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Abstract
McNeil (1990) argues against interpreting estimated linear model parameters or weights, largely
on the basis of the expected sample-to-sample variability in those estimates. In rebuttal it is noted that
not to interpret model parameters is to ignore the strength of regression analysis. Appropriate regard
may and shouid be given parameter uncertainty, But that is only part and parcel of parameter

interpretation. Examples of linear modei parameter interpretation are given.

Introduction

In a recent article in this journal McNeil (1990) writes, “Although most multiple regression texte
argue against interpreting regression weights . . . some statistics text authors and researchers still want
to place some sort of importance or meaning on the magnitude . . . of regression weightl.” Count me
among them. Let me announce my loyalties even more strongly. 1 place not just “some sort of
importance” on parameter interpretation; 1 regard interpretability as the central feature of a linear
models approach to the analysis of both observational and experimental data. It is what bolds us safe
from the sterility of unrelieved null hypothesis testing. The case for interpretation I will base on a series

of examples.

Ezemples of Linear Model Paremeler Inlerprelatlion
Simple linear regremion. Consider a simple (one explanatory variable) linear model. I'll assume
the regression of Annual Income (in thousands of dollars) on Years of Education (in school years
satisfactorily completed) is linear in some population of educated and employed individuais. So, we can

write:
E(Annual Income | Years of Education) = Bo + By (Years of Education) .

Our response variable (RV) and explanatory variable (EV) both possess metrics. So we have metrics

for the regression slope and intercept as well:
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ﬁb : The expected Annual Income for an individual with 0 Years of Education. £ is some
value in “thousands of dollars.”

Ay : The increase in expected Annual Income associated with an increase by one year in the

number of Years of Education. 8, is some value in “thousands of dollars per year.”

Our slope or rate of chcnge parameter has a simple and, | believe, very appealing interpretation.
It tells us “how much” Education impacts Income. 8, might be $10/year or $100/year or $1,000/year -
or $10,000/year.

Quite likely a Years of Education score of 0 Is outside our range of interest; indeed, the
distribution of Annual Income conditional on Years of Education being sero may be without any
members. So, any Interpretation of the intercept is uninteresting. We might aaticipate this and choose
to write our linear model in terms of a “GnteM” Years of Education. In particular we might reduce

Years of Education by a constant of 12 yem‘ giving |
E(Annual Income | Years of Education) = §, + 8, (Years of Education - 12) .

Our slope parameter has its same interpretation. 8y, though, is now the expected Annual Income (in
thousands of dollars) for a high school graduate, a substantively more lnteresting quantity.

Given an appropriate sample from our population we can estimate these regression pu;meteu.
And, granted the satlefactorinese of our eampling assumptlons, we can also know how much confidence
to place in those estimates. It ls my thesls that the point estimate of 3, and ite standard error are
useful because we wanl (o know bow big the rate of change is, not because they allow us to “decide”
between “rejecting” and “failing to reject” an hypothesls that 3, le sero. My support for this borrows
heavily from Tukey (1091); | but pacaphrase.

Conalder the following four possible confidence intervals for 3,, all, say 95% Cls:
Case A: [-810, 88)
Case B: ~$3,000, $4,000]
Case C: (84,800, $5,100)
Case D: (310, $10,000)
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Under Cases A or B we “fail to reject” the null hypothesis. But what a difference. Case A ought
to tell us that the slope ia flat; no question about it, expected Annual Income does not change with
Years of Education. On the other hand, Case B ought to tell us that “we haven't the foggiest” whether
Annual Income goes up, down or sideways! And, under either Case C or Case D we reject the null
hypothesis. Yet Case D is rather like Case B in the lack of precision in our a_, while Case C allows us
to say that an additional Year of Education increases the expectod. Annual lncomé by “almost exactly
85,000." How we “decide the null hypotheais” is much less relevant than what we've learned about 3,.

