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Abstract

A basic knowledge of multiple regression concepts
permits further understanding of path, factor, and
lisrel analyses. 8pecifically, standardiszed partial
regression coefficients (beta weights) as applied in
path, factor, and lisrel analyses are presented. The
multivariable methods have in common the general linear
model and are the same in several respects. First, they
identify, partition, and control variance. 8econd, they
are based upon a linear combination of variables. And
third, the linear weights can be computed based on
standardized partial regression coefficients.

Multiple regression or the general linear model approach

to the analysis of experimental data in educational research has
become increasingly popular since 1967 (Bashaw and Findley, 1969).
In fact today, it has become recognized as an approach that bridges
the qaf between correlational and analysis of variance thought in
answering research hymtholoa (McNell, lhu{, & McNeil, 1978).
Statistical textbooks psychology and education often present the
relationship between data analysis with multiple regression and
analysis of variance (Draper & 8Smith, 1966, Williame, 1974a;
Roscoe, 1978, Edwards, 1979). Graduate students taking an advanced
statistics course are therefore provided with the multiple linear
regression framework for data analysis. @Given their knowledge of
multiple linear regression techniques applied to univariate
analysis (one dependent variable), their understanding can be
extended to the relationship of =multiple linear regression to
various multivariate statistical techniques (Kelly, Beggs, McNeil,
with Eichelberger & Lyon, 1969, pps 226-246; Newvman, 1968). The
article therefore expands upon this understanding and indicates the
importance of the standardiszed partial :oqrouion coefficient (beta
weight) in multiple linear regression as it is applied in path,
factor, and lisrel analyses.



mn. urm REGRESSION

e mltiplo roqroalion techniques require a basic understanding of
: -nnplo statistics (n, mean, and variance), standardiszed variables,
.. correlation (Pedhazur, 1982, pp 53-57), and partial correlation
.. (Cohen & Cohen, 1975; Houston & Bolding, 1974). In standard score
form the multiple regression equation is:

J
g = b s
Yy x
The relationship between the correlation coefficient, the

unstandardized regression coefficient and the standardized
regression coefficient is:

Sss= 8
x Y x
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For two independent va:iablo-, the regression equation with
standard scores 1.: ' '

J :
x = b T +bs
Yy 11 2 2 |
And the standardized partial regression coefficients are computed
by: ,
r = r r r - r r
yl y2 12 y2 yl 12
R § 2 2 2
o 1-r 1-r
12 12

| rho correlation between the original and predicted scores is
iven the special name Multiple Correlation Coeffiocient. It is
ndicated ast

R J = R
Y Y y.12
And the S8Squared Multiple Correlation Coefficient is related as
follows!
L2 2
¢ R 4 e R = b r + b r
T yYy y.12 1 y1 2 y2



MULTIPLE REGRESSION EXAMPLE

A multiple linear regression example using a correlation matrix
as input (SPS8SX User’s Guide, 3rd Edition, 1988, Chapter 13) is in
the appendix. The results are:

2 ..
R - b r + b r + b r
y.123 1y 2 y2 3 y3
- (.423) .507 + (.363) .481 <+ (.040) .276
2
y.1l23

A systematic determination of the most important set of
variables can be accomplished by setting the partial regression
weight .of each variable to szero. - Thie approach and other
alternative methods are presented by Kelly, Beggs, & McNeil et al
(1969) and Darlington (1968).

In summary, regression techniques have been shown to be robust
(Bohrnstedt & Carter, 1971); applicable to contrast coding (Lewis
& Mouw, 1978); dichotomous coding (McNeil, Kelly, & McNeil, 1978);
and ordinal coding (Lyons, 1971) research situations. Multiple
regression can also be viewed as a special case of path analysis.

PATH ANALYSIS

Sewall Wright is credited with the developaent of path analysis
as a method for studying the direct and indirect effects of
variables (Wright, 1921, 1934, 1960). Path analysis is not a
method for discovering ocauses, rather it tests theoretical
relationships called "causal modeling". The specified model
establishes causal relationships among the variables when:

a. temporal ordering exists
b. covariation (correlation) is present
c. controlled for other ‘causes

Model specification is necessary in examining multiple
variable relationships. 1In the absence of a model, many
different relationships among variables can be postulated
with many different path coefficients being selected. Tor

example, in a three variable model the following four relationships

could be postulated:
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The four different models have been considered without reversing
the order of the variables. How can one decide which model is
correct? Path analysis doesn’t provide a way to specify the model,
but rather estimates the effects once the model has been specified
"a priori".  Path coefficients in path analysis take on the
values of a product-moment correlation and/or standardized
regression coefficients in a nodo]. (Nol.ﬂo, 1977). . For example
given model (d): .

