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This article illustrates the appropriate use of ordinal and criterion scaling techniques in multiple regression. Since multiple 
regression is a widely used data analytic technique, it is important to know how special coding is done to answer certain 
research questions. These coding techniques involve effect, characteristic, ordinal, or contrast coding of vectors for proper 
interpretation of statistical hypotheses. 

T
he focus of this article is to demonstrate ordinal 
and criterion scaling techniques in multiple 
regression. Instructors might wish to include 

these topics when teaching multiple regression. 
Examples of each coding technique are presented to aid 
in understanding the approach and interpreting results. 

Various authors have previously discussed specific 
coding strategies needed in multiple regression to 
answer certain research questions. For example, binary, 
or characteristic coding can be used to test research 
hypotheses involving group mean differences (Draper & 
Smith, 1966; Kerlinger & Pedhazur, 1973.; Williams, 
1974; McNeil, Kelly, & McNeil, 1975) or be used in 
multiple comparisons (Williams, 1974, 1976, 1980). 
Similarly, contrast coding can be used to investigate 
complex comparisons and other types of research ques­
tions (Lewis & Mouw, 1978). Fif ect, orthogonal, and 
polynomial coding techniques have also been elaborated 
(Cohen & Cohen, 1975; Pedhazur, 1982). Within 
orthogonal techniques, Helmert contrasts (see Bock, 
1975) or polynomial regression can be completed. 
Newman ( 1988) presented several examples of how 
various coding strategies in multiple regression yield a 
t-test, analysis of variance, chi-square, discriminant, and
other statistical results. Newman, Williams and Bohner
(1982) had shown earlier that the Cochran Q test could
be readily conceptualized into a regression format; they
used a Monte Carlo study to show that the outcomes of
using regression virtually coincided with the traditional
Cochran Q analysis. Coding for two-way analysis of
variance questions has also received close scrutiny
(Bottenberg & Ward, 1963; Cohen, 1968; Overall &
Spiegel, 1969; Overall, Spiegel, & Cohen, 1975; Speed
& Hocking, 1976; Timm & Carlson, 1975; Ward &
Jennings, 1973; Williams, 1972, 1977b).

Ordinal and criterion scaling techniques have not 
received as much attention in the research literature as 
binary, effect, orthogonal, and polynomial coding 

strategies. Their application to specific Llkert (ordinal) 
scaled questionnaire data and repeated measures designs 
(criterion scaled), for example, have not been as well 
understood. Consequently, this paper presents ordinal 
and criterion scaling techniques in multiple regression. 

Ordinal Scalln1 
Boyle (1970), Lyons and Carter (1971), and Lyons 

(1971) have elaborated on the use of ordinal scaling in 
multiple regression. Basically, ordinal scnling permits 
the interpretation of Llkert (ordinal scaled) questionnaire 
dntn using multiple regression techniques. This 
approach defines the regression line between each 
ordinal point individunlly, disregarding the linear least 
squares rule applied to the entire set of dnta across the 
scale. The technique applies an eta-squared function and 
the relative contribution made by each segment of the 
ordinal variable; in essence, computing the slope of 
each regression line connecting the Y -means for succes­
sive categories of the ordinal scaled variable. 

The cumulative nature of the coding in the regres­
sion equation is the basis for interpretation of the 
ordinal coefficients. Consequently, each successive beta 
weight represents the change in predicted Y from the 
previous category of the ordinal variable to the next. 
The ordinal approach doesn't force a uniform byx for the 
full range of values, but instead allows a separate predic­
tion for each interval (a separate bi for each segment 
between levels of the ordinal variable), and thus a 
maximum nonlinear prediction of Y given a specific 
category of the ordinal variable. The non-linear eta­
squared value therefore will be equal to or greater than 
the linear least squares R-squared value. The ordinal 
interpretation is found in the bi values themselves
which are additive across categories of the ordinal 
variable. 
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Figure 1 Computer Program and Output: Ordinal Coding. 

PROGRAM 

T ITLE Regression analysis using ordinal coded variable 
COMMENT Interpretation of regression weights is additive 
DATA UST FIXED RECORDS=l/ Y 1-2 SA 4 A 6 D 8
VARIABLE LABELS Y 'score' SA 'strongly agree' A 'agree' D 'disagree' 
BEGINDATA 
10 1 1 1 

