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Regression equations were obtained relating the power of the completely randomized, fixed-effects, one-factor ANOVA for 
two groups to four independent variables: effect size, alpha level, sample size, and the reliability with which the dependent 
variable in the ANOV A design is measured, One equation was singled out for discussion due to the ease with which power es
timates could be calculated using it and their degree of accuracy. The effect of reliability on the power estimates, as well as 
the nature of the relationship of power to the independent variables, was also discussed. 

T
he purpose of this study was to obtain regression 
equations for estimating the power of the 
completely randomi1.cd, fi,ted-eff ects, one-factor 

Analysis of Variance (ANOVA) for two groups from 
four independent variables: effect size, alpha level, 
sample size, and the reliability of the dependent 
measure. Of particular interest was the degree and 
nature of the contribution of the reliability variable (tl1e 
reliability with which the dependent variable in the 
ANOV A design is measured) to estimating a design's 
power. 

Background 
Hopkins, Coulter, and Hopkins (1981) and Cohen 

( 1988) presented tables for estimating tlie power of one
factor ANOV As for various sample sizes, alpha levels, 
and effect sizes. These power estimates are not derived 
from an equation which relates tliese variables; rather, 
they are obtained by a series of steps which require a 
critical F-value to be  obtained from a central F
distribution for a specified alpha level, and the calcula
tion of a non-centrality parameter to determine which 
non-central F-distribution is then to be used to 
determine tlie power estimate. This process does not 
reduce to a single equation, nor does it include the effect 
of the reliability of the dependent measure on power. 

Cleary and Linn (1969) demonstrated that reliability 
does indeed have a direct effect on the power of a one
factor ANOVA. Sutcliffe (1980) confirmed this and 
went on to show that the effect was both direct and 
monotonic. Although Nicewander and Price (1978; 
1983), Overall and Woodward (1975; 1976), and 

Zimmerman and Williams (1986) have addressed the 
extent of Ilic combined effect of reliability, sample size, 
and alpha level on power for a few specific values of 
tliese variables, no functional relationships have been 
presented which can be expressed in equation form. 
Kopriva and Shaw (1991) extended the work of 
Hopkins, Coulter, and Hopkins (1981) by deriving 
tables for estimating power which included among the 
predictor variables Ilic dependent meaimre's reliability. 
Results of their work indicated that for certain 
combinations of values for effect size, alpha, and 
sample size, the effect of reliability on power was 
substantial. 

Since the power estimates tabled by Hopkins, 
Coulter, and Hopkins (1981) and Kopriva and Shaw 
(1991) were derived from a series of steps and not from 
equations which permit their direct calculation, it 
seemed reasonable to determine if an equation could be 
derived from Ilic tables which relates power fwictionally 
to the four independent variables: effect size, alpha, 
sample size, and reliability. Thus, regression equations 
were sought relating the power estimates (dependent 
variable) to the predictor variables above, Several such 
equations are presented in this paper. 

Data 
All data were obtained from the tables f o r  

estimating power for the completely randomized, fixed
eff ects, one-factor ANOV A for two groups which are 
presented in Hopkins, Coulter, and Hopkins (1981) and 
Kopriva and Shaw (1991). A portion of the data for a 
equal to .05 is presented in Table 1. 
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Table 1 Power Estimates for Two Groups (ex = .OS) 

Reliability 

Effect n per 
Size group .10 .20 .30 .40 

5 .02 .03 .03 .03 
10 .03 .03 .03 .03 
15 ,03 .03 .04 .04 

.10 25 ,03 .04 .04 .04 
50 .04 .04 .05 .05 

100 .04 .05 .06 .07 
200 .04 .07 ,08 .09 
400 ,07 .10 .12 .14 

s .03 .04 .04 .04 
10 .04 .04 .05 .05 

15 .04 .05 .05 .06 
.25 25 ,04 .06 ,07 .08 

so .06 .08 .10 .12 
100 .08 .13 .16 .20 
200 .12 .21 .27 .35 
400 .19 .35 .49 .62 