X
2

THEN:
b = p b w p T - p
1 yl 2 y2 12 12

A path model is specified by the researcher based on theory or
prior research. Variable relationships once specified, in standard
score form, become standardised Tregression coefficlients. In
multiple regression, a dependent variable is regressed in a single
analysis on all the independent variables. In path analysie one or
more multiple regression analyses are performed. Path coefficients
are computed based upon only the particular set of independent
variables that lead to the dependent variable under consideration.
As in regression analysis, path analysis can use dichotomous and
ordinal data in the causal model (Boyle, 1970; Lyons, 1971).
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MODEL SPECIFICATION

Path models permit diagramming how a particular set of
independent <variables 1lead to a dependent variable under
consideration. How the paths are drawn determine whether the
independent variables are correlated causes (unanalyszed), mediated
causes (indirect), or independent causes (direct). The model can
be tested for the significance of path coefficients (Pedhaszur,
1982, pp 358-62) and a goodness-of-fit criteria (Marascuilo & Levin,
1983, pp 169-172; Tatsuoka & lLohnes, 1988, pp 98-100) which
reflects the significance between the original and reproduced
correlation matrix. This process is commonly called decomposing
the correlation matrix (Asher, 1976, pp 32-34) according to certain
rules (Wright, 1934).

PATH ANALYSIS EXAMPLE

A four variable path analysis program is in the appendix. In
order to calculate the path coefficients for the model, two
regression analyses were performed. The model with the path
coefficients is:

X p = .423
1 Yl
: - -0071
P = .224 3 X p = .040 Y
21 3 Y3
p = .593
32
p = .363
Y2
X
2

The original and reproduced oorrelations are presented in
matrix form. The upper half represents original ocorrelations and
the lower half the reproduced oorrelations which include the
:oq:ollion of paths linking independent variables to the dependent
variable.

VARIABLE Y X1 x2 X3
Y 1.000 .8507 .401 .276
X1 .423 1.000 .22¢ .062 Original
X2 362 .224 1.000 .877 Correlations
X3 - 040 -.070 .593 1,000 :
Reproduced
Correlations
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The oti.!gihai ‘correlations can be completely "reproduced" if all
effects: direct (DE), indirect (IE), -purioua (8) lnd correlated
(C) are . includod.d. ro: oxa-plo: : : L

ik b'im, +,
.

r =p o L | - .224
12 .. 12 - | ~ |
B o
r = p +ppP | ~ - .062
13 31 3221
DE IE
r = p + p P - .577
23 32 3121
DE 8
r = p + pp +PP +P PP - .507
1Y Y1 Y221 Y33 Y3 32 21
DE 1E 1E IE
r = p + PP +P P +P PP = .481
2y ¥2 ¥3 32 Y121 ¥33121
DE 1 8 8
r = p + p P +P P +P PP +P P P = .276
3y y3 Y1 31 Y232 Y12132 Y22131
DE 8 8 8 8

In summary, path analysis can be carried out within the context
of ordinary regression analysis and does not require the learning
of any new analysis techniques (Asher, 1976, p32; Williams, 1974b).
The advantage of path analysis is that it enables one to specity
direct and indirect effects among independent wvariables. In
addition, path analysis enables us to decompose the correlation
between any two variables into simple and complex paths of which
some are meaningful. Path coefficients and the relationship
between the original and reproduced correlation matrix can also be
tested for significance.
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IACTOR.ANALYSIS

'Path models lnd the lllociatod test of -1gnificnnoo between
original and reproduced correlations are used in confirmatory
factor analysis. Factor analysis assumes that the observed
(measured) variables are linear combinations of some underlying
source variable (factor). In practice, one estimates population
parameters of the measured variables from a sample (with the
uncertainties of model specification and measurement error). A
linear combination of weighted variables relates to multiple
regression in a single factor model and to a linear causal system
(path analysis - "multiple"™ multiple regressions) in multiple
factor models. Path diagrams therefore permit representation of
the causal relationships among factors and observed (measured)
variables in factor analysis.

