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. This study examines, through Monte Carlo simulation, the effects of truncation on the gamma distribution (with one 
through four parameters). Specifically, three types of truncation (right, left, and double truncation) are considered. 
Computer facilities were used to generate 400 random samples from the gamma distribution with different parameter values 
for different sample sizes, shape, scale, location, power, and degree of truncation. Correlation and regression analysis 
demonstrated that the degree of left truncation has a significant correlation with the measures of central tendency for all 
distributions. The degree of right truncation had a 1ignificant relationship with the measures of deviation. On the other 
hand, the kind of truncation had a significant unique contribution for all models. However, the type of truncation had 
significant unique contributions for all models except two (scale and location models for gamma with three parameters). 

T
he gamma distribution, or what may be called
Pearson Type III of frequency curves, is one of 
the most important statistical distributions. It 

has been studied and investigated by many writers 
because of its application in different areas such as 
industrial engineering, physics, and quality control. For 
example, the gamma distribution can be considered as a 
description of duration variables such as the time taken 
for an instrument to be repaired, the time taken to get 
served at a store, etc. 

If x is a continuous random variable having the 
gamma distribution, the generalized aamma density 
fwtction is given by: 

r(x;c, p,>-.,a)• 

(p>-.-all /r(a) )(x -c)afl-l ex�-((x -c )/>-)P)
(1) 

where 0 :s; c < x < 00, p > 0, >-. > 0, a > 0, c is the 
location parameter, >-. is the scale parameter, p is the 
power parameter, and a is the shape parameter. 

The gamma distribution may have one, two, three, 
or four parameters. The probability density function for 
a gamma distribution with three parameters may be 
obtained from the generalized fonn (gamma with four 
parameters) by letting .6 = 1.0. The probability density 
function with two parameters can be obtained by using 
c = 0.0 and .6 = 1.0. The probability density function 
with one parameter can be obtained by letting c = 0.0 
and .6 = A = 1.0 in the generalized fonn. 

In some situations, the complete rangJ of the 
gamma distribution is not available to the researcher, in 

which case he or she works with a truncated 
distribution. The aeneral form of the probability 
density function in this case becomes: 

[2J 

where a < x < b and where the values of a and b are 
dependent on the type of truncation and truncation 
degree. Therefore, if the range of x in (2) is [a,00), the 
distribution can be called a left truncated gamma distri­
bution. However, if the range of x is (0,b], the 
distribution can be called a right truncated gamma 
distribution. 

Many writers have discussed the subject of 
truncated distributions. Most of these studies are 
devoted to the exponential and normal distribution 
(Basu, 1964a; Yang & Sirvanci, 1 m; Megahed, 1981; 
Depriest, 1983; Mittal, 1984; Mittal & Dahiya, 1987). 
Some writers have discussed the subject of the truncated 
gamma distribution. Most of these studies are devoted 
to the estimation of the parameters by the method of 
moments or by the method of maximum likelihood. 
Cohen (1950) used the method of moments while Des 
Raj (1953), Broeder (1955), and Chapman (1956) used 
the method of maximum likelihood. 

In this paper, three kinds of truncation were 
considered: (a) degree of truncation is defined as size or 
degree of right, left, and double truncation ((tr), (ti) and 
(tl,tr)), (b) type of truncation is binary coded, where 
right truncation is (0,1), left truncation is (1,0) and 



double truncation is (1,1), and (c) interaction is coded 
tl*tr(0J) and tr*tl(l,0). 

Truncation can be one-sided (right or left) or two­
sided. The three main types of truncation are right trun­
cation, left truncation, or double truncation. In each 
case the fraction of the distribution of the population 
that falls outside the truncation point or points is called 
the degree of truncation. In this study two different 
approaches were used to analyze the effects of truncation 
on the gamma distribution. First, correlation analysis 
was used to determine the effect of truncation (type and 
degree) on the measures of central tendency and/or varia­
tion for the gamma distributions. Second, the multiple 
linear regression approach was used to generate and 
analyze models to isolate unique contributions of the 
different kinds of truncation. 

Briefly, the major purpose in using multiple linear 
regression was to determine the actual impact of trunca­
tion (type, degree, etc.) on the gamma distribution of 
one, two, three and four parameters. The measures of 
central tendency are changed as a result of the type of 
truncation and/or its degree. The regression technique 
assisted in defining the theoretical consequences of trun­
cation in the gamma distribution. 

