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A Comparison of the Mallows Cp and
Principal Component Regression
Criteria for Best Model Selection in
Multiple Regression

Randall E. Schumaker
University of North Texas

A cross validation comparison of the Mallows Cp subset model selection criteria using randomly generated data sets
indicated that different subset models may be identified. The principal component regression method using Type 1l sum of
squares with orthogonal principal component variables indicated a slightly different set of "best" variables. The two
methods in the presence of multicollinearity can yield different subset models. It is recommended that researchers base
regression madels on substantive theory, model validation, and effect sizes for proper model testing and interpretation.

N

ultiple regression permits model testing
Mwhcrcin a set of independent variables are
hypothesized to predict a dependent variable.
Often when the set of variables sclected does not
significantly predict, the researcher scarches for a
*subset” of variables that provides the best prediction
model. The statistical packages provide several
stepwise methods for this purpose.

A review of the literature, however, indicates that
most rcsearchers misuse stepwisc mcthods in
determining the best predictor set or interpreting the
importance of predictor variables (Huberty, 1989;
Sayder, 1991; Thompson, 1989; Thompson, Smith,
Miller, & Thomson, 1991; Welge, 1990). Tracz,
Brown, and Kopriva (1991) summarized much of the
literature to indicatc that the results of stepwise
procedures do not yield a "best" equation because
different criteria can be used in the selection of different
sets of variables; that when variables are intercorrelated,
there is no satisfactory way to determine the relative
contribution of the variables to R-squared because
various subsets of variables could yield a similar
R-squared value; that stepwise methods inflate Type I
error rates by not using the correct degrees of freedom in
calculating the change in R-squared; and that the order of
variable entry is incorrectly interpreted as defining the
importance of the variable or "best set” of predictors.

Current research literature indicates that the all
possible subset approach is preferred over the stepwise
methods for determining the best model (Berk, 1977,
Cummings, 1982; Thayer, 1986, Davidson, 1988;
Henderson & Denison, 1989, Welge, 1990; Thayer,
1990; Tracz, Brown, & Kopriva, 1991). = Several
criteria, however, are available for selecting lhg best

subset model when using the all possible subset
approach: R-squared, adjusted R-squared, mean squared
error, Mallow's Cp, or a principal component
rcgression.  Constas and Francis (1992) presented a
graphical method for selecting the best subsct regression
model using R-squared and adjusted R-squared. They
plotted R-squared and adjust¢éd R-squared against the
number of predictors in the modcl. The maximum
number of predictors for best subset model was
determined at the point where the R-squared and/or the
adjusted R-squared values descended.

The Mallows Cp criteria has also been
recommended for selecting the best subset of predictor
variables in contrast to the stepwise methods using a
sample data set (Tracz, Brown, & Kopriva, 1991,
Zuccaro, 1992). The Cp statistic measures the effect of
underfitting (important predictors left out of the model)
or overfitting (include predictors that make no
contribution or are marginal). Mallows (1966; 1973)
has suggested that the selection of the best subset model
with the lowest bias is indicated by the smallest
Mallows Cp criteria, especially in the presence of
multicollinearity. The SAS package (Freund & Littell,
1991) currently prints the Mallows Cp value and a
variance inflation factor (VIF) which can be used to
determine which variables may be involved in the
multicollinearity. Pohlmann (1983) had previously
noted that multicollinearity among a set of predictor
variables didn't affect the Type I error rate, but did affect
the Type Il error rate and width of the confidence
interval. His findings suggest that sample size and
model validity could compensate for multicollinearity
effects, especially when certain research questions
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require models with hxghly correlated predlctors for
example, Y = B;X; + BoX2; +e.

The principal componeant regression (PCR) has also
been proposed as a criteria for selecting the best
predictor model. This method appears to be useful when
predicting values in one sample based upon estimates
from another sample and when multicollinearity exists
among a set of variables (Morrison, 1976). The
indication for using a PCR approach is when the mean
squared error of a biased estimate is smaller than the
variance of an unbiased estimate. The PCR method,
however, is not appropriate for multiple regression
subset models containing interactions (Aiken & West,
1993). Since the PCR method creates a set of new
variables called principal components, which are
uncorrelated or orthogonal, it should not be used when
models depict nonlinear, correlated predicter sets.

In summary, the all possible subset approach is
recommended as an alternative over stepwise methods
for selecting the best set of predictor variables. The
Mallows Cp criteria or a principal components
regression approach is advocated for determining the
best subset model over the use of R-squared, especially
when the predictors are correlated. The principal
component regression method, which determines the
best model for prediction by creating orthogonal
variables, appears more useful when estimates from one
sample are used to predict in another sample or when
multicollinearity exists among the predictors.

