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Abstract 

Scatlarplot smoolhing Is a simple but a very useful lool for data analysis. A smoolh curve superimposed on Ille 
scatterplot greatly enhances the visual Information, especially, the bivariate association between the prediction variable 
and the response variable. In this article some smoothers are reviewed with respect to consistency and sensitivity to 
discontinuities on Ille underlying functions. Robust centered span smoothers produce smooth and consls18nt curves but 
they tend to smooth over or blur Ille discontinuities. Non-centered span smoothers are sensitive to Jt,e discontinuities but 
they lllnd to be rouoh and lack consistency. Two stage smoothing Is proposed as a technique that provides consistency as 
well as sensitMty to dscontlnulties. 
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1. Introduction.

Scatterplots are a very �ef� tool for analyzing a bivariate relationship between two variables, say X and Y. 

The observed bivariate data points, 

(x1 ,Y1 ), (x2,Y2), .... • (xn,Ynl,

constitute acatterplots. They visually explain the relationship. It was pointed out by Cleveland (1979) that the extreme 
• ' j • 

points In the point doud ol acatterplots dlatract the eyes and they tend 10 miss the structure ol the bulk ol the data. M a 
' ''! :'- ';1;.).i'.�J 

llffled'/,1catterplots are smoothed, then the visual Information Is enhanced and the UIOCiatlon between the two variables Is
I ,1 ,4° .i, '• ( p ,'i,:'r,f 

clartfted. Unfortunate!';, If dl1conllnulUn are presenl the smooth curve may tend to conceal this fact. If the smoothers are
,(t!f 

sensitive lo dileonUnulllea they lend lo be somewhat rough. Two atage smoolhing Is proposed as a technique that lends to 

PnMde smooth fits wt1h detection ol dlscontlnulllea. 

Scatterplot smoothing Is a procedure that operates over the bivariate data points to decompose the observed Yi 
�:1::,,: :1;:·r·..1 t,Jr;,;,tt1� t1C 

values Into two parts, System (or Smooth) and Noise (or Rouoh). That Is, the l·lh observed value al Y can be written as 
( J d) 01 f tn:H:,, 

, .,;'�,;,,�·; t!;f.!t,.f:•i ,f\.f''.:t�}.:':-4 ¼�'\ft'i�� ,t;:?:�i(} � 
where s ls a system or a smoothing function and r1 ls a residual (or rough). Here, we assume that Yi Is generated from an

undertytng function and noise with a certain distribution. That Is, 
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The undertytng function f(,cj) Is estimated by s(,cI) In the smoothing procedure. The requirement of I good smoother Is 

that It should not be affected by occasional outliers and the output results should be smooth regardless ol lhe Input data. 

In this regard, Cleveland (1979) proposed Locally Weighted Regression Scatterplot Smoothing ("LOWESS") which 
·. . 

meets the robustness condition of good smoothers. Friedman (1984) proposed a variable span smoother In which local 

cross validation Is used to estimate the optimal span as a function of the abscissa value. McDonlid Ind Owen (1984) 

proposed a split linear flt smoothing algorithm that can produce discontinuous output It can be, used for smoothing wt1h

edge detection. One faabJre of the split linear fit method that dlstingulshes It from most of the oiher smoothers Is that It 

uses non-centered spans. 
,�·_;;11·: ,·,� ',;; ' " {th"' 

One 11 the problems encountered In smoothing scattarplots Is how lo estimate, 11 closely IS possible, the f(x) by 

s(x) using the given scatterplots. Therefore, a good smoother should' be robust and consistent. When the unde,tytng 

function, f(x), Is smooth (continuous) most of the centered span smoothers perform well. However, If l(x) 11 

dlscontlnuous or kinked, the centered span smoothers usually blur the discontinuous points and produce I smooth QJM; 

while the non-centered span smoothers are CJJll8 sensitfw lo discontinuities. 

In this study, the smoothers sensitive to the discontinuities, namely, the non-centered span smoother, running 
'. ql�'.(f\f 1 '. "}'::t:� 

medians of three, and Tukey'a 3RSSH, are compared tor consistency. Also, 1n exploration WII made of I two-stao• 

smoother that Is more cons1tent but 11 the ame time can produce I dlscontl� curve. 

For computational economy, the updating formula of the ��p�
1
vartance p�d lri a11kr. II al (1980) WIii

' ,.
used to update the regression parameter estimations. 