s ,04 .OS ,06 .06 
10 ,OS .07 .08 . 10 
15 .06 .08 , 1 1 . 13 

.so 25 ,08 .12 .15 . 19 
so .12 ,20 .28 .34 
100 , 19 .36 ,49 .60 
200 .35 .61 ,78 .89 
400 .61 .89 ,97 .99 

s .07 .09 .12 .14 
10 .10 .15 .21 .27 
15 . 13 ,22 .30 .38 

1.0 25 .20 .34 .48 .59 
50 ,35 .60 .77 ,88 
100 .61 .88 ,97 .99+ 
200 ,90 .99 ,99+ ,99+ 
400 .99 .99+ .99+ .99+ 

The observations of the power estimates given all 
combinations of eight sample sizes (ranging from 5 to 
400), four alpha levels (.01, .025, .05, and .10), four 
effect sizes (.lo, .25a, .5a, and lo), and ten 
reliabilities (.1, .2, ... , 1.0) served as the 1280 data 
points in the study. 

Model Development and Preliminary Results 
Variables in the models and discussion below are 

identified as follows: 
1 .  Dependent variable: power (P). 
2. Independent variables: sample size (n), level of

significance (ex), effect size which is the expected 
difference in means expressed in standard deviation units 
(d), and reliability estimate (r) for the dependent 
measure. 

Initial inspection of the data set in Table 1 indicated 
a five-dimensional "surface" with substantial curvature 
in certain areas and little or no curvature in• others. 

.50 .60 .70 .80 .90 1.0 

.03 .03 .03 .03 .03 .03 

.04 .04 .04 .04 .04 .04 

.04 .04 .04 .04 .04 .04 

.04 .04 .04 .05 .05 .05 

.05 .06 .06 .07 .07 .07 

.07 .08 .08 .10 .11 .11 

.11 .12 .13 .15 .16 .17 

.16 .19 ,22 .24 .28 .30 

.04 .05 .05 .05 .OS .05 

.06 .06 ,06 .07 .07 .08 

.07 .07 .08 .09 .09 . 10 
,09 .10 .11 .12 , 13 . 13 
.14 .16 .18 .20 .22 .24 
.24 .27 .32 .35 ,38 .41 
.42 .49 .54 .61 ,65 .71 
.72 .78 .84 .88 ,93 .93 

.07 .08 ,08 .09 , 10 .10 

.12 .13 ,14 , 16 .17 . 18 

.15 . 17 .19 .22 .24 ,26 

.23 .27 ,31 ,34 .38 .41 

.42 ,48 ,54 ,60 .65 ,70 

.70 .80 .84 ,88 ,92 .94 
.94 .97 .99 .99 ,99+ .99+ 
,99+ .99+ .99+ .99+ .99+ .99+ 

.17 .19 .21 .24 .26 .28 

.32 .37 .42 .48 .51 .56 

.46 .53 .60 .66 .71 .75 

.69 ,76 .83 .87 .91 ,94 
.94 .97 .98 .99 ,99+ ,99+ 
,99+ .99+ .99+ .99+ ,99+ ,99+ 
.99+ .99+ .99+ .99+ ,99+ .99+ 
,99+ ,99+ .99+ .99+ .99+ .99+ 

When any of the independent variables were inaeased in 
value either singly or in combination with others, P 
was increased and ultimately became asymptotic to the 
hyperplane P = 1. If such a surface could be determined, 
the fit would be essentially without error because all 
data would lie within the surface, not around or near il 

As a starting point, P was regressed onto the four 
predictor variables using the model below, a hyperplane 
with no curvature or warp. 

P = -.274 + .OOln + .170ex + .641d + .282r 
R2 = .698, SE= .197 [1) 

The SE of .197 for this model may be interpreted 
as there being approximately an average of .197 error 
made in estimating P for all 1280 data points. To have 
a model which would produce estimates of P within .02 
or even .05 might be useful, but a model with an 
average error of .197 is not, since P itself ranges from 0 



to 1. F.quation 1 was not expected to fit the data well 
be.cause it did not provide for curvature. 