How do these criteria compare when sclecting the
best subset model? When might a researcher choose

one criteria over another for selecting the best model?
A comparison of the Mallows Cp selection criteria
upon cross validation and a comparison of the parameter
estimates and standard errors between the multiple
regression and the PCR approach should shed further
light on their usefulness for subset mode! selection.
An appllcd example will further elaboratc the
comparison of the two criteria.

Simulation

A SAS program was used to generate a heuristic
population (n = 10,000 observations) with a dependent
variable and ten correlated predictor variables. The
program then randomly sampled the population data set
for n = 200 observations. This data set was then
randomly divided to create two separate data sets of equal
size (n] = n3 =100 observations). The SAS programs
used in this simulation are available from the author.

The population correlation matrix, variable means
and standard deviations are in Table 1. The correlation
matrix, variable means and standard deviations for the
sample data set used to compute the parameter estimates
are in Table 2. The correlation matrix, variable means
and standard deviations for the cross validation data set
are in Table 3. Parameter estimates, computed using
the ordinary least squares criterion from the first data
set, were used with the second data set to calculate R2
and the Mallows Cp values, and to determine the best
variable subset models.

Table | Population Correlation Matrix, Means, and Standard Deviations (n = 10,000)
Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 E-%)
X2 25 .10
X3 34 13 .10 .
X4 43 19 10 A5
X5 42 19 11 A3 19
X6 30 13 09 11 A3 A2
X7 24 11 .07 .06 .10 .08 .07
X8 .50 22 A3 A7 21 .21 .16 Al
X9 .28 12 .08 .10 A2 A1 09 .07 15
X10 .26 11 .05 .07 A1 A2 .06 .08 .14 .08
Mean 999 17.92 16.12 1894 2196 2805 2597 3890 4205 3397 1205
S.D. 2.00 444 8.21 6.00 4.66 495 661 8.61 4.12 6.95 8.12

Note. All values have been rounded to two decimal places.
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. Table 2 Sample Correlatlon Matrlx, Means, and Standard Devlatlons for Estimatlon Sample

(n1=100) e

G0 aetndt reale T By

Y X1 "rX2 T X3 X4

X7

X9

X10

o XS X6 X8
X1 41
X2 28 .02 ‘
X3 41 05 .23
X4 38 23 01 .S
X5 24 201 04 02 .16
X6 '3 02 16 .09 .08 .08
X7 25 16 .08 03 0 01 .10 ,
X8 39 22 13 .04 19 06 21 .01 e
X9 33 19 07 04 24 15 .03 .22 ¢ 21
X10 46 23 08 24 21 03 a0 a7 a1 17
Mean 1018 1840 1537 2049 2276 2841 2588 3955 4189 3427 11.04
499 679 181 413 680 813

$.D. 180 461 888 . 594 430

Cy . P E | okt
Nats, All values have been rounded to two decimal places. -
-
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Table 3 Sample Correlation Matrix, Means,
Sample (n2 = 100)

and Standard Deviations for Cross Validation

Y X1 X2 X3 X4 X5 . X6 X7 X8 X9 X10
X1 39
X2 .28 14
X3 34 -05 -.08
X4 .52 .03 13 20
Xs 54 A7 20 28 37
X6 .26 01 01 07 18 19
X7 14 03 .05 .08 07 0l -.03
X8 .55 27 11 26 26 21 .06 .02
X9 32 26 18 -09 .20 07 A1 .09 .09
X10 31 .26 07 11 12 21 A1 .19 .09 24
Mean 994 1791 1655 1926 2137 2840 2534 3923 4192 3393 1038
§$.D. 1.99 4.86 857 6.13 535 475 6.82 9.43 4.27 6.73 7.78

Note. All values have been rounded to two decimal places.
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Table 4 R2 and Cp Values for Sample] Aud Samplez But Varlable Subset Models

(n1 = n2 = 100)

Samplé 1

Subset Variables in Subset Model

1 (10) 21 102.92
2 3G 33 7444
3 (3).(8),(10) 44 49.79
4 (1),3).8).(10) .50 36.13
5 (1).03).(6),(8).(10) 54 2742
6 (1).(3),(5),(8).(9).(10) .58 19.74
7 (1).3),(5).(6).(8).(9).(10) 62 12.26
8 (1).(2),(3).(5).(6).(8).(9).(10) - 63 11.85
9 (1),(2),(3).(4).(5).(6).(8).(9).(10) 64 1127
10 (1):(2),(3),(4).(5).(6).(7)(8).(9).(10) 65 11.00

Samples
R2 Cp

1 e 30 101.79
2 5@ . 49 50.44
3 4).5).8) 55 3341
4 (1).(4).(5).8) 61 21.34
5 (1),(4).(5).8).9) 63 17.05
6 (1)3).(4),(5)(8),(9) 65 13.37
7 (1),(3)(D.(5):6)(8).(9) 66 11.58
9 (1),(2),(3),(4).(5),(6).(7)(8)(9) 68 9.96
10 (1)(2),(3)(4)(5)(6)(7)(8)(9)(10) 68 11.00