Research Limitations 

This study was carried out using empirical data 
generated by a Monte Carlo simulation. The data were 
used to investigate the eff ccts of different kinds of 
truncation on the aamma distribution. Computer 
facilities at the University of Northern Colorado were 
used to generate 400 random samples from the aamma 
distribution with different parameter values. The 
generated sample sizes were 10, 20, 30, 50, and 100. 
The shape parameter ( a • 0.5, 1.5, 2.0, 3.0, 5.0 and 
10.0), the scale parruneter ( >. = 1.0, 1.5, 2.0, 3.0, 4.0, 
w1d 5,0), the location parameter (c = 0.0, 0.1, 0.2, 0.3, 
0.5, 1.0, 2.0, 3.0, and 5.0), wid the power parameter (8 
= 1.0, 2.0, 3.0, 4.0, and 5.0) were considered. The 
truncation degrees were t times a, where t = 0.1, 0.2,
0.5, 1.0, 2.0, and 3.0. 

Generation Of Gamma Variables 

Since the gamma forms are easily obtained from 
raw data, they can approximate a wide variety of 
functional shapes. It could play a major role in digital 
simulation studies. Various investigators have been 
concerned with generating gamma variables. Phillips 
and Beightler (1972) presented a technique for generating 
random gamma varieties depending on two parameters: 

f{x)-(>..-a/r(a))xa-le-xfi., 0<x<oo 

f { x) • 0 elsewhere . 
(3) 

They made a comparison between the composition 
technique and the rejection technique. With regard to 
statistical goodness-of-fit based on limited experiments, 
the first three methods were capable of generating 
random gamma variables closely approximating the 
desired gamma density for values of a > I. For lower 
values of the scale parameter A., their method was 
better than the others. With regard to computer 
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generation times, the rejection method is recommended 
for values of a< 2.5. Naylor's (1971) method did quite 
well for values of a > I; although it was an easy 
method to program, it did require more computer 
running time. 

Whittaker (1974) introduced a method of generating 
random variables from uniform variables with a gamma 
or beta distribution having a non-integer shape 
parameter. Cheng (1977) described the rejection method 
for generating gamma varieties with shape parameter a 
where a > I. The scheme used to generate gamma 
varieties with one parameter is described below. 

1. Set a= (2a -1)-112, b = a -log4 and c' = a +a-1.
2. Generate a pair of uniform random numbers, Ut and

U2.
3. Set v = alog(U1/(1-UI)), x = a eV .
4. If b+c'v-x � log(U fU2 ), accept x, otherwise go to

Step 2.

This method was better than the previously
published method (Phillips & Beightler, 1972; 
Whittaker, 1974) in terms of speed and program com­
pactness, 

Cheng and Feast (1979) introduced a simpler and 
faster method for generating a gamma variate by using 
the rejection technique, This method is suitable for all 
a > I and it uses the ratio of uniform variable. It was 
noticed that some studies for aenerating gamma variable 
depend on specified conditions. Other methods need 
more time because the expected number of trials needed 
for each accepted variate could be more complicated than 
anticipated, and the complexity of the calculations 
required per trial arc more extensive than anticipated. 

.This is usually determined largely by the number of 
uniform random numbers needed and by the number of 
loaaritbmic or exponential function evaluations 
required. 

Ripley's (1983) algorithm was developed on the 
basis of a recent study to generate gamma variables. It 
can be executed by using a small computer. However, 
it was found that the results were not suitable for most 
values of a and the generated variables did not follow 
the gamma distribution when a > 3. The Ripley 
algorithms are called GKMl, GKM2, and GKM3. 
Algorithm GKMl is described for 1 < a < 4. 
Algorithm GKM2 applies for a > 4. More impor­
tantly, they are composite algorithm, called GKM3, 
which remains correct while covering all a > 1. 

Maio Steps of Algorithm GKMl 
1. Set a = a - 1, b = ( a - (6a f 1) / a, c' = 2 / a and

d =c'+2.
2. Generate independent U( OJ ) variates Ur and U2.
3. Let w = bU1/U2. If (c'U2 - d+w+w-1) � 0 go to 4.
4. If c' logU2 - logw+w-1 � 0 go to step 1.
5. Deliver x = aw.
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Main Steps of Algorithm GKM2 
1 . Let a, b, c', d as in GKMI; f = ./o.. 
2. Generate independent U (0, 1) variable U1 and U.

