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This paper illustrates two applications of the ANCOVA model under problematic conditions: Johnson-Neyman significance 
region analysis and the analysis of a regression discontinuity design. The differences between intact and randomized group 
designs are discussed in the ANCOVA context. The analyses are demonstrated_ using the SAS REG program. 

T
he analysis of covariance (ANCOV A) is used 
when a dependent variable and an antecedent 
independent variable are measured in multiple 

groups. The antecedent variable, or covariate, measures 
a source of variation that is to be statistically 
controlled. In order to accommodate the covariate, the 
ANCOV A model posits structural assumptions about 
the relationship between the dependent variable and the 
covariate, The simplest ANCOV A model assumes a 
homoa,encous linear relationship between the dependent 
variable and covariate in each of the design aroups. 
When the structural assumptions of ANCOV A arc met, 
the ANCOV A can yield more powerful tests of 
significance than the analysis of variance (ANOV A). 
The power advantage of ANCOVA derives from a 
reduction of the error variance due to the effects of the 
covariate. 

A number of authors (Elashoff, 1969; Lord, 1969; 
Mueller, 1990) have cautioned that the ANCOVA, 
performed with intact groups, does not control for 
preexisting group differences with the same level of 
rigor as docs a randomized design. These authors argue 
that statistical controls cannot be considered as equiva­
lent substitutes for randomii.atioo. Raodomii.atioo will 
equate design populations for differences on the 
covariate along with any other differences that might 
exist prior to the experiment. Whereas, statistical 
adjustments can only be applied to variables that have 
been measured and only over the ranges of the variables 
observed in the sample. Statistical controls are also 
highly dependent on the model's structural assumptions. 
One can only statistically control for the relationships 
allowed by the model. 

The ANCOVA, however, continues to be used with 
intact groups because of its convenience. Statistical 
adjustment is often the only control mechanism avail­
able to a researcher, and the ANCOVA may be the best 
statistical treatment of the data. The ANCO'-l A can be 
used under the same conditions that would justify the 

use of a partial correlation coefficient. The major 
difference between the ANCOVA and a partial corre­
lation analysis is that the ANCOV A model is used 
when the independent variable is categorical. 

This paper will treat the ANCOV A as a multiple 
group regression model solution. It is assumed that a 
researcher has measured a dependent variable and a co­
variate in each of J aroups. The dependent variable is 
rearessed separately on the covariate for each of the J 
groups. The structural assumptions of linearity and 
homoaeneity of regression are tested. Then, tests of 
hypotheses about expected values of the dependent 
variable arc demonstrated. The tests illustrated in this 
paper will not be used to test for aroup differences 
generally, but will instead examine group diff erenccs on 
the dependent variable at specific point values of the 
covariate. A regression discontinuity design and 
Johnson-Neyman significance region analysis will be 
used to illustrate this approach. These applications 
were chosen because they present alternatives that a 
researcher may use when structural or design problems 
are encountered. 

Linear Models for the ANCOV A 

The simplest form of the ANCOV A assumes a 
homogeneous linear relationship between the dependent 
variable (Y) and the covariate (X) for each of J groups. 
The linear model for the simple ANCOV A is given by 
Winer (1971, p. 757) as: 

(1) 

Y ij and X ij are the measures on the dependent and con­
commitant variables for case i in group j. The eitpected 
values of Y and X are denoted by µ and µx respec-
tively. �w is the within groups' regression coefficient, 
and is assumed to be the common slope of the regres­
sions of Y on X for all groups. Group j's deviation on 
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Y is represented by a j, and is called the treatment effect 
for group j. The only random term in the model is Eij• 
the error term, and is assumed to be NID(O,o2 ). All 
other terms in the model are fixed. Ecisentially, model 
[l) fits J parallel regression lines, predicting Y from X 
for the J groups in the design. 

For the purposes of this paper, model [l) will be 
reparameterized into the following form: 

[2] 

Model [2) expresses «j as the Y-intercept and flw as 
the common slope for all groups. Model [2) permits 
the regression lines to have different intercepts, but only 
one slope; the regression lines are assumed to be 
parallel. If heterogeneity of regression is detected, 
model [2] can be revised to reflect nonparallel regression 
lines by replacing flw with fl j. Each group is then 
allowed to have its own slope parameter in addition to a 
unique intercept parameter. Rewriting [2] accordingly, 
yields: 

[3] 

In models [1) and [2] group differences on Y could be 
measured by differences in the aJ values. Since the 
regression lines were assumed to be parallel, the 
differences between the a J could be generalized over the 
full range of the covariate. In model (3), however, the 
difference between any two groups on Y depends on the 
value of X. Specifically, when X = C, the diff erencc 
between the expected Y values of groups k and I is 
developed as follows: 

E(Yklx-c)-ak +�kc, 

E(Y1I X -c)-a, +fl1C , 

E(Yklx-c)-E(Y 1IX -c) 

•(ak +flkC)-(a1 +�1 C) (4) 

If one hypothesized that the E(Y) values were �� at 
C, this condition could be expressed as a statistical 
hypothesis: 

[5] 

In regression parlance, expression (4) is the difference 
between the predicted Y values for populations k and l 
at the value C on X. Expression (5) will serve as the 
null hypothesis for the tests described in this paper. 