Table 8 Cross Validation Comparison of R2 and Cp Values: Samplep to Samplez for Best

Variable Subset Models (nf = n2 = 100)

Subset Variables in Subset Model ) Sample| Sample2
Size Cp R2 Cp R2

1 (10) 21 102.92 15 159.53
2 3)(8) 33 74.44 36 92.08
3 (3)(8).(10) A4 49,79 .40 77.64
4 (1).(3).(8).(10) 50 36.13 45 6544
5 (1).3).(6).(8).(10) 54 2742 47 55.78
6 (1),(3).(5).(8).(9).(10) .58 19.74 .59 26.35
7 (1).(3).(5).(6).(8).09).(10) 62 12.26 61 23.38
8 (1).(2).(3).5).(6).(8).(9).(10) 63 11.85 62 20.82
9 (1).02).3).(4).(5).(6).(8).(9).(10) 64 11.27 63 10.34
10 (1)42),3)(4).(5).(6).(N(8)(9)(10) 65 11.00 .66 11.00
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Table 4 indicates the model subset selection for
each sample data set. Table 5 indicates a comparison
between the R2 and Mallows Cp values from the
estimation sample data set to the cross validation
sample data set using parameter estimates from the
estimation sample. The Mallows Cp values were
inflated because the parameter estimates applied to the
second data set altered the residual sums of squares used
in the formula to calculate them. Although the relative
ordering of Cp values were the same, these values did
not indicate the same single best variable subset model
in the second data set.

Table 6 compares the parameter estimates using the
Mallows Cp and the principal components regression
method for each best variable subset model. The R2
values will be the same regardless of which method is
used. The real difference is seen when comparing the
relative significance of the parameter estimates. The
Mallows Cp method with correlated predictors indicated
that all the parameter estimates were significant. This
was not the case in the principal components regression
approach. An applied example will further illustrate
this distinction between the two methods.

Applied Example
Subjects

Participants in the study were a cohort of students
accepted into the Texas Academy of Mathematics and
Science (TAMS) at the University of North Texas in
Fall, 1993. TAMS is an carly college entrance program
in which students earn approximately 60 hours of
college credit by taking University of North Texas
courses. Students eater TAMS at the beginning of their
L1th year in high school. They live on campus in a
specinl residence hall and take regular university courses
in mathematics, science and the humanitics. After two
years, participants receive a special high school diploma
and have amassed at least 60 hours of college credit.
Each year approximately 200 high school sophomores,
who have met the selection criteria and completed the
10th grade, are accepted into the Texas Academy of
Mathematics and Science.

In the study year, TAMS accepted 204 students, Of
these, 156 students attended an August orientation,
which occurred a week prior to their [irst semester of
college coursework, and completed the LASSI. There
were 80 females and 76 males who participated in the
study. The students who took the LASSI were similar
in demographic background and academic ability as
previous classes because of the academy's consistent
admission requirements and pool of applicants. The
participants' SAT-M and SAT-V means and standard
deviations, respectively, were: M=651, 8D=57; and
M=530, SD=75.

St t
The LASSI is an English language assessment tool
designed to measure college students' use of leamning and
study strategies. It was designed to provide assessment
and pre-post achievement measures for students
participating in a learning strategies and study skills
project. A high-school version is available, but it was

- *

not recommended for use with accelerated students in
these programs (Eldredge, 1990). The LASSI can be
administered in a group setting in approximately.30
minutes. The carbonless test format allows participants
to score their own assessment and take a copy of the
results with them from the testing session.

The ten LASSI subscales focus on thoughts and
behaviors related to successful learning. The ten
subscales are (1) Attitude, (2) Motivation, (3) Time
Management, (4) Anxiety, (5) Concentration, (6)
Information Processing, (7) Selecting the Main Ideas,
(8) Study Aids, (9) Self-testing, and (10) Test Strategies
(for more details see Weinstein, 1987). Reliability
studies reported Cronbach alpha internal consistency
values ranging from .70 to .86 and test-retest
reliabilities from .70 to 85. Validity studies have also
reported normative data for high school and college
students with different instruments for each group
(Weinstein, Palmer, & Schulte, 1987). Students
respond to individual items on each subscale using a
five-point scale: (5) very typical of me; (4) fairly
typical of me; (3) somewhat typical of me; (2) not very
typical of me; and (1) not at all typical of me. Some
item values are reverse keyed before being added to
obtain a subscale score. The subscale scores are
compared by graphing them onto a normal curve
equivalent percentile chart,

According to the LASSI user's manual (Weinstein,
1987), students scoring above the 75th percentile do not
need to improve that specific skill or strategy. Students
scoring between the 75th percentile and the 50th
percentile should consider improvement. Students
scoring below the 50th percentile on a subscale need
assistance to improve that skill or strategy. For
cxample, students scoring below the 50th pereentile on
the anxiety subscale would be considered anxious about
being in college. Likewise, students scoring below the
50th percentile on the motivation subscale lack
appropriate motivation to do college level work
cffectively.