Adding all two-way interaction terms and squares to 
the model identified by F.quation 1 in an effort to 
account for curvature or warp, brought the R2 to .766. 
Numerous nonlinear transformations of variables in this 
expanded model were tried. Logarithmic, exponential, 
and square root transformations faired no better than 
polynomial fits. Not only were these models more 
difficult to use for computation and more difficult to 
interpret, they also did not capture the asymptotic nature 
of the surf ace's curvature to the hyperplane P = 1. 

In an attempt to improve the fit substantially, 
separate models were sought for various values of relia
bility and effect size. Typical of the nature and com
plexity of the fits possible for r = 1.0 are the three 
models below, which are the one-term, two-term, and 
three-term models which produced the highest R2 values 
from all possible regressions onto the predictor set con
sisting of d, a, n, their squares, and all possible two or 
more-way interactions of these six variables. 

P = .017 +.036nd2 

R2 =.865, SE=.110 [2 ] 

P = -.042 +.037nd2 +.242 a 
R2 =.949, SE=.052 [3] 

P = -.029 + .03Snd2 + .194a +.076nda 
R2=.9S7, SE=.049 [4 ] 

The improvement in the R-squares here is 
dmmatic. Adding additional terms produced R-squnrcs in 
excess of .99 after 18 terms. The substantial 
improvement in R2 wn.'I due to the inclusion of terms 
allowing complex interactions (such as nd2) and the 
deletion of observations having power values greater 
than .95 or less than .20. Deleting these observations 
permitted the complex polynomial interaction tenns to 
fit the surface without being constrained in the areas 
where the surface flattened out near P = 0 and P = J. 

At this stage in the study, a decision was made 
regarding the nature and types of additional models to 
try. Although models were being identified which 
demon.strated improved fits, they were computationally 
difficult to use. In addition, they were not likely to zero 
in on the true nature of the relationship of power to the 
independent variables; rather, they were simply surfaces 
that approximated the true relationship. Since the 
tables already existed, models providing simple 
computational estimates were sought which one might 
easily remember rather than having to carry or ref er to 
tables. 

The data set was modified to include only the 384 
observations where P was greater than or equal to .20 
and less than or equal to .95. With this modified data 
set, logarithmic and exponential transformations still 
faired no better than polynomial fits; however, square 
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root transfonnations did offer enhanced prediction. 
Thus, models were created using the four independent 
variables, their squares and square roots, and all two or 
more-way interaction terms incorporating these twelve 
variables. Using this set of predictor variables, all 
possible regressions were obtained. 

Results And Discussion 

Of all the models produced by all possible regres
sions, the model below (F.quation 5) was judged to have 
the best balance between (a) the accuracy of the power 
estimates and (b) the simplicity of computation. 

P •.236d& + 3.178a-.372 
2 R •.971, SE-.040 [S] 

This model produced the highest R2 value of all 
possible two-term regression models. The R2 of .971 
for this model was substantially higher than the R2 of 
.787 for the best one-term model. Furthermore, of the 
best three-tenn models which had R-squares in excess of 
.971, none exceeded .981 and all were considerably more 
complex to use for computations. 

F.quation S may be simplified somewhat by speci
fying values for a. For example, for the 106 
observations where a = .OS, F.quation 6 provides 
extremely accurate power estimates and is more easily 
recalled. 

P •. 24d& -.18 
R2 •.997, SE-. 029 (6) 

Power estimates produced by Equation 6 are on 
average within .029 of the actual power figures reported 
in the Kopriva and Shaw (1991) tables. 

F.quations Sand 6 do have one unattractive feature. 
For large values of n or d they can produce power 
estimates which are 1.0 or greater. In this case, the user 
may think of the power as being greater than . 99. 
Also, for very small values of n, d, or r, the equations 
can produce power estimates less than zero, in which 
case the power would be thought of as a. 

