - F(-D/2) - f(-D/2) (p - l)/Dn
8
) 

+ D(4(4p - 1) • D2
½/32m) + (p - l)(p - 2)/4Dn a

+ (p - l)[-D
3 + 8d(2p + 1) + 16/D]/(64mn

8
) 

+D[3d6 - 4D4(24 p + 7) + 16d2(4Sp
2 - 48p - 53)

+ 192 (•Sp+ 15)]/(1228Sm
2
)

when 11 ill the 1tnndard normd diatribution function 1.e,, 11(-D/2) 

is the 11r1w to tl111 "loft" of -D/2, f 11 the 1t11ndud normnl 

density function, D is the Mahnlanobie diotance, p in the number 

of predictor variables, ng is the number of aubjects in group g,

and m • n1 + n2-2, While the formula looks formidable, with

patience it is calculable with hand-held calculator, Moreover, as 

the last term in the multiplier for f(-D/2) is usually very small, 
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one may choose to ignore it, making the formula even more 

tractable. If the researcher with an orientation toward MR notes 

2 2 2 
that D • R N(N-2)/(1-R) n1

n
2, then the NcLachlan estimator of

2 cross-validated hit-rate can be obtained from the R resulting

from regressing the dichotomous criterion on the predictors, 

One slightly "unnerving" aspect of the McLachlan estimator is 

that it can yield estimated hit-rates that are larger than those 

that are estimated from the known positively biased process of 

reclassifying the calibration sample (Morris & Huberty, 1986; 

1987), This is unlike the case in MR where the "shrunken" 

multiple correlation is necessarily leas than the value of the 

multiple correlation derived from the calibration sample, The 

explanation for thia apparent paradox between methods is that 

estimators of the cross-validated multiple correlation are 

!unction• of the corroaponding calibration 1ampl1 multipl1

corroltition1, and aro thorotoru guarnntood to yield Nmaltor valuH 

than tho 1an�l• value, In thiN 1on10, the McLachlnn hit-rate 

eu1tim11tor h not parallul to the MR formula Htimotora, Whilo it 

ia an 11timator or cro11-validation hit-rate, it i• not a function 

of the calibration sample generated hit-ratn; rather, it is a 

function of the Mahalsnobis distance between groups, as well as 

other variables, That ls, it does not simply, estimate a parameter 

from a function of the corresponding statistic as do the MR formula 

estimators. 
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An alternate nonparametric approach to estimating cross­

validated hit-rate, which has a wide following in the DA 

literature, is the "leave-one-out" procedure (Huberty, 1984; 

Huberty & Mourad, 1980; Lachenbruch & Mickey, 1968; Mosteller & 

Tukey, 1968). In this method, a subject is classified by applying 

the rule derived from all Ss except the one being classified. 

This process is repeated "round-robin" for each subject with a 

count of the overall classification accuracy used to estimate the 

cross-validated accuracy. 

Clearly the same "round-robin" procedure can be used to 

estimate either relative or absolute accuracy in the use of MR, 

and-has appeared in that context, with perhaps the earliest 

reference due to Gollob (1967), In a system intended to select 

optimal MR predictor variable subsets, Allen (1971) coined the 

procedure "PRESS," and he appears to be the 1ource most often 

cited in the MR literature, 

The apparent computational ditficultie1 due to the inveraion 

of N matricea can be avoided in both MR and DA by uaing a matrix 

identity due to Bartlett (1951), Thia identity ii cited an uaed 

explicitly in introducing thn technique in the DA contoxt by 

t,achenbruch and Mickey (1968), but w1111 not montionod by Allon in 

the first introduction of PRESS (1971) nor in its presentation in 

a later text (All11n & Cady, 1982, p, 254), although tho same 

i.dentity was implicitly used, Monover, Allen doesn't cite the DA
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literature and the parallel application of the PRESS procedure. 

It appears that this resampling process w11s "invented" 

independently in the HR and DA literatures. 

Full vs. Restricted Model Hypothesis Testing 

A technique that is well known and widely used by MR 

researchers is that of hypothesis testing through contrasting full 

and restricted prediction models. The power of this method, its 

generality, and its applicability to a very wide arena of 

theoretical questions in.science is no doubt part of the reason 

for the establishment of the MLRSIG within AERA. 