McNeil (1990) Inquires relative to the formula for the circumference of a circle,
Clrcumference = (x) (Diameter) ,

“... what does ¥ mean? = is simply the weight which, when multiplied times the diameter, yields the
clrcumference,” 1 have added the emphasis. McNeil dlsmisses * too readily, as if all that were
important about it ls that it s some constant. But there is more to x: We think of it as &
dimensionless number, but in the context of our Clrcumference equation it is a rate of change with a
metric like in./in. or mm./mm. depending upon how we chooee to measure Diameter. = is the amount
by which the Circumference increases for a one unit increase in Diameter. Increase the Diameter of a
circle by 1 inch and you Increase Its Circumference by (approximately) 3.14 inches. And the value of x
has practical importance; it is a particular constant and it makes a day-to-day difference that it’s value
is what it is and not 8 nor 18 nor 1/5. Put another way, it is not sufficlent to know that the
Circumference of a circle is influenced by its Diameter or, equivalently, that = is greater than zero! As
with mighty =, so too with our lowly gGs. . TS SR SN N -t SPTIISR

Multiple Linear Regramion. Now let’s extend our Annual Income model by introducing a second
EV, Parental Income (also measured in thousands of dollars per year). We write a model additive in

the two EVUZ' BRI . IS T PHANRTTLN EREEETN e TR vt Fopanoio o
E(Annual Income | Years of Education, Parental Income) =
Bg + Oy(Years Education) + G,(Parental Income) . - -
Food SR e o e S T S T R R T WA

What interpretation do we give the 3, of this model? It may be a little easier to see if we rewrite our

linear model in the form .+ " o Lol R e ey e e ) e s L P 342
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E(Annual Income | Years of Education, Parental Income) =
Ry [ﬁo + fa(Parental Income)] + B,(Years Education) .

Ao .

The “slope” parameter, B,, is still the expected increase in Annual Income for a one year increase in
Years of Education (thousands of dollars per year of education). But, in this model the “intercept”
takes ‘different values depending upon Parental lncome. So, our B, here has a couditional
interpretation: The increase in expected Annual Income for a one year increase in Years of Education,

for a Gxed level of Parental Income. -

Often an important question for modelled phenoinen. like this is whether the 4, of our two EV
model has essentially the same magnitude as the 8, of our one EV model. ls the “influence” of Years
of Education on Annual Income the same when we control for Parental Income (our conditional rate of
change parameter) as when we ignore Parental Income? Note that the answer to this question has little
- to do with whether R? increases signficantly from the one to the two EV model. It has everything to
do, of course, with the substantive impoctance of alternative values of 8,. As we have only estimates
of the conditional and marginal rates of change we may scek refuge in the SEs. | emphasise, though,
that the comparison is not a statistical but a substantive one.

A A M ST VR R T L Ce e e

Kleinbaum,: Kupper' & Muller (1988) discues thls comparison more fully, slbeit under the

somewhat pejorative title of “confounding.” They take the position that where the two Gs differ, we
. should prefer the conditional slope. That seems unwarranted. The two anewer different questions.
“What Increase in Annual Income ls expected for an additional Year of Education?” ls one question.
“What increase in Annual Income ls expected for an additional Yest of Education among those whose
parents have identical annual Incomes?” is a different question, We may be interested in whether the
answers are the same or different, but to prefer one to the other is to pre-suppose the subsetantive
question,
Moderated Regression Models. Our two EV model posite additive influences of Years of
Education and Parental Income on our RV. More specifically, the “slope” parameter for Years of
Education ls assumed to be a constant, independent of Parental Income. We might have reason to
doubt this assumption. It could be more realistic to assume that the Annual Income contribution of an
extra year's education might Itself be a function of Parental Income. In more conventional regression
lingo we think that (:) Parental Income might modarate the influence of Years of Education or (b) we
might need separate alopes for different Parental Income levels (as well as separate intercepts.)

Interpreting Weights 4
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The usual way of writing a moderated regression model Is to allow the intercept and the
regression slope of one EV (the moderated EV) each to be linear functions of a second EV (the

moderator). In the present context we could write:

E(Annual Income | Years bf Educotioh, Parental Income) =
(B + B,(Parental Income)} + [8; + f3(Annual Income)](Years Education) =
By + By(Years Education) + G;(Parental Income) + G4(YearsEducationeParentalincome).