14 1 1 1 

13 1 1 1 

11 1 1 1 

9 0 1 1 

11 0 1 1 

12 0 1 1 

12 0 1 1 

6 0 0 1 

9 0 0 1 

10 0 0 1 

11 0 0 1 

6 0 0 O 
11 0 0 0 

7 0 0 0 

8 0 0 0 

END DATA 
REGRESSION VARIABLES = Y SA A DI

NOORIOIN/ 
DEPENDENT= YI

METIIOD= ENTER SA A D 
F1NISH 

COMPUTER OUTPUT 

1. Analysis of Variance Summary Table

Source df 

Model 3 

Fn-or 12 

Total 15 

2. Parameter Estimates

Variable d f  

INTERCEPT (SD) 1 

SA 1 

A 1 

D 1 

Sum of 
Squares 

40.00 

44.00 
84.00 

Parameter 
Estimate 

8.00 

1.00 

2.00 

1.00 

- "

Mean 
Square F Value 

13.33 3.63 

3.67 

Standard TforH0: 
Fn-or 

0.95 8.35 

1.35 0.74 

1.35 1.48 

1.35 0.74 

TPACHING 

Prob>F R-Square

.04 .47619 

Prob > ITI 

.0001 

.47 

.16 

.47 
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Figure 2 bi Values for Ordinal Scaled Mean Compared to the Common Slope Value byx• 
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An example computer program with the required 
o�dinal coding and the regression analysis output arc in
Figure 1. Corresponding parameter estimates are 
graphed in Figure 2, where the common slope, byx, is 
drawn relative to the successive bi ordinal parameter 
estimate values. The dependent variable is� and the 
k-1 vectors represent responses to an ordinally scaled
question. The subject responses are coded across k-1 
vectors with the neutral or undecided response omitted.
In the example, strongly disagree (SD), the first level of 
the ordinally scaled variable, has been omitted. Conse­
quently, the value for bsd is computed as the intercept 
term and reflects the starting value for interpreting 
change in the predicted Y values for successive ordinal 
categories. The ordinal coding causes the ordered 
variable means to range from lowest to highest. 

Typically, the means for each ordinal category will 
deviate from linearity such that predicting Y would 
occur to a lesser extent than would be possible using a 
non-linear function with line segments between the 
ordinal categories. The inherent feature in interpreting 
ordinal coding is the cumulative or aggregate nature of 
responses across the categories. The predicted Y values 
(Y') are the respective sums of all the bj values plus the 

intercept value (bj for the omitted vector, e.g., bsd = 8, 
and bd = 1. ba = 2, b

8a = 1 for each successive bi). 
Each successive bj reflects the change in the predicted Y 
value from the previous category. The parameter esti­
mates are also additive to produce the next ordered 
variable group mean on Y, e.g., :X,d - 8, :Xd - 9 
Xa •l 1, X,a •12. The important points for illustr� 
tive purposes is simply that ordinal coding does not 
compute a common slope (byx> across the full range of 
Y values, but instead permits separate prediction 
(separate bj) between each successive ordinal category, 
and that a cumulative effect is apparent across levels of 
ordered categories. 

How does ordinal scaling compare to other tech­
niques? It might be seen as interesting that ordinal 
scaling yields similar results to binary coding the 
separate responses. The Likert response is binary coded 
for k-1 responses, (i.e., SA is binary coded as 1 if SA, 
0 otherwise� A is binary coded as 1 if A, 0 otherwise� D 
is binary codes as 1 if D, 0 otherwise). Then, 
remarkably, if these three variables are used as 
predictors, an identical analysis of variance summary 
table to that in Figure 1 is formed. For both the ordinal 
scaling and the bi� coding, R2 =.47619. Performing 
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the binary coding rather than assuming interval level 
data was suggested by McNeil and Kelly (1970). The 
two coding approaches are similar because the process 
of creating the ordinal variables is very similar to 
testing for the departure from linearity as described by 
Bottenberg and Ward (1963). 

The advantage of ordinal scaling is its intuitive 
appeal; it has a similarity to the unfolding technique 
described by Coombs (1964). To test for the departure 
from linearity, one additional vector (predictor) is 
needed; it is coded 4 for SA, 3 for A, 2 for D, and 1 for 
SD. The regression analysis yields a R 2 =.46667, byx =
1.4, and intercept = 6.5 (see Figure 2). The F-test for 
departure from linearity is given by: 

Rk.i_ -Rk,TRICTED /(k -2) 
F•-------.--'-'---

1-Rk.i_ (N-k) [1] 

where Rk.i, •.4761 S, calculated using either the 
ordinal scaling or the binary coding; where 
Rk;TRICTED •.46667, calculated using the s ing le  
predictor; k=4; and where N=16. Using these values, F 
= .213 which is not significant. This indicates that the 
ordered variable means do not significantly deviate from 
linearity. 

To summarize, a variable's linear effect on a depen­
dent variable can only be less than or equal to the non­
linear effect. A straight regression line can poorly 
describe the relationship between means to the extent 
that the means do not lie on a straiaht line (curvilinear 
path of categorical means). The test of departure from 
linearity will assess whether this exists. Moreover, to 
include ordinal variables in rearession analysis is 
appealing, especially when one can discover which 
intervals, if any, contribute more or less and the dearee 
of change from one cateaory to another. 