Set U2 = Ut + r- 1 (1 -l.86U). Repeat this step
unless 0 < U2 < 1 (the constant f must be Jess than
{1+/i./e)}.

Steps 3, 4, and 5 are as in GKMl. 

This method is complementary to GKMl in that it 
is slower than GKMI for a near 1, but it rapidly 
becomes faster as a increases. Since GKMI and GKM2 
differ only in step 2, it is easy to combine them by use 
of a switch. The composite algorithm is called GKM3. 

Main Steps of Algorithm GKM3 
1 . This is exactly the same as GKM2 except that step 

2 is replaced by 2'. 
2'. Use step 2 of GKMI or GKM2 according to 

whether a is less than or greater than a prescribed 
value a0• The suggested value for a0 is 2.5; this 
ensures that the speed of variate generation is sub-
stantially the same for all a > 1. 

Three algorithms are needed for the three separate 
programs; therefore, it is preferred that the three algo­
rithms be combined to make a modified algorithm 
which will be suitable for all values of a. In this way, 
a proaram is developed which can be generalized for 
aencratina aamma random variables with three or four 
parameters for any value of a, and value of A., 8, or c. 
The modified aJaorithm is introduced in the next 
section. 

Research De1l1n And General Procedures 
The Faculty of Commerce Computer facilities at 

Al-Azhar University for Girls were used first to apply 
the Moote Carlo simulation. The Pseudo-Random 

Table 1 List or Variables 

Parameters 
1 Shape Parameter YI 
2 Scale Parameter Y2 
3 Location Parameter Y3 
4 Power Parameter Y4 

Measures of Central Tendency and Deviation 
5 Mean 

X 

6 Variance 92 

7 Skewness Sk 
8 Kurtosis Ku 
9 Mode Mo 
10 Median Me 

Sample Size 
11 Sample Size n 
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Number Subroutine from the alphatronic 
Microcomputer System (BH/01824/e/k) was used next. 
FinaUy, the IBM 3081 032 Computer System at the 
University of Northern Colorado was used. 

Different random samples were used for generating 
gamma variables and different gamma distributions were 
generated with shape parameter (a = 0.5, 1.5, 2.0, 3.0, 
5.0, and 10.0), scale parameter (A = 1.0, 1.5, 2.0, 3.0, 
4.0, and 5.0), location parameter (c = 1 .0, 0.2, 0.3, 0.5,

1 .0, 3.0, and 5.0), and power parameter (8 = 1 .0, 2.0, 
3.0, 4.0, and 5.0). BASIC programs which were 
designed for generating gamma varieties were dependent 
on the following modified algorithm. 

The researchers developed an algorithm through the 
inixture of GKMI, GKM2, and GKM3. The algorithm 
was developed to he suitable for all values of the 
parameters of the three parameter gamma distribution. 
Supposing that (a < I) is a shape parameter, the 
algorithm follows these steps: 

1. Let a = a - 1, b = ( a - (6a y l) / a, c' = 2 I a,
d=c' +2 and f= ./o..

2. Generate independent U(0,l) variables UJ and l72.
3. If (a< 4) go to step 5.

4. Set U2 = Ut r-1(1 - 1.86 Uo). Repeat this step
W1less 0 < U2 < 1.

5. Let w = b U1/U2. If (c'U2 • d+w+w•l) � 0, go to
step 7.

6. If (c101U2-logw+w-l) ::i: 0 go to step 2.
7. Deliver x = (aw)A. +c.

Description or the Variables 
l11e variables used for the analyses in this study are 

listed in Table 1. 

The Kind of Truncation 
12 Degree It truncation ti. 
13 Degree rt truncation tr. 
14 Left truncation ti( 1,0) 
15 Right truncation tr(0, 1) 
16 Interaction 1 tl*tr(0,l) 
17 Interaction 2 tr• tl(l ,0) 

The Kind of Distribution 
18 Gamma one parameter kl 
19 Gamma two parameters k2 
20 Gamma three parameters k3 
21 Gamma four parameters k4 
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Table 2 Relationships Between Central Tendency and Deviation Measures and Kind of 
Truncation for Gamma Distributions (N=250) 

Measure ti  tr ti! 1,0} tr!0,l} ti* tr!0, 1} tr*tl!l,0} 

Mean 
One .977* -.011 .238* -.347* -.023 -.027 

(.0001) (.857) (.0001) (.0001) (.718) (.677) 
Two .727* -.439* .199* -.524* -.122 -.297* 