The bottom line above describes how we would “input” our regression model, introducing a product |
variable. It may be a good model to fit but it Is quite unsultable for interpretation. The slope
parameter for the product variable, A3, has (at least) two strikes against it: (1) Its metric ls “thousands
of dollars in Annual Income per unit of the product of Years Education and Parental Income.” What a
“unit” of the latter amounts to ls not easy to grasp! (2) Even if we could come to terms with thls
complicated metric we are warned off interpreting 35 because of its conditional nature. In effect, it
assewses the contribution of the product variable when the other EVs in the model are held constant.
But how can we think about a unit Increase in the product of 2 EVes while each Is held constant?
Fortunately, the intermediate expression above for our moderated regresslon model does invite

interpretation, The regreasion slope for Years Education is given as:
{8; + By(Parental Income})] .

This representation is faithful to the moderated regression assumption; the influence on Annual Income
of an additional year of education varies with Parental Income. Given estimates of 3, and 83 the
regression slope estimate is easily calculated for a selection of Parental Incomes of interest, say, 320K,
$40K, 880K, $160K, etc. And, if our regression program provides (as it ought) the variance covariance
matrix for the Es, it is also easy to calculate SEs for such linear forms of the ﬁs as (3, + 20,000 33).

Thus, Cls for the slope estimate at different values of the moderator can be provided.

Quadratic Regramion. These ideas generalize to quadratic regression and, should the need ever
arise to model RVs that double back on themselves in our design space, higher ‘order polynomial
regression. Say we thought Annual Income to be influenced quadratically by Years of Education as in

this linear model:

Interpreting Weights &
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‘E(Annual Income | Years Education) = L
Bo + By(Years Education) + B,(Years Education)? .

(Years Educat.ion)2 is not likely to vary independently of (Years Education) so there is little prospect of

interpreting the two separate conditional slope estimates, §; and £,. -
However, if we rewrite the quadratic model as

E(Annual Income | Years Education) =
S Bo + [B; + B,(Years Education)] (Yeacs Education)

there is a single slope to be estimated, but one which takes on different values depending upon where in
the range of Years Education we want to estimate that slope. Quadratic regression is a special case of

moderated regression; moderated and moderator variables are the same variable,

Interartion Models and Modular Modela, One last example. We make Annual Income now a
(probabilistic) fuaction of two categorical EVs. We'll assume the population of interest to be college
graduates and we are interested in modeling Aanual Income (ficst year poet-baccalauceate) as a
function of Gender and Degree Major, For simplicity, the later takes only three “levela”: Science, Social
Science.tnd Humanlties. Allowing for the possibllity of an interaction between Gender and Major we
would likely begin modeling with a six parameter model. If our immediate goal were to test for o
(slgnlficant) interaction thls initial model might look like this:

E(Anaual Income | Gender, Major) m 8, + 8, Xy 0,X; + 83Xy + B, Xy + 83Xy
where dummy varlables have been employed as follows:

X,: 0 for males, 1 for females.
X3: 0 for Science or Humanlties, 1 for Social Science
X5 0 for Science or Social Science, 1 for Humanitles
Xa ¢ direct product, X e X,
. gt the direct'product, X ¢ X,

Interpreting Weights 6
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- The last two EVs can be thought of as “interaction variables” and the hypothesis of no

interaction is tested by comparing the overall fits (R? or SS Residuals) of this model with one in which
B4 and Sy are constrained to be sero (or, equivalently, X ¢ and X, are “dropped” from the model.) If
the difference in fits is non-significant we declare for the reduced, four parameter, additive model. We
detected no interaction, Let's say, though, that the difference in fits was significant; either B4 or By or
both are non-sero, Gender and Major do interact in influencing Annual Income. What do we do?