In general, the first step in factor analysis involves the study
of interrelationships among variables in the correlation matrix.
Factor analysis will address the question of whether these subsets
can be identified by one or more factors (hypothetical constructs).
Confirmatory factor analysis is used to test specific hypotheses
regarding which va:iabloa correlate with which constructs
(Long, 1983). - ..

FACTOR MODELS

Factor analysis assumes that some factors, which are smaller in
number than the number of observed variables, are responsible for
the covariation among the observed variables. For example, given
& unidimensional trait in a single factor model with four variables
the diagram would be (Kim & Mueller, 1978a, p 35):

de 735
Y Y 4]
b= .677 Y
Y
d = ,97
X 1 o)
1 1
b= ,402
r 1
600
b= 800 X 2 U
2 2 2
d = ,043
X 3 1)
be 538 3 3
3
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The wvariance of each observed variable is therefore comprised of
‘the proportion of variance determined by the common factor and the
.proportion determined by the unique factor, which together equal
~ .the:itotal variance of each observed variable.  Therefore:

iy 4

2 2 2
8 = b + d = .]
i i -+ 4
Tﬁo\cor:biition between a common factor and a variable
is: '
PR r = b
F,X i
i
The correlation between a unique factor and a variable
is: :
T o - d
U,X i
i

The correlation between obootv‘d,(noaautod) varilbldn
sharing a common factor is:

r = b b
Xx,x 4

And finally, the vnrinndi attributed to the factor as a
result of the linear combination of wvariables is:

2
2 8b> 2
h = ie R
maee F.1234

M
Where: M = number of variables

2
bi. squared factor loadingd

2
Note: 8 Db = eigenvalue
i
2
b = communality
i
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EACTOR ANALYBIS :XANPLS

.1nglo tucto: -nnlylia p:oq:un with four variables in a
correlation matrix format is in the appendix. The path diagram is
the same as abov. (Kin & Muollor, 1976a, p 35) with the weights as
tollow-:” i

b = .677 b = .402 b = .800 b = .S535
ry 1 2 3

And, factor scores computed as:

F=bY 4+ bX + bX + bx
y 11 22 33

Multiplying the coefficients between pairs of variables qivo. the
tollowing corrolation matrix:

VARIABLE Y X1 x2 X3

2

Y b .27 .34 36
o 1

X1 B 27 b .32 22

. : 2
x2 .54 32 b .43
: : 3

' ’ 2

‘X3 T <36 22 .43 b

" - _ P

The co-hon tnaﬁor variance is:

- 2
2 8b
R : = i w .46+ .16 + .64 + .29 = .39
r.123 g ccea -
M 4

The unique taéto: variance is:

2
2 8 (1 =-Db)
l1-R - i = .34+ .84 + .36+ .71 = .61

M 4
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In summary, factor loadings (variable weights) are standardized
regression coefficients. . As such, linear weighted combinations of
variables loading on a factor are used to compute factor scores
(Kim & Mueller, 1978b p 60). The weights are also the correlation
between the observed (measured) variables and the factor
(hypothetical construct). 1If the variable correlations (weights)
are squared and summed, they describe the proportion of variance
determined by that factor. This is traditionally known as an
eigenvalue, but termed communality in factor analysis. When all
variables are standardized, then the linear weights are called
standardized regression coefficients (regression analysis), path
coefficients (path analysis), or factor loadings (factor analysis).
The factor analysis approach is distinquished from regression or
path analysis in that observed variable correlation is explained by
a common factor (hypothetical construct). In factor analysis
therefore the correlation between observed variables is the result
of sharing a common factor rather than a variable being the direct
cause (path analysis) or predictor of another (regression
analysis).

LISREL

Linear structural relationships (lisrel) are often diagrammed
by wusing multiple factor path models where the factors
(hypothetical contructs) are viewed as latent traits (Joreskog &
S8orbom, 1986, pp 1.5-1.7). The lisrel model consists of two parts:
the measurement model and the structural equation model. The
measurement model specifies how the latent variables or
hypothetical constructs are measured in terms of the observed
(neasured) variables and describes their measureseant properties
(reliability and wvalidity). The structural equation model
specifies the causal relationship among the latent variables and is
used to describe the causal effects and the amount of unexplained
variance. The lisrel model includes or encompasses a wide range of
models, for example;: univariate or multivariate regression models, "
confirmatory factor analysis, and path analysis models (Joreskog &
8orbom, 1986, pp I.3, 1.9-1.12). Cuttance (1983) presents an
overview of sgseveral 1lisrel submodels with diagrams and
explanations. Wolfle (1982) presents an indepth presentation of a
single model to introduce and clarify lisrel analysis. The lisrel
program therefore permits regression, path, and factor analysis
whereby model specification and measuresant error can be assessed.
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WNOR‘