(.0001) (.0001) (.002) (.0001) (.059) (.0001) 
Three .139* .306* -.114 -.194* .113 .089 

(.028) (.0001) (.072) (.002) (.075) (.089) 
Four .403* .314* .078 -.269* -.059 .171 * 

(.0001) (.0001) (.219) (.0001) (.352) (.007) 

Mode 
One .980* -.030 .239* -.345* -.030 -.030 

(.0001) (.641) (.0001) (.0001) (.636) (.539) 
Two .756* -.423* .223* -.503* -.103 -.285* 

(.0001) (.0001) (.0003) (.0001) (.109) (.0001) 
Three .185* .309* -.062 -.199* .150* .123 

(.003) (.0001) (.329) (.002) (.017) (.052) 
Four .412* .302* .081 -.278* -.062 .159* 

(.000) (.0001) (.202) (.0001) (.325) (.012) 

Median 
One .977* -.011 .857* -.347* -.022 -.027 

(.0001) (.858) (.0001) (.0001) (.718) (.676) 
Two .728* -.438* .200* -.524* .122 -.297* 

(.0001) (,0001) (,002) (.0001) (.054) (.0001) 
Three , 140* .308* -.114 •, 192* .114 .090 

(,027) (.0001) (.073) (.002) (.072) (.155) 
Four .403* ,314* .078 .269* -.059 .171 • 

(.0001) (,0001) (.221) (.0001) (.352) (.007) 

Variance 
One .492* .533* .111 •, 218* .174* .319* 

(.0001) (.0001) (.081) (.0005) (.006) (.0001) 
Two .389* -.419* •,009 -.475* -.189* •,294* 

(.0001) (.0001) (.892) (.0001) (.003) (.0001) 
Three ., 136* .145* -.297 •, 142* •. 120• •, 145* 

(.0001) (.0001) (.892) (.0001) (.003) (.0001) 
Four .020 .193* -.028 -.058 -.030 .106 

(.752) (.002) (.660) (.363) (.638) (.095) 

Skewness 
One -.139* -.222* -.063 .009 -.022 --.127* 

(.028) (.0004) (.323) (.891) (.734) (.044) 
Two .045 -.183* .115 -.167* .146* .013 

(.476) (.004) (.071) (.008) (.021) (.636) 
Three -.077 -.537* .301 * -.347* -.135* -.202* 

(.228) (.0001) (.0001) (.0001) (.034) (.001) 
Four .245* .081 .104 -.158* .344* .186* 

(.0001) (.204) (.102) (.012) (.0001) (.003) 

Kurtosis 
One -.138 -.200* -.202* .148* -.038 .151* 

(.300) (.002) (.001) (.020) (.550) (.017) 
Two -.015 .139* .144* .160* .319* .222* 

(.816) (.028) (.023) (.011) (.0001) (.0004) 
Three -.054 .229* .347* .004 -.064 -.077 

(.397) (.0003) (.0001) (.947) (.315) (.228) 
Four .227* .213* .052 -.041 .343* .205* 

!,0003i !,0007! !.410i p24! !.oooq !,001! 
Note. One, Two, 'fhRe, and Four arc aamma diatributio11.1 with one throuah four parameten; top ownbcn refer to Peanoo correlation cocfficicota; ownben in 
parmthcan refer to p-nluca; uterialu indicate a uaoificaot rclatiooahip (p < .OS). 
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Correlation Analysis 
Table 2 shows the correlation coefficients between 

the central tendency measures and the kind of truncation 
for the gamma distribution with one through four 
parameters. This table indicates that the degree of left 
truncation had the highest correlation with the measures 
of central tendency of the gamma distribution with one 
through four parameters. 

The degree of right truncation had negative correla­
tions with the measures of central tendency of the 
gamma distribution with one and two parameters. The 
degree of right truncation has a significant relationship 
with the measures of central tendency for gamma distri­
butions except the gamma with one parameter. 

Table 2 indicates the relationship between the type 
of truncation and the measures of central tendency. The 
relationships between the left truncation and the 
measures of central tendency were positive and 
significant for the gamma with one and two parameters. 
The table also indicates that right truncation had 
negative and significant correlations with measures of 
central tendency for gamma distributions with one 
through four parameters. Further, there was no evidence 
to support that the interaction ti *tr(O, 1) had a 
significant correlation with the measures of central 
tendency for the gamma distributions except the mode 
of the three parameter gamma distribution. However, 
the interaction tr*tl( 1,0) had significant correlations 
with measures of central tendency for the gamma with 
one and four parameters. 