Next. we discus, smoothers with two different types ol sp�n�'1nd consider de�on of the dlacontlnultin ol 

l(x), 

2. Centered Span Smoother.

The centered span smoother Is the most commonly used smoother. To estimate f(xI) take a number of 

observations around xt 10 that xI Is a center ol the observations. These obseMllons constitute a 1p1n for xt· Cleveland's 

LOWESS, Running Median, Moving Average, and 3RSSH are e,camples of the centered span smoother. Here, as a 

cenlllred span smoother, we use a robust fixed span smoother which Is similar lo LOWESS. The basic procedure Is: 
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(a) And lnfflal fitted value Yi for xt by using local linear regression.

Flt a simple local straight line lo the dma In the span for Xj, I ■ 1, ... ,n.
Then, find the Initial smooth value ,i, I ■ 1, ... ,n(Updating formula can be used with unit weight)

(b) Dependng on the IISldual (r1 ■ y1 • Ji) for each xi, assign a weight

A weight for each xi Is based on each r1. 

Let m ■ Medlan(lr11, I ■ 1, ... ,n}, and let d1■ r{(6*m). 

Then, the weight for the k-th observation In the span for x1 will be 

( 1 • d12)2 for ld11 S 1

o otherwise.

(c) Based on the new weigh� flt a locally Mlghted straight regression fine.

(d) Repeat step! (b) and ,(c) un�I the convergence cr iterion, lyold • Ynewl/lyold' < a Is satisfied.
In this llufjy,a■10"5181JS!d, . , •

' . ',: • 1,'� • ., ,, r ' ', 
', ' '. • ' > ' This procedure 18 applied for three different sizes of spans In ()(der lo give points on the boundaries of the span 

Im weight than the points In the center. So, three values (l.e.,111, y21, y31) for x1 118 computed. The weight for each

ettlmata 18 glyen depending on the span size. Let w1, W2, and w3 be wel(Jhts for each of 3 spans. Then, the final s"mooth 

value for x1 wtn be obtained by, 

)l • W1111 + W2y21 + W3)(1i, 

whel8 W1 +W2+w3• 1, 

If the relatlonlhlpa among the apw 118 

span 1 < span 2 < IIJlll 3 . 

In this llud'J, the three spans used are 18, 20, and 22, respectively . 

The advantages of this procedure 111: 

(1) It 11 computationally effective In lllrms of number of operations.
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(b) It Is more robust than a simple local straight line fit.

(c) Using a straight Une raduces computational cost and makes the updating easier.

M seen In Figure 1, this smoother blurs the discontinuous points and produces an overall smoolh CIMY8. Rumlng 

medians of three (referred to as "3R') and 3RSSH 111 also simple centered span smoothers. They 111 quite sensltiw to 

discontinuities but produce rough (or bumpy) fits to the data. 

3. Non-centered Span Smoother.

Unlike most of the smoothers, spans for x1 are not set up such that Xj Is the center oh span. For example, 

McDonald and o.ven·s (1984) split linear flt smoother Is such a smoother. They pointed out the weakness of the cerulld 
';' ,;1' f; 

span sm«nhers and proposed a smoother lhat can be used for smoothing with edge detaction. The Idea Is to mlkll SMral 
linear fits for xi: some of them 111 left-sided fits, some are central fits, and some •�· rfght'..sided fits. In practice, three 

linear fits (one for each type of flt) are enough. Then, the three estimated values from the' three types of fits 111 
assessed depending on the basis of the mean squared residual about the Hne fitted ove�an"ot the data except Xj (referred 

to as '!JMSE1, Any fitted value wtlh Pt_.1SE greater than the average PMSE for xt Is Ignored. Weights for the 11m1inlng 

fitted values are based on the squared differences between each PMSE and the average PMSE. Using thne remaining 
fitted values Ind their 11spectlve weights, a weighted average la computed as a fitted value for x1• ,. ' I • '•di''� . . . ,.,· 

Tills smoother II very sensitive to discontinuities but there la a tendency for 11111 smoother to product a CUM 

with a 10mewhat fagged appearance. Thia problem can be solved to aome extent by applylng tilt abOVI algorfthm 

repelltlvely to Its own output. In this study, It Is 11peated once to avoid possible digression of the fitted CUM from the 

underl'flng function l(x). See Figure 2. In 11111 study, the span size tor this smoother Is 20. 