rullor (1987) oxtonlivoly covor- 11.:.1 and factor unaly-ic
models and ocpocillly extends regression analysis to the case where
the variables are measured with error. Wolfe (1979, pp 48-51)
presents the relationship between 1lisrel, regression and path
analysis especially in regards to how measurement error effects the
regression coefficient (path coefficient). Errors of measureaent
in statistics have been studied extensively (Wolfe, 1979). Cochran
(1968) studied it from four different aspects: (1) types of
mathematical models, (2) standard techniques of analysis which take
into account measurement error, (3) effect of errors of measurement
in producing bias and reduced precision and what remedial
procedures are available, and (4) techniques for studying error of
measuremant. Cochran (1970) also studied the effects of error of
measurement on the squared multiple correlation cocefficient.

LISRRL-!'AC‘!‘OR ANALYSIS EXAMPLE

A LISREL factor analysis program with a corrolntion matrix as
input is in the appendix. The factor analytic model in matrix
notation is: '

X = L x ¢+ @q
x d

= observed variables :

= gtructural weights (factor loadings)
= latent trait (factor) .

= gerror variance (unique variance)

d

Where:!

Q0 MR

The LISREL results are:
a. L = LAMBDA X (structural weights-factor loadings)

Ym 677 Xw» ,402 X = ,800 X = ,8538
1 2 3

b, q= Jmnu DELTA (unique factor variance)
d
Yo .84 X= 04 X= 36 X= . 7
p | 2 3
2 2
C. b = LAMBDA X (common factor variance)

Yo .46 X = ,16 X = .64 X = ,29
1l 2 3
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.o+ The concept of model specification and goodness of f£it pertains
' to:the ‘original correlation matrix and the o.ti-atod co::ol.tion
: fnat:i:.§ rho outi-atod co::olation matrix 1.: Cr

.542 ..321
F+362 .218 .427

!bo o:iginal corrolntion -at:ix iss
o 507 |
. 8 = ,481 .224

e 276 .062 577

Tho goodnoao of f£it index (GF'I) ulinq the unw.ightod least
.qun:ol approach (UL8) is then conputod as: . :

L 2
‘GFL = 1 = 1/2 t:aco (8 - 0)

Grr = 1 - 1/2 (1.308 - 1.02)
GFT = 1 - .041

-cr: - ,959 |
annzn-nzanzss:ou AUALYSIS EXAMELE

A.LIBR!L :ogroloion p:oq:nn with a correlation natrix as input
is in the appondix. The regression model in matrix notation is:

Y= GX+ =&
ﬁhh:ﬁa dnpondont variable
gn-a matrix (beta weights)

ndependent variables

b 4
G
X
s = errors of prediction (error variance)

The LISREL results are the same as in the pmiouc roq:ou:lon
program: . i

R - (,423) .507 + (.363) .481 + (.040) .276
y.123

2

R - ,40
y.123
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CONCLUSION

The appropriate statistical method to use is often an issue of
debate. It sometimes requires more than one approach to analyzing
data. The rationale for choosing between the alternative methods
of analysis is usually guided by research hypotheses or questions.

The multivariable methods discussed have in common the general
linear model and are the same in several respects. First, they
identify, partition, and control variance. 8econd, they are based
on linear combinations of variables. And third, the linear weights
can be computed based on standardized partial regression
coefficients.

The multivariable methods however have different applications.
Multiple regression seeks to identify and estimate the amount of
variance in the dependent variable attributed to one or more
independent variables (prediction). ' Path analysis seeks to
identify relationships among a set of variables (explanation).
Factor analysis seeks to identify subsets of variables from a much
larger set (common/shared variance). Lisrel determines the degree
of model specification and measurement error. The different
methods were derived because of the need for prediction,
explanation, common variance, model and measurement . error
assessment type applications.