The reliability of the dependent variable does have 
some effect on power. F.quations Sand 6 do reflect the 
direct and monotonic nature of the effect indicated by 
Cleary and Linn (1969) and Sutcliffe (1980). The 
extent of the effect might best be illustrated with an 
example from Table 1. lf one ignores the reliability of 
the measuring device, the power estimates of Hopkins, 
Coulter, and Hopkins (1981) and Cohen (1988) are the 
same as those found in the last column of Table 1 
where the reliability is 1.0. Thus if one is using an 
instrument with less than perfect reliability, the 
Hopkins, Coulter, and Hopkins (1981) and Cohen 
(1988) power estimates are inflated. F.quations Sand 6 
indicate that these overestimates are high by a factor 
orJ;. 
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A simple, analytical approach using multiple regression analysis is presented as a way to determine the number of factors to 
retain in a factor analysis. Two regression lines are found from the points in a scree plot and the number of retained factors 
is chosen at a point that maximally separates the two regression lines. Applications of the technique to data from the liter
ature suggest that the results agree closely with solutions based on the somewhat subjective visual scree test and may be 
better than those from the analytical CNG method. 

T
he number of factors to retain in a factor analysis 
has long been an important problem (Hakstian & 
Muller, 1973; Crawford, 1975; Horn & 

Engstrom, 1979; Hakstian, Rogers, & Cattell, 1982; 
Kano, 1990). This is critical because it demands a 
decision that affects the factor parameters and the 
interprctability of the factors (Lambert, Wildt, & 
Durand, 1990). 

The most frequently used method for determining 
the number of factors is to select only those factors 
whose ci1ienvalues exceed 1.0 (Kaiser, 1970; Kaiser & 
Caffrey, 1965). Critics of this method (Gorsuch, 1983) 
are concerned that many times there is not a clear break 
among the eigenvalues at the 1.0 value and that underes
timating or overestimating communalties would change 
the number of retained factors when the eigenvalues 
greater than 1.0 rule is used. Therefore, the selection or 
deletion of some factors may be a function of an arbi
trary rule that is not sensitive to the nature or pattern of 
the data. 

An approach that considers the relation of the 
eigenvalues to one another as well as their actual values 
is the scree test. Cattell ( 1966) first proposed the scree 
test to separate trivial from non-trivial factors. The pro
cedure required one to plot the eigenvalues in decreasing 
order. The graph contained the values of the eigen
values on the ordinate and the factors on the abscissa. 
A straight line could be drawn on the graph through the 
points associated with the smaller eigenvalues. The 
points near this line were judged trivial and the points 
above and to the left of the line were judged to be non
trivial (Cattell, 1978; Cattell & Vogelman, 1977; 
Cattell & Jaspers, 1967). Hom and Engstrom (1979) 
provided statistical support for the scree test. 

Cattell and Vogelman ( 1977) and Cattell (1978) 
presented guidelines for this visual procedure. These 

guidelines, as summarized by Zoski and Jurs ( 1990), 
are: 

1. Three sequential points fonn an undesirably low
limit for drawing a scree. 

2. The points on the part of the curve that one
should consider scree should fit ti1ihtly. 

3. The slope of the scree should not approach verti
cal. Instead, it should have an an1ile of 40° or less from 
tl1e horizontal, that is, a slope of the ·tan1ient less than 
-.84. 

4. In the case of multiple screes falling below 400,
the first scree on the left is the arbitrator. 

5. Generally, a sharp, albeit sometimes small,
break in the vertical level exists between the last point 
of the curve and the left-most point of the scree. 

However, problems with this procedure can occur 
when there are multiple breaks in the eigenvalue curve, 
with several straight lines in the graph. It may be diffi
cult to select as well as to justify one break over 
another (Gorsuch, 1983). Moreover, critics of visual 
approaches are concerned about researchers seeing what 
they want to see in the data unless they are constrained 
by a mechanical decision-making rule. This position is 
demeaning to the researchers and shifts the demand for 
objectivity over subjectivity to the final stages of 
research (decisions and conclusions) and ignores the 
more critical phase (research problem definition and 
variable selection). An analytical, programmable 
approach does have some appeal, if it provides results 
that are consistent with those obtained using the guide
lines above. We propose that multiple regression 
techniques can be used to provide such a solution. 