4. Measurement of Consistencies.

To compare the consistencies of smoothers It Is necessary to quantify them. A posllble candidate to measure 
consistency II the average of the sample variances of the B fitted values for each x1. Efron (1990) pmented an example 

for a bootstrap esttmata for the variance of regression coefficients. A similar Idea la applied In this study•• follows. 

first, assuming that the undariylng function Is not known, apply a smoother on I generated data set Ind find 



. l(Xj) and r1 .� y1 - s(x� , I • 1, ... ,n.

Then, 

(a) Construct � by assigning 1/n IS the weight for the residual, r1 .. ,

(b) Draw a bootstrap data set

Yj° • S(Xj) + r,-, I• 1, ... ,n, 

where r,* 's are 1.1.d. from �. 

are compwd on 

(c) Independent!>/ repeat step (b) B times; obtaining "bootstrap replications,

1 •.·, 2 : B : � ..
•• (•1), •• (x1), ... ,s• (xI), I ■ 1 ,. .. , n.

Then, compute 

... 

,*(x,) • _
B
l l:(.r*•(x,)J,
•·• 

Md 

where/ la the llldert/ilo function. 

•• , •. ·:1,,, .,,,,,.,,,s,at:•i1,r.·1i••1'•�rJ1l1'� 
CM1 measurea the oonsislencles (varaUon) of the smooth CUM around the mean smooth CUM and 'cw measures

the conslsteas around the underlytng function. CM2 ls ;easurab; ri��'wiien' the ��,r��:i:tt'�lt
, l '"' '_::,}" qft/:,:,'-.:;;.•l.-,)�1�] .,J:�l�,j'(>';�'I 

underlytng ftilctlon Is known, It Is more reasonable to use the ej's rather than r1•s and f(Xj) rather than S(�) for step (c) In
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the above procedure to compare consistency. The reason Is that the values of the r1·s depend on the sensitivity of

smoothers to dsconllnuities. In Tables 1 • 4, such measures are computad for comparison of the consistency of smoothers. 

5.Smoothing with Detection of the Discontinuities and Improved Consistency

We have seen that the non-centered span smoother Is sensitive to the discontinuities, while the centered span 

smoothers blur them. By using this fact we can detect discontinuities simply by plotting the differences of the two 

smooth values estimated by the non-centered span smoother and by the centered span smoother. Agure 3 presents the 

two smoolh airves for the purpose of visual comparison. The llllle� function in Figure 3 ls a sawtooth flrlcllon. • 
j .  ' 

figure 4 presents the difference plot. A discontinuity is suspected at the local maxima or minima.' In the figure, a 

discontinuity Is suspected around x ■ 50. Also, the difference plot shows the owrall pattem of the discontinuity. 

We are Interested In consistency and, at the same time, In the detection of dlsconlinlMles., If a smoother his both 

properties, the computed values of CM1 and CM2 for that smoother will be lower than those of other smoottie11. From 
, ;, ��' I ..j/. �• • ,,, l ' 

Tables 1 • 4, we see that the robust centered span smoother has better consistency than the non-centered IPlrl amoottier, 
;,ft' :.i 

' 

but the latter has more sensitivity to dlscontlnultles. The problem Is how to combine the two deal11bie properties. One 
' 

,:) ,., 
solution II to use two-stage smoothing. In the ft11t step, discontinuities are located and the original data set II split such 

,., r 

that each discontinuity serves 111 splitting point In the second step, the robust centered span smoother la applied to 
, 

;,i.•11" ·• , .. 1,1· ' 

each of the apUt data sets. The consistency measurements of this smoottier are shown In Tables 2 and 3 and tlll smooth 

CUMS produced by tliS method II shown In Figure 5. 
' ' 

6. Discussion.

In this study, the consistency measures of vartous 1moothe11 are compared. The mull show that 
,, 

(1) The non-centered span smoother 11 sensitive to discontinuities and Im consistent than the rob11t centered span

smoother, 

(2) The robust centered span smoother lacks sensitlvtty to discontinuities but It Is very consistent

(3) Other sensitive smoothe11, such as Mning medians ol lhree or 3RSSH, produce quite rough CUMS and lack

consistency; and
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(◄) The l'M>-stage smoother Is conslstant and produces smooth curves �th edge deteetion.