Multiple regression techniques are robust except for model
specification and measurement errors (Borhnstedt & Carter, 1971).
Multiple regression techniques are also useful in understanding
path, factor, and LISREL applications. LISREL permits regression,
path, and factor analyses whered model specification and
measurement error can be assessed. Lisrel also permits univariate
or multivariate least squares analysis in either single sample or
multiple sample (across populations) research settings. An
understanding of multiple regression and general 1linear model
techniques can therefore greatly facilitate ones understanding of
the testing of research questions in multivariable situations.
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APP!NDIX

uunr:pnz nzcnsss:ou rnocnau o
e ’
TITLE REGRESSION WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCESe]; couszanr-o

MATRIX DATA VARIABLES=Y X1 X2 xalu-1oo s g

BEGIN. DATA ' T

1.000 | . . R
'507 1.000 ; et
.481 . .224 1.000 R

.276 .062 877 1.000
END DATA

REGRESSION umrn:x-xu(*)/ : _— [
MISSING=LISTWNISE/ S e e
VARIABLES=Y X1 X2 X3/ g e
DEPENDENT=Y/ , T
"ENTER X1 X2 X3/ : ot

FINISH : :

PATH ANALYSIS PROGRAM ONE

vmnnu: 3 REGRESSED ON VARIABLES 1 m 2

'~‘ N’ ’c ‘4}- R

TITLE PATH ANAL!SIS mu WI‘I'H CONM‘I'ION wmux INPU‘.['

COMMENT VARIABLE MEANS=0; VARIANCES=]}; CONSTAN'!'-O
MATRIX DATA VARIABLES=Y X1 82 X3/N-100 S =

BEGIN DATA R ST
1.000 S
END DL‘I'A c . o
REGRESSION MATRIX.IN (*) /

MISSING=LISTWISE/

VARIABLES=Y X1 X2 X3/

DEPENDENT=X3/

ENTER X1 X2/
FINISH

a1




PATH ANALYSIS PROGRAM TWO
B. VARIABLE Y REGRESSED ON VARIARLES 1, 2, AND 3

TITLE PATH ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCES=l; CONSTANT=(
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.307 1.000
.461 .224 1.000
276 .062 577 1.000

END DATA
REGRESSION MATRIX=IN (*)/
MISSING=LISTWISE/
VARIABLES=Y X1 X2 X3/
DEPENDENTwY/
ENTER X1 X2 X3/
FINISH

FACTOR ANALYSIS PROGRAM

TITLE FACTOR ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABPLE MEANS=0; VARIANCES=1l; CONSTANT=(0
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.507 1.000 ,
.4681 .224 1.000
.276 .062 .377 1.000
END DATA
FACTOR VARIABLES=Y X1 X2 X3/
MATRIX=IN (COR=*) /
CRITERIA=FACTORS (1) /
EXTRACTION=ULS/
ROTATION=NOROTATE/
PRINT CORRELATION DET INITIAL EXTRACTION ROTATION/
FORMAT SORT/
PLOT EIGEN/
TINISH
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LISREL FACTOR ANALYSIS PROGRAM e

TITLE ‘LISREL FACTOR ANALYSIS WITH CORR&IATION mmx INPUT'@
INPUT PROGRAM

NUMERIC DUMMY N
END FILE . . o
END INPUT PROGRAM e

USERPROC NAME=LISREL
DATA FOR GROUP ONE

'Y' 'xl' 'xz' 'x" : .

KM 8Y

1.000
.507 1.000 Cl
.481 .224 1.000 ' e PEE I B
.276 .062 .577 1.000 R T

MO NX=4 NK=1 TD=DI,FR PH=ST
LK

* FACTOR'’

PA LX

4 *1 AN ST AR S

OUULBSB‘.I.'VPCRSVA!’SSBHI
END USER

LISREL REGRESSION ANALYSIS PROGRAM e T
TITLE ’‘LISREL REGRESSION ANALYSIS WITH CORRELATION MATIRX' -

INPUT PROGRAM CiL wa
NUMERIC DUMMY . R y

END FILE A
R
;

END INPUT PROGRAM ‘ R TRt~ S Pk i
USERPROC NAMEs=LISREL T T SR
DATA FOR GROUP ONE
DA NG=]1 NI=4 NO=100
3‘3' X1’ ’'X2’ X3’ ‘ R
KM 8Y W
1.000 -
401 .224 1.000
276 .062 .%577 1.000
MO NY=]l NX=3 PS=DI
OU ULS SE TV PC RS VA 88 MI T0
END USER
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