The same types of model contrast "explanatory inc1·ement11 

questions can be asked and seem to be of just as much potential 

interest when the criterion is classification accuracy, However, 

we know of !!.2. examples of this technique being used in the 

literature, Thure seems to be no reason not to test the 

difference in proportion of correct classifications (hit-rate) 

between full and restricted models to examine meaningful 

2 hypothesoM, just as 11 done using the R in MR, The appropriate 

te1t 1tati11tic is McNemor'• (1947) contrast between correlated 

proportion11, Moreover, all the index, "I, 11 of increa11e in 

cla1111ification accuracy over chance (11ee Huberty, 1984, p. 168) is 

distributed similarly, it becomes apparent that such a teat would 

also be applicable to that statistic. 

An example of such a test from a study in which the 

subsequent high-school dropout of a sample of 76 children was 
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predicted from data available in fifth grade will now be 

presented, The six predictor variables were gender, race (two 

levels), number of elementary schools in which the child had been 

a student, the number of grades the child had repeated, the family 

structure (living with both parents, or �ot), and the child's 

total number of fifth ��ade absences. As we have evidence of the

relationship between both gender and race and the criterion of 

high-school drop-out, the hypothesis to be tested concerned the 

significance of the increment to classification accuracy afforded 

by adding the four "non-organismic" variables (number of 
, ✓ 

elementary schools, number of grades repeated, family structure, 

and the total number of fifth grade absences) to the prediction 
, '.JI ,'.f' 

model containing only gender and race, Classifying the 
' 

,, 

calibration sample, the proportion of correct clasaifications for 

the total model waa 75% and for tho model including only gender 

and race it waa 65%, A 2x2 table illuatrating tho number of hit• 

and mis101 for both models ia:

All Prt.1dic tore 

Gender and Race HIT 

MISS 

MtSS HIT 

9 

10 

39 

18 

Tho test statistic, z • 1,73, would typically be considered 

non-significant (P • ,08) and therefore offers no evidence that 

these other variables add to the classification accuracy afforded 

by just the demographics of race and gender. 
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Parallels 10 

While no significance tests were applied, the classification 

accuracies (again, derived from classifying the calibration 

sample) obtained with two other subsets of predictor variables are 

of some interest. The point of interest is that the 

classification accuracies for these two three predictor variable 

models (number of elementary schools, number of repeats, and 

family structure, 79%; number of elementary schools, number of 

repeats, and number of absences, 79%) were each greater than for 

the total six variable predictor model. Thus, unlike the multiple 

correlation coefficient in MR, even with non-cross-validated 

"internal" estimates �f classification hit-rate, accuracy does not 

necessarily monotonically increase as one adds predictor 

variables. A different perspective concerning contrasting reduced 

and full model predictor variable aubsets may therefore be 

necessary for DA applications, 

One may argue, however, that the cross-validated estimate of 

accuracy should be u1od in any case. An illustration of the 

impact that using a cross-validated estimator might have ia that 

tho laava-one-out estimator for tho hit rates involved in the 

hypothoaia teated above were 64% for the full six-variable model, 

and 49% for the three variable model, with a resulting test 

statistic of z • 2.45, which is, of course, s�gnificant at the ,02 

level. 
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Non-Least Squares Models 

Non-least-squares prediction strategies, particularly ridge 

regression, have received a great deal of attention in the MR 

literature (e.g., Darlington, 1978; Morris, 1982, 1982; Pagel & 

Lunneborg, 1985; Rozeboom,, 1979), and some attention in DA 

(Campbell, 1980; DiPillo, 1976, 1977, 1979). As the benefit to 

predictive accuracy of such methods is a function of whether the 

context is relative or absolute accuracy, the results for DA tend 

to be a subset of those for MR. They appear to be largely 

parallel to the case of absolute accuracy in the MR case (Morris & 

Huberty, 1987); enhanced predictive accuracy is available under 

certain limited circumstance&, however, reductions in accuracy are 

just as likely to occur without an informed decision about when to 

use the technique, Ridge methods are far from the panacea that 

they have been purported to be for either the MR or DA case. A 

auggested method for chooeing between alternate predictor 

weighting algorithms, including ridge and least squares, has buen 

presented for tho DA ca11 by Morri1 and Huberty (l987), and for 

the MR case by Horria (l986), Computer program• for both analysis 

types aru available at no charge from: 

John D. Morris 

Institute for Research and Development in Teacher Education 

College of Education 

Florida Atlantic University 

Boca Raton, FL 33431 

87 



• References

Allen, D. A. (1971). The prediction sum of squares as a 

criterion for selecting predictor variables (Tech. Rep. No. 

fil. University of Kentucky, Department of Statistics. 