My belief is that we ought to do more than report that the interaction is significant or that the
R? for the six parameter model Is slguificantly larger than the R? for the four parameter model. We
ought to “interpret” the interaction; how do Gender and Major interact? The fs for our two
interaction varlables, having as their metrics products of dummy varlables, are not the best candidates
for yielding up the desired interpretation. What works for me is to re-parameterise the interaction
model into one with parameters that are themselves easlly defined and give clear Insight into the

Interaction,

Flrst, what does the finding of an interaction mean, substantively? That the relative Influence of
the several Major levels on Annual Income is different for males than for females. Having learned this,
it behooves us to model Major Influence for males separately, somehow, from our modeling of Major
influence for females, One way of looking at it is to say we want now to examine “simple” rather than
“main” Major effects. That Is facilitated by the re-parameterization to a modular model. The idea of
the modular model is that it is equivalent to the interaction model (in numbers of parameters and fits)
but consists of separate “modules” for each level of a categorical EV. (In the case of higher order
interactions the modules may be for low«_er-ofder interaction “levels”.) Modular models have been
explicated primarily by writers on the use of weighted least squares in the analysis of categorical -
response data, e.g., Forthofer and Lehnen (1981) or Freeman (1987). However, they are equally useful

in the linear modeling of a continuous RV. Here, we'd like separate modules for males and females.
Our modular model might look like this:
E(Annual Income | Gender, Major) = 8,2, + 822, + 8323 + ByZs + Bss + BeZg

where the linkage to our earlier dummy variables is as follows:

Interpreting Weights 7 -
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Z,: Xy (a 0/1 variable coding female)

Zy: 1- X, (a0/1 variable coding male)

Zy: Z»X, (a 0/1 variable coding female and social sclence)
24 2+ X, (a0/1 variable coding male and social science)
Zg: Zy» X3 (a 0/1 variable coding female and humanities)
Zg: Zy+ X3 (2 0/1 variable coding male and humanities)

R

Z,, Z3 and Z;, together with their “weights”, comprise the female module; 3, is the “intercept” for
the female module and S5 and S5 are the female module slopes for the dummy variables coding social
science and humanities respectively. Correspondingly, the male module is based on Z;, Z, and Z,.
Given our particular use of dummy variables, the intercepts evaluate to the expected Annual Incomes
for (male and female) science graduates and the slopes to the differences between the expected Annual
Incomes for either social science or humanlities and thoee expected for science graduates (again,

separately for males and females).

In fitting the modular model we obtain SEs for the six parameter estimates. While the presence of
an interaction insures that we cannot have 8y = f, and f; = S, simultaneously, we may be able to
simplify the modular mode further, guided substantively by our re-defined parameters. The main
point, though, is that the parameters of the modular model are directly lnterpnicble and their
estimates can be used to “explain™ the interaction, :

1 have tried, by example, to make the case for the directness and subetantive importance of
parameter interpretation In linear models. Why should It be controverslal? | have not addreased that
question but I think there are two issues involved. The first has to do with the stages of modellng, from
model formulation through fitting and model comparlson and on, perbaps, to model adoption. How we
view a model and the relevance (or, Indeed, acceptabllity) of parameter Interpretation ¢can depend upon
the stage of modeling at which we are operating. )

The second iseue has to do with a contrast between phenomena that are thought to be wholly
determinlstic and those yith an lnescapable stochastic element. How we assess our success ln modelling

will depend on how much determinlsm we attribute to the phenomenon modeled.

A

Interpretling Weighta 8
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Model Fit, Comparison and Intcrpretation. | ought make it clear that the model parameters
whose interpretation concerns me are, for the most part, parameters in “yccepted” or final models. |
~assume that we pursue our modeling with several alternative models in mind. These may all be pre-
~ specified models, well rationalised in advance of any data collection or they may be models whose
origin owes something to the “lay of the land” once we have it in ligﬁt. In either évent, we are
interested in identifying one or more of these alternatives as “better” than the others. Better, of course,

must take into account the purpose for which we wish to find models.