Also, Table 2 indicates that all types of truncation 
except the left truncation had a significant correlation 
with the variance of the giunma distributions with one 
through three parameters. The degree of left truncation 
has a significant correlation with the skewness of the 
gamma with one and four parameters, but there was no 
evidence to support that there were relationships with 
the skewness of the gamma with two and three 
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parameters. The degree of right truncation had a 
significant correlation with the skewness of the gamma 
with one through three parameters. 

Left truncation was not significantly correlated with 
the skewness of the gamma with one, two, and four 
parameters; however, it has a significant correlation 
with the skewness of the gamma with three parameters. 
The right truncation has a significant correlation with 
skewness in the different cases, except for the gamma 
with one parameter. 

Degree of left truncation has significant correlations 
only with the kurtosis of the gamma with four 
parameters; however, the degree of right truncation has 
significant correlation with kurtosis of the gamma with 
one through four parameters. Left truncation has 
significant correlations with the kurtosis of the gamma 
with one and three parameters; however, right truncation 
bas significant correlations with the gamma with one 
and two parameters. The interactions had significant 
correlation with the gamma with one and four  
parameters. 

Table 3 presents the relationships between 
measures of central tendency, dispersion, distributional 
shape measures, and the kind of truncation. This table 
is based on all samples which are used for one through 
four parameter distributions, and is a summary of these 
relationships. It indicates that the relationships between 
the measures of central tendency and both the degree and 
type of truncation were significant. 

There was no evidence that the degree of truncation 
was significantly related to the variance but the type of 
truncation was significantly related to the variance. The 
dearcc and the type of right truncation had a significant 
correlation with the measures of distributional shape, 
while ther.c was no evidence to support that left trunca­
tion was significantly related to the measures of 
distributional shape. 

Table 3 Relationships Between Distribution Measures and Kind or Truncation (N=1000) 

Measure ti tr tl(l ,0) tr(0, 1) tl*tr(0,l) tr• ti( 1,0) 

Mean .655 .081 .066 -.331 .032 -.009 
(.0001) (.010) (.036) (.0001) (.306) (.774) 

Mode .697 .076 .105 -.329 .039 .001 
(.0001) (.016) (.0009) (.0001) (.217) (.968) 

Median .655 .082 .067 -.330 .033 -.009 
(.0001) (.010) (.035) (.0001) (.301) (.788) 

Variance .049 .034 -.190 -.183 -.064 -.111 
(.119) (.277) (.0001) (.0001) (.045) (.0004) 

Skewness .005 -.267 .060 -. 167 -.010 -.118 
(.870) (.0001) (.057) (.0001) (.762) (.0002) 

Kurtosis -.044 -. 135 .036 .072 .044 .071 
(.162) (.0001) (.254) (.022) (.153) (.026) 

ti2k, Top nurnbcn refer to Peanon correlation coefficienta: nurnbcn in parenthaa are p-valuea. 
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Table 4 Relationships Between Kind of Truncation and Number of Parameters as Coded by 
Binary Vectors (N=l000) 

Number of Parameters of Gamma Distribution 

Kind of Truncation One Two Three Four 

t I .088 .036 -.042 -.082 
(.005) (.256) (.181) (.010) 

tr -.019 -.149 .088 .080 
(.547) (.0001) (.005) (.011) 

tl(l,0) .077 -.030 -.169 .124 
(.014) (.336) (.0001) (.0001) 

tr(0, 1) .004 -.095 .047 .045 
(.912) (.003) (.140) (.159) 

ti* tr(0, l) -.061 -.059 .152 -.033 
(.055) (.060) (.0001) (.300) 

tr*tl(l,0) -.011 .094 -.026 .131 
(. 731) (.003) (.415) (.0001) 

t:lll.ls., Top nwnben are Pcanon co1Tclalion coefficicota; nwnbcn In parcothcaca arc p-valuca. 