The Multiple Regression Approach 
Gorsuch and Nelson (1981) developed an analytical 



6 MLRV • VOL 20, NO. 1 • SPRING 1993 method for determining the number of f actors to retain. The Cattell-Nelson-Gorsuch scree test re.quires one to compare the slope of the first three roots with the slope of the next three roots. Then the slope of roots 2, 3, and 4 is compared with the slope of roots 5, 6, and 7. This process continues so that all sets of three factors are compared. The number of factors is found where the difference between the slopes is greatest. Because only three points are used to determine the slopes, the analysis is not based on as much information as is possible. Thus, we propose a somewhat different approach using multiple regression to accomplish the same thing; objective determination of the number of factors that is sensitive to the data. The rationale for a regression approach is straightforward. It parallels the statistical work of Hom and Engstrom (1979) on Cattell's scree test using 
�artlett's chi-square test (1950, 1951). The method sed here provides virtually the same decision as the viual scree test but can be easily programmed. It uses a • egression approach whe.re. th. e .. ordered eigenvalues arebought of as points in.a scatterplot. One can then j fonn two regression lines, one for the important factors and another for the scree or trivial factors. The decision � about the number of factors to retain corresponds with the maximal differences between the two regression lines. To use all the eigenvalues, fonn and compare these pairs of regression lines: line 1 (points 1 through 3) line 3 (points 1 through 4) line 5 (points 1 through 5) • • • line (m-2) (points 1, 2, ... (m-3)) 

line 2 (points 4 through m) line 4 (points 5 through m) line 6 (points 6 through m) 
• • • line (m-1) (points (m-2), (m-1), m) The slope of these regression lines will, of course, be negative and can be compared by the usual formulae (Howell, 1987, pp. 222, 239-240): 

b N}:xY -}:X}:Y
• N}:X 2 -(:�;x)i

with 

GENERAL 

[1) 

(2) 

(3) 

and when homogeneity of error variances is assumed, we can pool: 
2 (N,-2X4-x1

)+(N2 -2)(s�-x1 ) 
8Y•X •--.....i.-...;.£---�-.;..c. (4) N1 +N2 -4 ��Hent factonJ are those with eigenvalues in the odd numbered line of the line pair where the t-test is maximized (highest value). The even numbere<fliiie'o( the pafr denotes the scree line. Some analysts may choose not to include the last factor. Note that neither the CNO nor the multiple regression approach would be appropriate when there are only one or two factors. 

Examples We have compared the multiple regression approach to the CNO approach using several data sets from the literature. Preliminary results Indicate that the multiple regression approach usually agrees with a visual scree test and often provides a better solution than the CNO method . Example 1 is based on eigenvalues taken from Cliff (1970). The eigenvalues are plotted in Figure 1. Table 1 contains the slopes of the regression lines and· the t values for the multiple regression approach and the slopes and differences for the CNG approach(* indicates highest value). Note that in this case both procedures indicate that there are five factors and this agrees with a visual analysis of the plotted eigenvalues in Figure 1. 
Table 1 Comparison or Multiple Regression and CNG Approaches: Example 1 

MR CNG #of factors slone 1 slone 2 t slone 1 slone 2 differmce 3 -.563 -.071 4.044 -.563 -310 .253 4 -.441 .038 6.713 -.2.50 -.067 .183 
5 -.426 -.032 8.448* -.377 -.001 376* 6 -380 -.038 6.814 -310 -.032 .278 7 -323 -.042 3.752 -.067 -.043 .024 8 -.272 -.038 1.899 -.001 -.048 .047 9 -.234 -.040 0.890 -.032 -.040 .007 - •
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Figure 1 Scree Plot from Cliff (1970, p. 165, CS 600). 
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The second example is taken from Tucker, 
Koopman, & Linn (1969, p. 442). The plot of the 
eigenvalues is given in Fiaure 2 and the results from 
the multiple regression approach and the CNO approoch 
arc listed in Table 2. The data set was meant to have 

6 7 8 9 10 11 12 

seven factors. The CNO approach yielded three factors 
and the multiple regression approach did yield the 
expected seven factors. Visual inspection of Fiaure 2 
confinns that a seven factor solution is appropriate. 