The detection and the location of the discontinuities on the x-axis are dependent upon the span size of the 

smoother. The determination of the span slie Is very important H the span size Is la�. then the robust centered span 
smoother wtn blur the discontinuities. H xI Is close to a discontinuity, then the difference between the values estimated by 

the non-cen18red span smoother and the robust centered span smoother wtll be large. If the non-centered span smoother 

has a wide span It lands to Ignore the discontinuities, while a narrow span wtll make It umecessarily sensltlYa and may rasijt 

In false detection of discontinuities. If there are more than one discontinuity on the underlying function the distance 
t 

'1 

between any two discontinuities must be larger than the span size In order to be detected. 

Sometimes outliers make the detection of discontinuity very dif ficult Outllers near the discontinuities may 

cause confusion ard lead to poor �Ions. One possible remq Is to apply the n,,ning medians as a ftlter befo11 the l'M>-. . . 

stage smoother Is applied. The two-stage smoother works well when the dlScontinultlea are separated enough and the 
. ' 

' ' { ';) 

functional form of the undert,lng function Is not compllcallld. It works best when the undertytng function Is smooth but

broken by �ooltles:·for wmple, a saw tooth function. When no dlscontlnultlea 111 dellle111d the two-stage smoother 
��·-,: ,,,,,:i l,:uL·;·· ,.d_ 

;;!<.:1 ,.,, ,,, 
Is the same as the robust centered span smoother. The two stage smoother has the advantages of being able to detect 

dilcontlnijtiea II wen a being very consltlllnt. 
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Appendix.

A,Tables 

Table-1. ,. 
( f(x) ■0.02x, m� Increasing "'1cllon) 

smoother 
Robust Centered Span 
Non-centered Span 
3RSSH • ti· ;\/! !�; 

3R .. � 

.. , ..

cw. CM2 
0.05721 •0,07972 
0.13593 0.17323 
0.47333 0,84698 
0,49887 0,71918 

'-/·.,,..,:,�:.;1,�i ��.,;' 

;,,,,,;. i" T bl 2 >MJ,i•/', ,, • .,. • 
,r, 1 ,;( �jj,;, tf; �M- ••. I � , >•�>,,>· �;.·;,,IJ,i,,.(i,,-,,,. 

( f(x)■0.1x, for xS:50, f(x)■0.1x(x•50), for X>50,
• •'i'lwmoll, f111c11on) ·'·;1&11'.\jfl�./:·,,\i)i, 

,11,-------,..
------

... 
. 

... 

... 

, ..
IN 

, .. 

IN 

., .. .

.... 

♦ 

., .. ,_.,... __________ �It N N • N N N N N *

Smoother 
Robust Centered Span 
Non-centered Span 
3RSSH' 
3R 
Two•ltage 

w 
0.06482 
0.20362 
1.63010 
1.68922 
0.05871 

CM2 
o. 78905
0.39049
2.14755
2.34655
0.31377
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.Table-3. 
( f(x)■0.2x, for xSS0, f(x)■80/(x•40), for X>50, fin• 

shaped fll1ctlon ) 

100 

100 

tOO 

Smoother 
: "' cw. CM2 

RobustCenteredSpao :.0.08246 0.47491 
Non-centered Span 0.20740 0.23504 
3RSSH , ,_,i,fe?0,37348 o.49477 
3R ,, 0.352H 0.51385 
Two�Itaoe • ·�·11 0.07788 0.10850

Table-4. 

( f(X) .. ln(2ft(1-X) UJ, IICpandlg C)"Cllcll f\llc1lon) 

, ... 
....
l,N 
, ... 
, ... 
.... 
. ... 

., ..

., .. 

♦ 

♦ 

♦ 

·••1,4-•-.......... l,N-...... -... _.-, ... --.... .,..-.. ,...,.""-.. "'! .. � ....

arnoatber 
Robu1t Centered Span 
Non-centered Span 
3RSSH 
3R 

,W 
0.06248 
0.20740 
0.37348 
0.35298 

CM2 
0.47491 
0.23504 
0.49477 
0.51365 
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Figure 1. Smooth by Robust Centered Span Smoother. 
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Figure 2. SmOOlh by Non�lld Span lfflOOlher, 
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Figure 3. Compenson o1 two ll'IIOOlh CUMS by 
• Rdlust Cenlllred span smoolher and 

� span smoolher. 
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