Table 4 identifies the relationships between the 
kinds of truncation and the distributions. This table 
indicates that the gamma distribution with one 
parameter bad significant relationships with the degree 
and type of left truncation. The gamma distribution 
with two parameters had significant relationships with 
the dearee and type of riaht truncation and the 
interaction tr*tl(l,0), The aamma distribution with 
three parameters had significant relationships with the 
dearee of riaht truncation, left truncation and the 
interaction (both left and right), left trw1cation and the 
interaction tr*tl( 1,0), 

Briefly, the relationships between trw1cation and 
the measures of aamma distributions were dependent on 
the kind of distribution, the type of truncation, and the 
distribution measures; whereas the relationships among 
the measures of central of tendency and the types or 
degrees of truncation were all significant. 

Multiple Regression Analysis 
Multiple regression analyses were performed to 

examine the relationships between each parameter of the 
gamma distribution (dependent variable) and the set of 
descriptive characteristics (independent variables) of the 
gamma distributions. Determination of which variable 
serves as aiterion variable and which set of variables are 
predictor variables was dependent on the model that was 
considered. 

In general, the set of descriptive characteristics of 
the gamma distributions includes the variables, 

1. Measures of central tendency (mean, mode, and
median) to be represented by X 1, X5, and X6,
respectively.

2 . Measures of deviation (variance, skewness, and
kurtosis) represented by X2, X3, and "4,
respectively.

3. Sample sire represented by X7.
4. Degree of truncation (tr) and (ti), represented as Xg

and X9,respectively.

5. Type of truncation tl(l,0) and tr(0, 1), represented as
X10 and Xt 1, respectively.

6. Interaction tl*tr(0)) and tr*tl( l,0), represented as
X12 and X13, respectively.

7. Kind of aamma distribution with one tltrough four
parameters represented as X 14, X15, X16, and X17,
respectively. Each variable was binary coded.

The full model considers all seventeen variables (X 1, 
X2, ... X17) as predictors for the dependent variables 
(one of the four gamma distribution parameters). 

Sample size should be related to the number of 
variables and should increase as the number of variables 
increases (Barcikowski & Stevens, 1975). On e 
informal guide for a lower limit is that there should be 
10 subjects for each variable. To insure sufficient 
sample size for a small set of variables, Thorndike 
( 1978) offered the following rule to determine the 
sample size: N � 10(p+c)+50, where p is the number of 
independent variables (predictors) and c is the number of 
dependent variables (criteria). In this study, Thorndike's 
sample sire requirement was satisfied in all regression 
models which were analyi.ed. 

A hierarchical chart of reduced models was con­
structed (see Table 5). Each model was reduced from the 
full model and significant drops in R 2 indicated 
significant contributions to the dependent variable, Y, 
by omitted predictors are identified by asterisks using 
the .05 level of significance (see Table 6). 

Also, comparisons between R2 for the different 
models are summarized in Table 6 for the gamma with 
one through four parameters and the general model 
(which includes all the data of the gamma distribution 
with one through four parameters) for the shape of the 
parameter model. This table indicates that a sequential 
decrease in R2 occurred from gamma with one through 
gamma with four parameters for the shape models (.952 

to .733). R-squarfS for full models depended on the 
kind of distribution and N. Furthermore, the R2 value 
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in the general case for the four parameter model dropped 
to .733 (N=lOOO) from .868 (N=250). Thus, it can be 

seen that both the sample size and number of parameters 
were factors which influence the R2 value. 

Table S List of Regression Analysis Reduced Models 

# The Reduced Model 

1 Full model - measures of central tendency (MCI) 
2 Full model - measures of deviation (M.Dev) 
3 Full model - sample size (n) 
4 Full model - kinds of truncation 
5 Full model - mean 
6 Full model - mode (mo) 
7 Full model - median (me) 
9 Full model - distributional shape measure (ds) 
10 Full model - skewness (sk) 
11 Full model - kurtosis (ku) 
12 Full model - (tr,tl) 
13 Full model - (tl( l,0), tr(0J) 
14 Full model - interactions (int) 
15 Full model - ti. 
16 Full model - tr 
17 Full model - ti (1 ,0) 
15 Full model - tr (0,1) 
19 Full model - kinds of distribution 

(for the aencral model) 

Table CS R-Square Values for Full and Reduced Models In Rqresslon Analysis for Gamma
Distribution Where Y Is the Shape Parameter 

Number or Pammcten1 or Gamma Distribution 

Model One Two Three 

EM .952 .948 .886 

FM-MCT .948* .511 • .864* 
-Mean .952 .948 .885 
-Mo .952 .948 .879* 
-Mc .952 ,948 .885 
FM-Dev. .946* .810* .865* 
-Var. ,952 .812* .873* 
EM.:.MJ.. .947* .942* .884 
-Sk .949* .942* .885 
-Ku .948* .943* .884* 
fM:.n .952 .948 .882 
EM-Iruncatism .897* .498* .809* 
-degrees .947* .645* .857* 
-ti. .948* .663* .886 
-tr. .951 * .948 .858* 
:.U'.Jze.! .947* .931 • .872* 
-tl(l ,0) .951 * .948 .881 * 
-tr(0, 1) .949* .931 * .879* 
-int eraction .924* .848 .885 

Note: Mteriak indicstea that the unique contribution for these variablea wu liaoificant al .OS level. 