Applications or Model [J) 
Two applications of model [3] will be presented 10 
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this paper: a regression discontinuity analysis 
(Campbell and Stanley, 1963, p. 6 1) and Johnson­
Neyman significance regions (Pedhazur, 1982, p. 469-
472). These applications are interesting since they both 
represent tests that are performed under what is tradi­
tionally thought to be an undesirable situation. The 
regression discontinuity design represents an extreme 
case of group differences on the covariate. Group 
differences on the covariate can confound treatment 
effects. The Johnson-Neyman technique applies when 
heterogeneous regressions are observed. Heterogeneous 
regressions preclude a straightforward analysis of the a j 

values, since, as per model [3], the «J values only
assess differences on Y when X=O. 

The regression discontinuity design is used to test 
for effects on a dependent variable when individuals are 
treated differently, depending on the value of the 
covariate. The Campbell and Stanley (1968) illus­
tration presents a quasi-experimental design for deter­
mining if a scholarship award, given on the basis of 
performance on a selection test, positively influences 
academic achievement. The covariate is the selection 
test and the two design groups are students who received 
the award and students who did not receive an award. 
Achievement is regressed on the selection test separately 
for each group. Then, the difference between the pre­
dicted values at the award cut-off is tested to assess the 
effect of the award. A test of the hypothesis in formula 
(5) could be used to perform this analysis.

Figure 1 shows a situation where the regressions of
achievement on the selection test are homogeneous. 
The diagonal lines in the figure represent the separate 
regression lines for the award and no award groups. The 
regression lines arc represented in Figure 1 as being 
parallel. The use of model (3), however, does not 
require homogeneity of regression. F.ach group's regres­
sion line could have any equation, and hypothesis (5) is 
still testable. 

The Johnson-Neyman significance region technique 
uses tests of hypotheses like expression [SJ to define 
regions on the covariate where groups differ, or do not 
differ, significantly on Y. Figure 2 below illustrates a 
possible outcome of a Johnson-Neyman signifi_cant
region analysis. Testing differences between predicted 
values on Y for groups 1 and 2 might show that for 
values of X < X t, group 2's predicted values are signifi­
cantly higher on Y than those of group 1. Between X1 
and X2 there is no significant difference between the 
groups' regression lines. Finally, for X > X2 there is a 
significant difference favoring group _l .  These r�gions
can be defined by testing hypotheses hke expression [5] 
for a full range of values on X and then noting which 
regions permit a significant interpretation. It might be 
necessary to iterate on X for reasonably accurate values 
ofX1 andX2. 
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Figure 1 Illustration of the Regression Discontinuity Design 
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(6) The two illustrations presented above have assumed 
a linear relationship between the covariate and the 
dependent variable. This assumption has been made to 
simplify the illustrations, not because it is an essential 
assumption for the ANCOV A. For any linear model 
application, the essential assumption is that the model 
be correctly specified. 

Model (6) allows each group to have its own quadratic 
regression line. For group j, the quadratic model is 
described by the regression constant aJ; �Jt• the coeffi-

Model [3) would be inappropriate if X and Y had a 
nonlinear relationship. Suppose the relationship 
between X and Y could be described bf a quadratic 
model, then model [3] could be revised as follows: 

cient for X; and � J2 , the coefficient for X 2•

Using The SAS REG Program For 
Nonstandard ANCOV A Tests 

The SAS REG program will be used to illustrate 
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the analyses. The SAS REG program is used for this 
purpose since it conveniently provides F-tests of any 
linear hypothesis for model parameters. PROC REG 
allows natural language expressions of linear 
hypotheses of the form Ho: L.6=c, where L.6=c repre­
sents a generalized system of linear combinations of the 
.6 parameters (SAS Institute Inc., 1990, Chapter 6). 
Note that expression [5] is a linear combination of the 
a and .6 parameters, and will serve as the basis for test 
requests in PROC REG. 

Coding The Data For Analysis 
Models [3] and [6] require that each of the J groups 

in the analysis have a separate model fitting the 
covariate to the dependent variable. Any computer 
model used for these analyses must posses this funda­
mental property. Now, there are an infinite number of 
ways to fit such models. For example, models [1] and 
[2] are isomorphic representations of the same structural
model. In fact, any linear combination of the variables
in these models will produce parameter estimates that
will fit Y equally well. The approach shown here is not
distinctive, in any important sense. Rather, its value
lies in its simplicity.