Whatever our goal, however our alternative models are suggested to us, the path to an accepted
model or models involves fitting several alternative models to our data and then comparing those fits,
This fitting and comparing are done on statistical turf and parameter interpretation plays no role.
Interpretation comes in after final, or, at least, promhlng; models have been identifled. And it |s
necesaary, in my view, if we are to do the best Job of communicating our results. Interpretation, or the
prospect of it, should also be kept in mind when we parameterise models, Every linear model permits
of several alternative parameterizations, all providing the same R3, the same fit to individual
obeervations, We should choose one, our software willing, that will be natural to interpret later on.
And, If our goals accommodate any degree of “model snooping”, having parameters with simple
interpretations makes it that much easier for us to see our way forward in model simplification or

modification.

If we keep in mind where in the modeling process we are, we can make parameter interpretation
work for us and not against us. | cannot believe that modeling progress is facilitated if the analyst is
“blinded” as to the meaning of parameters throughout the entire course of modeling.

Deterministic and Stochastic Modela. McNeil (1990) writes “ . . . when one utilizes MLR one is
taking the stance that’ behavior is complexly determined . . . The goal then is to account for the
variation in the criterion by obtaining as high an R? as possible.” The emphasis is mine. In an
appendix to the same article McNeil equates a “correct model” with one yielding an R? of 1.0. Both
remarks suggest that he is modeling deterministic phenomena; given the right set of EVs, all of the
response variability can be accounted for. Unquestionably, behavior is complexly influenced (if not
wholly determined) and the search for a highest R2 neceasarily leads to models with very many EVs.
And, indeed, in a model with 100, 200, perhaps more, intercorrelated EVs, parameter interpretation
does become, at best, problematic.

' Interpreting Weights 9
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“! Maximising R? for deterministic responses is but one goal to be pursued with linear modeling. Let
me suggest some alternatives.

(1) Not all behavioral, biological or social phenomena are deterministic. 1 mean that in two
senses. First, there is the poesibility of some inherent randomness; in principle we caa never account
for all of the variability in the free throw accuracy of NBA players. And, there are human limitations;
in practice we shall never identify all of the EVs needed to account fully for the variability in the
voting behavior of US state legislators. In either event, the “correct model” cannot extend beyond the

EVs that are known to be relevant and will have an R? substantially less than 1.0.

(2) Even if we take the response to be deterministic, but complexly 80, we often make scientific
headway by considering, at one time, only a few of the many EVs which are known to be relevant. We
seek to learn more about how some EV of interest influences a response. Several of my sketchy
examples qiven earlier had a eommon theme; how does Years of Education influence Annual Income?
Many, many {actors other then Years of Education impact earnings. But, that's hardly the point if
what I'm interested in is learning how Gender or Parental Income or College Major might moderate
the influence of Years Education on Annual Income. If | sample randomly | need not worry overmuch
about what else | might have put into my model.

(3) McNell makes the very important point that the magnitude of an influence we detect for some
EV in an observational study may be a poar guide to what happens when we attempt Lo manipulate
that EV, That is a caveat to be heeded in the reporting of any observational study. Having sald that,
we can do worss .In our search for potentially effective manipulations then to pay attentlon to the
magnitudes of obeervational study Influences. When | induce a student to remain in college another
year | may not have increased her post-educational income by 3,000 per year. Havlag noticed in an
(hypothetical) obeervational study that, on average, each additional year of education was associated
with that amount of additional income, however, suggests it is a manipulation worth trying, and

evaluating.

| believe that a very great many, perhaps the subetantial majority of, linear models in the
blological and behavioral sciences are of these second and third kinds. They involve a limited number
of EVs, often fewer than are known to be relevant to the RV. And, they address one or both of these
qQuestions: “How great {p the influence, if any, of this EV?" and “How is the influence of my EV

changed when | take these other things into account?” In neither case ls the R? as relevant as the

Interpreting Weights 10
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interpreted model parameters.

Parameter interpretation, far from being suspect, should be embr‘aced by the multiple linear
regression community. For appropriately parameterised models the parameters and their estimates
provide natural measures of the magnitude of explanatory influences. Parameter interpretation is
essential if we are to understand the meaningfulness (substantive significance) of an influence as well as

its “presence” (statistical significance).
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