- " 

Four General 

.868 .733 

.516* .580* 

.868 .732 

.865* .732 

.868 .732 

.860* .714* 

.861 * .717* 

.867 .731 

.867 .733 
.868 .733 
.867 .732 
.626* .519* 
.693* .613* 
.724* .667* 
.862* .705* 
.854* .722* 
.867 .722* 
.855* .732 
.818* .709* 
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Table 7 Significant Unique Contributions for each Kind of Truncation in Regression 
Analysis Models Kind of Truncation 

y ti tr ti( 1,0) tr(0, 1) Interaction 

Shape Parameters 
One * * * * * 
Two * * * 
Three * * * 

Four * * * * 
General * * * * 

Scale Parameters 
Two * * * * * 

Three * 

Four * * * * 

General * * 

Location Parameters 
Three * 

Four * * * 

General * * * • 

Power Parameters 
Four * • 

General • 

• � �•tcriak lndlcatoa that tho unlquo contribution for lhoao variablea waa 1l11nlficant at tho .OS lovcl. 

Moreover, Table 6 indicates that the memmres of 
central tendency, deviation, and the kinds of tnmcation 
(and especially the types of truncation) had significant 
unique contributions. Most kinds of truncation had 
significant unique contributions for all models. The 
variance had a significant, unique contribution for all 
distributions except for the gamma with -one parameter. 
Moreover, skewness and kurtosis had a significant 
unique contribution for the gamma with one and two 
parameters. 

Briefly, Table 7 shows the significant unique con­
tributions of each kind of truncation in each model. It 
indicates that the degree of left truncation, had a 
significant unique contribution with all models except 
the models of the gamma with three parameters and the 
model of the power parameter in the gamma with four 
parameters. The degree of right truncation had signifi­
cant unique contributions for all models except for the 
shape model for the gamma with two parameters, for 
location model for gamma with four parameters, and for 
the power models. 

Left truncation had significant unique contributions 
with the shape models, except the general model, in the 
scale model for the gamma with two and three 
parameters, and in the power model for the gamma with 
four parameters. Right truncation had significant 
unique contributions with the shape models, except the 
general model, with the scale model for the gamma with 
two and four parameters model, with the location model 
for the gamma with four parameters, with the general 
gamma model, and with the power model for the 
gamma with four parameters. 

The last kind of truncation (interaction) had signifi -
cant unique contributions with the shape model for the 

gamma with two and four parameters, with the scale 
model for the gamma with two and four parameters, and 
with the location model for the gamma with four 
parametc.-rs. 

Moreover, the types of truncation were considered 
as elements in the best proper subset for the different 
models. According to the backward elimination proco­
dure for a dependent variable, Y, for each model, the 
best proper subset of the predictors for each model is 
given in Table 8. 

In general, Table 8 indicates that it is possible that 
the best proper subset (using the backward elimination 
procedure) for the shape parameter included some type of 
truncation, for example, ti, tr, tl(l,O) and tl*tr(0,1) for 
the general model. For the shape parameter model of 
the gamma with four parameters, these same types of 
truncation patterns were included along with tr*tl(l,O). 
The best proper subset of independent variables for the 
scale parameter included ti, tr, and ti *tr(O,I) for the 
general model. For the shape parameter model of the 
gamma with four parameters, truncation variables 
including ti, tl(l,O), tr(0,1), and tl*tr(O,I) were 
identified as important. The best proper subset for the 
location parameter included ti, tr, tr(0,1), and tl*tr(O,l) 
for the general model. For the shape parameter model 
of the gamma with four parameters.it was found that 
ti, tr, tr(O.I). tl*tr(O,I), and tr*tl(l,0) were significant. 