Table 2 Comparison of Multiple Rearesslon and CNG Approaches: Example 2 

MR CNG 

# of factors stone 1 stone 2 • t slooc 1 stone 2 difference 

3 -1.595 -.084 6.346 -1.595 -.300 1.295* 
4 -1.149 -.067 6.985 -.610 -.360 .250 
5 -.904 -.051 7.327 -.360 -.415 .055 

6 -.737 -.033 1.405 -.300 -.195 .105 

7 -.651 -.023 7.665* -360 -.045 .315 
8 -.590 -.022 7.563 -.415 -.030 .385 
9 -.525 -.021 6.694 -.195 -.020 .175 
10 -.465 -.021 5.501 -.045 -.025 .020 
11 -.413 -.021 4.277 -.030 -.025 .005 

12 -367 -.020 3.176 -.020 -.025 .005 

13 -.328 -.020 2.266 -.025 -.020 .005 

14 -.295 -.019 1.555 -.025 -.020 .005 

15 -.267 -.021 1.013 -.025 -.020 .005 

16 -.243 -.020 .622 -.020 -.015 .005 

17 -.222 -.025 .335 -.020 -.025 .005 
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Figure 2 Scree Plot from Tucker, Koopman and Linn (1969, p. 442, Middle 7) 
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The third example was also taken from Tucker, 
Koopman, & Linn (1969, p. 442). This data set was 
intended to have seven factors and a visual inspection of 
the scree plot in Fiaure 3 suggests that there arc seven 
factors. The analyses presented in Table 3 indicate that 
the CNO approach yielded only three factors and the 

multiple rearcssion approach yielded eight factors. This 
example shows that results from the multiple regression 
approach may not always agree with results from a 
visual approach, but the technique seemed to work 
better than the CNO method for these data 

Table 3 Comparison of Multiple Re1resslon and CNG Approaches: Example 3 

MR CNO 

# of factors slope 1 slove2 t slove 1 slove 2 difference 

3 -1.475 -.081 5.855 -1.475 -315 1.160* 
4 -1.071 -.063 6.818 -.610 -365 .245 
5 -.850 -.047 7.522 -.345 -.440 .095 
6 -.702 -.029 7.944 -.315 -.210 .105 
7 -.625 -.018 8.369 -.365 -.015 .350 
8 -.574 -.018 8.443* -.440 -.010 .430 
9 -.513 -.018 7.401 -.210 -.010 .200 
10 -.455 -.195 5.974 -.015 -.025 .010 
11 -.403. -.019 4.554 -.010 -.025 .015 
12 -358 -.018 3.341 -.010 -.020 .010 
13 -320 -.178 2.365 -.025 -.015 .010 
14 -.287 -.177 1.611 -.025 -.020 .005 
15 -.260 -.018 1.047 -.020 -.020 .000 
16 -.235 -.015 .647 -.015 -.020 .005 
17 -.215 -.015 .356 -.020 -.ot5 .005 

- . 
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Figure 3 Scree Plot from Tucker, Koopman & Linn (1969, p. 442, Formal 7) 
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Conclusions 

Multiple rearession is a versatile set of techniques 
for which there are diverse applications. Our results 
indicate that multiple rearession can be used success
fully to detennine how many factors to retain in a factor 
analysis. Preliminary analyses suggest that the results 
will usually aarcc with results from a visual scree test 
and the results often are better than those from alter
native analytic techniques such as the CNO method. 
Further use of the multiple regression method will 
identify the strengths and limitations of this approach. 
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