Group Membership Coding 
Binary variables will be used to code membership 

in the design groups. If a case is a member of group 1, 
then a binary variable, 01, will be coded I for that case. 
If a case is not a member of aroup 1, then that case's 
value on O 1 will be 0. In a like manner each design 
group will be represented by a binary variable. For a J 
group design there will be J mutually exclusive and 
exhaustive binary variables; (01, 02, ... , OJ) 

Codjng The Covariate 
The covariate will be denoted as X in the following 

illustrations. 111 order to fit models like [3] and [6], X 
will be expanded to J variables. Cases in group 1 will 
have variable XI coded with their value of X, while 
cases not in group 1 will have a O coded in X 1. In a 
like manner X will be expressed as J variables (Xl,  X2, 
... , XJ). In the case of model [6], X 2 will also be
expanded the same way as X was expanded intd (X 1, 
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X2, ... , XJ) in the preceding coding scheme. A case in 
group 1 will be coded in the variable XSQl with its 
value of x 2. A case that is not a member of group 1, 
will receive a code of O in XSQ 1. X 2 will thereby be 
expanded to (XSQl, XSQ2, ... ,XSQJ) variables. 

Table 1 below illustrates this coding scheme for a 
three group problem fit by model [3]. 
If the data set contains only Y, X and the GROUP 
variables given in Table 1, the following data transfor­
mations can be used to generate GI through X3: 

IF GROUP= 1 TIIEN G 1 = 1; ELSE G 1 = 0; 
IF GROUP = 2 TIIEN G2 = 1; ELSE G2 = 0; 
IF GROUP= 3 TIIEN G3 = 1; ELSE G3 = 0; 
XI =Gl*X; 
X2=G2*X; 
X3=G3*X; 

PROC REG Commands 
The following commands illustrate how model (3) 

would be estimated with a data set like that in Table 1. 
The MODEL statement will use the NOINT option, 
which means that the program is not to estimate a 
common intercept for the entire sample. The coding of 
01, 02 and 03 will permit separate intercepts to be  
estimated for each group. 

PROC REO; 
MODEL Y = 010203 Xl X2 X3 / NOINT; 

The parameter estimates for 01 to X3 in this SAS 
model statement arc interpreted as follows: 

0 I = Y intercept for group 1, 
02 = Y intercept for group 2, 
03 = Y intercept for group 3, 
XI = the slope for the regression line for group 1, 
X2 = the slope for the regression line for aroup 2, 
X3 = the slope for the regression line for group 3. 

If one wanted to test the hypothesis that the expected 
values of Y when X = SO in populations 1 and 2 were 
equal, the null hypothesis would become: 

[7] 

Table 1 Coding for a Three Group ANCOV A Data Set In PROC REG 

y X GROUP G l  G2 G3 Xl X2 X3 

6 3 1 1 0 0 3 0 0 
8 2 1 1 0 0 2 0 0 
5 4 2 0 I 0 0 4 0 
9 5 2 0 1 0 0 5 0 
8 4 3 0 0 1 0 0 4 
7 6 3 0 0 1 0 0 6 
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The following TEST request could be inserted after the 
model statement to produce an F-test of this hypothesis. 

TEST Gl + SO*Xl = G2 +50*X2; 

If groups 1 and 2 were the award and no award groups in 
the Campbell and Stanley regression discontinuity 
design, and if the value X � 50 qualifies one for an 
award, then the above statement would produce an 
appropriate test of the effect of the award on achieve­
ment. 

The same type of test could be used for many 
values of X to locate regions on X for which there is a 
significant difference between the predicted Y values for 
groups 1 and 2. For example, if X was observed in the 
range (1,10), ten tests could be requested to locate the 
significance regions. 

TEST Gl + l*Xl = G2 + l*X2; 
TEST 01 + 2*Xl = G2 + 2*X2; 
TEST Gl + 3*Xl = G2 + 3*X2; 
TEST Gl + 4*Xl = G2 +4*X2; 
TEST 01 + S*Xl = 02 + S*X2; 
TEST 01 + 6*Xl = 02 + 6*X2; 
TEST 01 + 7*Xl = 02 + 7*X2; 
TEST 01 + S*Xl = 02 + 8*X2; 
TEST 01 + 9*Xl = 02 + 9*X2; 
TEST 01 + l0*Xl = 02 +10*X2; 

If the first three tests were significant and the last seven 
were not significant, the sianificance region would be 
1 :s: X :s: 3 and the nonsianificance region would be 
4 :s: X :s: 10. SASLOOs and listings with demon­
strations of nonlinear ANCOVA extensions of these 
same tests can be obtained by writing the author. 

- "
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Conclusion 

The ANCOV A can provide a flexible approach to 
many analysis problems. Researchers are encouraged to 
use ANCOV A models that are structurally appropriate 
for their data and their research questions. This paper 
illustrated some simple tests of expected values that can 
be expressed as linear combinations of the model 
parameters. These simple tests were applied to the 
regression discontinuity design and the Johnson­
Neyman significance region analysis. These appli­
cations were selected because they both are performed 
when a researcher encounters a problem with structural 
or design assumptions. The tests shown here illustrate 
how a researcher can articulate and test interesting 
hypotheses under these problematic conditions. 
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