Allen, D, A., & Cady, F. B. (1982), Analyzing experimental data 

by regression. Belmont, CA: Wadsworth. 

Bartlett, M. S. (1951). An inverse matrix adjustment arising in 

discriminant analysis. Annals of Mathematical Statistics, 

ll_, 107. 

Campbell, N. A, (1980), Shrunken estimates in discriminant and 

canonical variate analysis. Journal of the Royal Statistical 

Society, 12., 5-14. 

Darlington, R, B, (1978), Reduced variance regression, 

Psychological Bulletin, ,!!l, 1238-1255, 

DiPillo, P, J, (1976), The application of bias to discriminant 

analysis, Communications in Statiatica,A5, 843-854, 

OJPillo, P, J, (1977), Furthor applications of bias to 

diacriminant analysia, Communications in Statiatica, M, 

933-943.

DiPillo, P. J, (1979), Biased discriminant analysis: Evaluation 

of the optimum probability of misclassification. 

Communications in Statistics, AB, 1447-1457. 

Flury, B. & Riedwyl, H. (1985). T2 tests, the linear two-group 

discriminant function and their computation by linear 

regression. The American Statistician, 39, 20-25. 

88 



Gollob, H.F. (1967, September). Cross-validation using samples 

of size one. Paper presented a the meeting of the American 

Psychological Association, Washington, D.C. 

Huberty, C. J. (1984). Issues in the use and interpretation of 

discriminant analysis. Psychological Bulletin,�. 156-171. 

Huberty, C. J., & Mourad, S. A. (1980). Estimation in multiple 

correlation/prediction. Educational and Psychological 

Measurement, 40, 101-112. 
' , 

Lachenbruch, P. A., & Mickey, M. R. (1968). Estimation of error 

rates in discriminant analysis. Technometrics, l.Q., 1-11. 

McLachlan, c; J. (1975):· Confidence intervals for the 
, I ' 

I,'! 

conditional probabilities of misallocation in discriminant 

analysis. Biometrics, l.!,, 161-167. 
/, J.. ' ';\'·, '. ' ' , • "' .) l , ; I 

McNemar, Q. (1947). Note on the sampling error of tho 

difference, between correlated proportion• or percentagea, 

Psychom�trika, ll, 153-157. 

Morris, J. D. (1982), Ridge rogroBRion and 1oma alternate 

weighting t1chniqus1: A comment on Darlington. 

P11ychologicul Bulletin, 2J., 203-210.

Morris, J. D. (1983). Stepwise regression: A computational 

clurification, Psychological Bulletin, 2J., 363-366, 

Morris, J. D, (1986), Microcomputer selection of a predictor 

weighting algorithm, Multiple Linear Regression Viewpoints, 

.!1, 53-68. 

89 



Morris, J. D,, & Huberty, C. J. (1986, April). A comparison 

of three methods of classification hit-rate estimation. 

Paper presented at the meeting of the American Educational 

Research Association, San Francisco. 

Morris, J. D., & Huberty, C. J, (1987). Selecting a two-group 

classification weighting algorithm, Multi.variate Behavioral 

Research (in press), 

Mosteller, F., & Tukey, J, W, (1968). Data analysis, including 

statistics. In G, Lindzey, & E, Aronson (Eds,), Handbook of 

social psychology: Vol, 2. Reading, MA: Addison-Wesley, 

Pagel, M, D, & Lunneborg, C, E. (1985), Empirical evaluation of 

ridge regression. Psychological Bulletin, 2]_, 342-355, 

Rozeboom, W, W, (1978), Estimation of cross-validated multiple 

correlation: A clarification, Psychological Bulletin, .!!J.., 

1348-1351. 

Rozeboom, W, W, (1979), Ridge regruasion: Bonanza or 

baguilemont? Paychological Bullot in, 86, 242-249, 

Tatsuoka, M, M, (1971), MultivAriate analysis, Now York: John 

Wiley, 

90 