Criterion Scallna 
Criterion scaling was first developed by Beaton 

(1969a; 1969b) to solve certain problems encountered in 
multiple regression. A basic problem occurred when 
using categorical variables because N - 1 vectors had to 
be created using dummy or effect coding. If the number 
of categorical independent predictors became large, then 
the number of vectors became overwhelming. A second 
problem pertained to variable selection methods where 
the categorical vectors might only be partially selected 
making interpretation difficult. Missing data on one of 
the predictor variables also presented a problem and 
usually meant exclusion from analysis even when a 
criterion value was present. These problems were 
resolved using the criterion scaling approach. 

A categorical variable is criterion scaled when it is 
transformed into a single vector in which each 
individual score is replaced with the mean of the group 
to which the individual belongs (Pedhazur, 1982, p. 
387). By criterion scaling a single categorical variable, 
the multiple regression analysis reduces to a bivariate 
regression analysis in which the dependent variable is 
regressed on the criterion scaled variable. Tfris tiolds true
regardless of the number of categories and for equal or 
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unequal n's (Williams, 1977a). Comparing this to the 
traditional analysis of variance, this process removes 
within cell variability and leaves only variability due to 
group differences. 

If the study involves several categorical variables, 
each variable can be criterion scaled separately and the 
criterion scaled variables used in the regression equation. 
Criterion scaling is therefore very useful when using a 
variable selection procedure to obtain the best set of 
independent predictors. For example, if five categorical 
variables resulted in 15-20 coded vectors, it may be 
difficult to have these sets of vectors added to or dropped 
from the equation as a set. (See however, Williams and 
Llndem, 1971 for a description of setwise regression). 
With criterion scaling, each categorical variable is repre­
sented by a single criterion scaled vector, so the 
problem is averted. 

The degrees of freedom associated with criterion 
scaled variables however present a unique problem. 
Typically, the categorical variable is associated with k -
1 degrees of freedom. However, in criterion scaling, the 
variable will only have one degree of freedom reported 
by most computer programs. The actual degrees of 
freedom are k - 1. An example of criterion scaling is 
shown in Table 1. The three dummy coded vectors, 01, 
02, and 03 are reduced to a single vector X 1. This new 
vector is criterion scaled and contains the mean on Y for 
each respective dummy coded vector. The bivariate 
regression equation then becomes: Y' = b0 + � X2 ,
which would yield the same results as the dummy coded 
vectors in a rearession analysis. 

Table 1 Criterion Scallna Example 

Score Dummy Coded V cctors Criterion 
Scale 

y 01 02 03 X2 

4 1 0 0 5 

5 1 0 0 5 

6 1 0 0 5 

7 0 1 0 8 
8 0 1 0 8 

9 0 1 0 8 
10 0 0 1 11 
11 0 0 1 11 
12 0 0 1 11 

Criterion Scaling • Repeated Measures 
Pedhamr (1977, 1982) and Williams (1977a) elabo­

rated the usefulness of criterion scaling in treatment by 
subject repeated measures designs. This approach 
involves reducing the coding of N - 1 vectors to repre­
sent subjects into a single vector whereby each subject 
in a treatment group receives the sum of the criterion 
scores for that group. This single vector in a bivariate 
regression analysis yields the same R-squared value as 
does the N - 1 binary coded subject vectors. The tradi­
tional analysis proceeds with three linear models 
(Williams, 1974): (a) treatment effects, (b) subject 
effects, and (c) combined treatment and subject effects. 
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The three regression equations can be expressed as: 
[5] Y,ubj • bo + b1Xl+ e2 

Y treat • b0 + bzX 2 + b3X3 +e1 [2] 

Ycomb •bo+b1 Xl+b2 X2+b3X3+ e3 [6] 
Y,ubj • bo + b4X4+ b5XS+ ... b12Xl2+e2 [3] 

The criterion scaling for this example treatment by 

Y comb • bo + b2X2 + b3X3+ ... b12X 12+ CJ [4] 
subjects design is in Table 2. The variable, X l • is the 
criterion scaled vector which reduces the N-1 subject 

The criterion scaling approach also involves three 
vectors (X4 to X 12) into a single vector for bi variate 
regression analysis to obtain the subjects effect in 

linear models, however, the subject effects in equation equation [5]. Score sums on Y rather than means were 
[3] and the combined treatment and subject effects in used in the criterion scaled vector, which is permissible. 
equation [4] would be substantially reduced as follows:

Table 2 Criterion Scaling In Treatment by Subject Design8 

y Xl X2 X3 X4 XS X6 X7 XS 

10 33 1 0 1 0 0 0 0 
11 33 0 1 1 0 0 0 0 
12 33 0 0 1 0 0 0 0 

13 42 1 0 0 1 0 0 0 
14 42 0 1 0 1 0 0 0 
15 42 0 0 0 1 0 0 0 

14 38 1 0 0 0 1 0 0 
13 38 0 1 0 0 1 0 0 
11 38 0 0 0 0 1 0 0 

6 21 1 0 0 0 0 0 

7 21 0 1 0 0 0 0 
8 21 0 0 0 0 0 0 

10 35 1 0 0 0 0 0 1 
14 35 0 1 0 0 0 0 1 
11 35 0 0 0 0 0 0 1 

15 35 1 0 0 0 0 0 0 
12 35 0 1 0 0 0 0 0 
8 35 0 0 0 0 0 0 0 

14 44 1 0 0 0 • 0 0 0 
15 44 0 1 0 0 0 0 0 
15 44 0 0 0 0 0 0 0 

12 39 1 0 0 0 0 0 0 
17 39 0 1 0 0 0 0 0 
10 39 0 0 0 0 0 0 0 

22 60 1 0 0 0 0 0 0 
21 60 0 1 0 0 0 0 0 
17 60 0 0 0 0 0 0 0 

11 44 1 0 0 0 0 0 0 
18 44 0 1 0 0 0 0 0 
15 44 0 0 0 0 0 0 0 

8y (criterion), Xl (criterion acaled), X2 and X3 (Treatmcota) X4 to Xl2 are lhc N-1 aubject coded ,ecton. 

X9 XlO 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

0 0 
0 0 

0 0 

0 0 

0 0 
0 0 

0 0 
0 0 
0 0 

1 0 
1 0 
1 0 

0 1 
0 1 
0 1 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

Xll 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 

0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

X12 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 

0 

0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

----- --·· ·
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Table 3 Criterion Scaled Analysis of Variance 

Source ss df MS 

Treatments 21.67 2 10.83 
Subjects 297.63 9 
Residual 87.66 18  4.87 

Total 406.96 29 

The results obtained are identical with the tradi­
tional N - 1 coded subject vectors (sum of squares and 
R-squared values), except the degrees of freedom are
reported as N - 1, because Xl contains (N -1) linearly
independent vectors. The researcher must correct the
degrees of freedom when using general purpose multiple
regression computer programs. The criterion scaled
analysis of variance results are presented in Table 3.
The combined subject and treatment effects yield R2 = 
.7846. 

If multiple comparisons were of interest, the tests 
of significance for comparing Group 1 to Group 3 and 
Group 2 to Group 3 would be derived from the reported 
t tests for the regression coefficients bi and bJ respec­
tively in equation (6) (output not shown). Because of 
the degrees of freedom issue already described, the 
reported t's would need to be adjusted by multiplying 
by: 

l71 

where N is the number of observations (treatment by 
subject combinations), S is the number of subjects and 
g is the number of groups; an appropriate table, such as 
Dunnett's (1964), Dunn's (1961), or some other 
multiple comparison procedure being used now can be 
entered. 

Summary 
This article focused on presenting ordinal and 

criterion scaling techniques in multiple regression. The 
computer programs, coding, and output examples reflect 
the need to teach bow special coding can be used to 
answer certain research questions. These coding 
techniques also highlight the need for proper interpre­
tation of results. 

Ordinal scaling techniques in multiple regression 
provide for the analysis and interpretation of ordinal 
variables such as Likert scaled questionnaire data. The 
regression weights provide a step interpretation between 
each point on the scale or the degree of change from one 
category to the next. A test for the departure from 
linearity can also be conducted. 

Although only one example was presented, 
criterion scaling techniques can solve many of the 
problems encountered in multiple regression, namely, 
(a) the use of extensive categorical variables� (b) the
selection of the best set of predictor variables (maximize

TEACHING 

Summary 

F R2 

2.22 .0532 
.7314 
.2154 

1 .0000 

R-squared), (c) coding of subjects in repeated measures
designs, and (d) the handling of predictor variables with
missing values. Criterion scaled vectors may contain
either means or sums in the case of equal n's. The
criterion scaling technique is applicable to both linear
and non-linear regression line fitting (Hinkle, Wiersma,
& Jurs, 1988, pp. 540-544). Continuous predictor
variables can also be criterion scaled by dividing them
into equal intervals with the scores in each interval
coded the value of the mean on the criterion for that
category. In the case of multiple predictors, each
predictor is coded into a single vector, then all possible
regression techniques can be applied. Remember,
however, that the degrees of freedom must be adjusted to
N-1 not the reported df = 1. Mixed regression models
which combine categorical and continuous predictors are
also possible (Gocka, 1973).
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