General Concluding Remarks 
This study dealt with the effects of truncation on 

the family of gamma distributions. The goal was to 
determine whether the kind of truncation [ti, tr, tl(l,O), 
tr(O,l), tl*tr(O,l), 1µ1d tr*tl(l,O)) had an influence on the 
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Table 8 T he Best Proper Subset for Each Model in the Different Cases of Gamma 
Distributions 

Model General Model Gamma with Four Parameters 

Subset/Y Shaoe Scale Location Power Shape Scale Location Power 

1 mean mean Var Var Var Var mean Sk 
2 Var Var Sk Sk Mo Mo ti Mo 
3 ti Sk ti Ku ti t i  tr Me 
4 tr Ku tr Me tr tl(l,O) tr(O, 1) 
5 tl(l ,O) Me tr(O, 1) ti tr(O, 1) tr(O,l) tl*tr(0,1) 
6 ti* lr(O, 1) ti tl*tr(0,1) tl*tr(O,l) tl*tr(O,l) tr• tl(l ,0) tr*tl(l,0) 
7 kl tr kl kl tr* ti( 1,0) 
8 k2 ti* tr(O, 1) k2 k2 
9 k3 kl k3 k3 
10 k2 
11 k3 
R2 .729 .597 .875 .778 .865 .722 .845 .301 

Model I Gamma with Three Parameters I Gamma with Two Parameters I Gamma with One Parameter 

Subset/Y Shaoe Scale Location Shaoe Scale Shaoe 

1 mean var mean var mean mean 
2 var ti var sk var sk 

3 mode ti( 1,0) tl(l,0) ku ku ku 
4 n Me Me tr 
5 tr ti ti tr(l,0) 
6 ti( 1,0) tr tr ti' tr(O,I) 
7 tr(O, 1) tr(O, 1) tr(O, 1) tr• tl(l ,0) 
8 tl*tr(O,l) ti( 1,0) 
R2 ,882 .589 .500 .948 

parameters, central tendency, dispersion, and distri­
butional shape measures of the gamma distributions. 

From these analyses, it can be concluded that the 
truncation significantly affected the gamma distribution 
(its measures and its parameters). The effect was depen­
dent on the kind of truncation (type and degree), the type 
of distribution, and the values of parameters. 

The numerical analyses in this research presented 
abstract concepts about irregular relationships, but also 
introduced some details about the relationships between 
each kind of truncation and the parameters, and each 
kind of truncation and the most characteristic measures 
of gamma distributions. For example, the degree of left 
truncation had a significant correlation with the 
measures of central tendency for all kinds of 
distributions. On the other hand, the degree of right 
truncation had a significant relationship with the 
measures of central tendency and deviation for most 
kinds of gamma distributions. 

In terms of multiple regression analysis, for all 
models, the kind of truncation had significant unique 
contributions. The degree of truncation made signifi­
cant, unique contributions to all models, but tIJe types 
of truncation bad a significant unique contribution for 
all models except two (scale and location models for the 

.696 .948 

gamma with three parameters). However, the unique 
contribution for each kind of truncation was dependent 
on the kind of truncation, the distribution, and the 
measure being considered. 

The overall findings of this study were generally 
supportive of the findings of the reviewed research. 
Although this study was limited to the effects of trunca­
tion on the gamma distribution, it can be concluded that 
the findings apply also for Erlang, exponential, and chi­
square distributions. 

Suggestion for Further Studies 
The focus of this study emphasizes the effects of 

truncation on the gamma distribution. Based upon the 
findings and conclusions described above, these recom­
mendations are made for further investigation: 

1. Results were dependent on specific values of the
parameters. Therefore, for more generalizable
results, different values of the parameters may be
utilized in subsequent research.

2. Exploration should be continued in an effort to
study the effect of truncation on other distributions
such as beta, lognormal, Weibull, etc. Additional
study could determine if the research findings for
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different distributions are comparable for similar 
types of truncation. This could provide the re­
searcher with information about the effects of trun­
cation on different kinds of distributions. Also, 
research should be extended to include the study of 
effects of truncation on mixture distributions. 

3. Moreover, the effects of truncation in both
estimation and hypothesis testing when using the
transformations mentioned by Mohamed (1981)
should be examined.

4. The methods used in this study should be extended
to examine the effects of inner truncation and
partial truncation on the gamma distribution.

5. Other studies should be designed using other
techniques such as canonical correlation or factor
analysis to determine whether rotated and/or
unrotated factor solutions are affected by the type
and/or degree of truncation.
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