The rescarch question of interest was whether the

* ten LASSI subscales could predict a student's college

grade point average after one semester of college
coursework. A related question pertained to whether a
"subset” of the ten LASSI subscales could better predict
college grade point average for this sample of students.
Students not maintaining at least a 2.50 grade point
average after one semester of college coursework were
dismissed from the Academy. Knowledge of which
subscales are best predictors of college grade point
average would aid staff in identifying potential at-risk
students upon entering the Academy.
D is

The data were analyzed using a SAS statistical
program. The student's college grade point average was
predicted by the ten LASSI subscales using PROC
REG with the SELECTION statement requesting the
best subset model criteria. The PROC PRINCOMP
procedure was used to create ten orthogonal principal
component variables. The principal component variable
parameter estimates were then computed using the
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Table 6 Mallows Cp and Principal Components Regression Comparison (ny = 100)

Best Variable

Subset Model Mallows Cp Brincipal Components
8 SEg t P 8 SEg t P R2
X10 .10 .02 5.00 .0001 .82 .16 5.13 .0001 .21
X3 13 .03 4.33 .0001 .02 .15 .13 .90 .33
X8 .18 .04 4.50 .0001 1.05 .15 7.00 0001
X3 .10 .02 5.00 .0001 .98 12 8.17 .0001 .44
X8 .16 .03 533 .0001 42 .14 3.00 .0024
X10 .07 .02 3.50 .0001} .21 .16 1.31 1951
X1 .10 .03 3.33 .0009 1.04 .11 9.45 .0001 .50
X3 .10 .02 5.00 ,0001 .07 12 .58 .59
X8 .14 .03 4.67 .0001 .28 .15 1.87 .07
X10 .06 .02 3.00 .0004 .14 .16 .88 .39
X1 11 .03 3.67 .0004 1.06 .10 .60 ,0001 .54
X3 .10 .02 5.00 .0001 A1 12 .92 .35
X6 .06 .02 3.00 .0004 .07 .13 .54 .55
X8 12 .03 4,00 .0001 .19 .15 1.27 .20
X10 .06 .02 3.00 ,0004 -.02 .15 -.13 .90
X1 .09 .03 3.00 ,0004 .97 .10 9.70 .0001 .58
X3 .10 02 5.00 .0001 42 11 3.92 .0004
Xs .09 .02 4.50 .0001 31 12 2.58 .01
X8 12 .03 4.00 .0001 .22 14 1.87 11
X9 .06 .02 3.00 .0004 -11 14 .79 .43
X10 .06 .02 3.00 .0004 17 .15 1.13 .26
X1 10 .03 3.33 .0004 1.02 .09 11.33 0001 .62
X3 .09 .02 4.50 .0001 4] 11 3.73 .0002
X5 .08 .02 4.00 .0001 ..10 11 .91 . .37
X6 .05 .02 2.50 .03 .09 12 75 45
X8 .10 .03 3.33 .0004 16 13 1.23 .24
X9 .06 .02 3.00 .0004 .20 .14 1.43 16
X10 05 .02 2.50 .03 A1 14 .79 .44

PROC REG procedure. The number of significant
principal component parameter estimates were
subsequently identified. These procedures arc outlined
in the SAS System for Regression manual (Freund &
Littell, 1991).

Results

The correlation matrix, means and standard
deviations of the ten LASSI subscales are in Table 7.
The intercorrelations among the subscales indicated that
Anxiety was not significantly correlated with Time
Management, Information Processing, Support
Techniques/Materials, and Self-Testing. The lowest
subscale mean was on Selecting Main Ideas.

Mallows Cp
The Mallows Cp statistic is calculated as: Cp =

(SSEp/MSE) - (a - 2p) + | (Freund & Littell, 1991) or

Cp = [1/2 (RSSp) - n + 2p] (Mallows, 1973); where
RSSp is the residual sum of squares from the best
variable subset model, MSE and/or 2 s the mean square
error from the full model with all predictor variables,
n = sample size, and p = number of predictors.

The procedure for finding the optimum subset of all
possible subset sizes requires computing 2™ equations.
The ten subscale predictors in the model yielded 1024
regression equations (210) with associated selection
criteria statistics {Note: the determination of the number
of subset equations generated for p predictor variables
from an q variable full model is: m!/[p!(m-p)!]. For
example, the number of 2 variable subset equations
generated {rom a 10 variable model would be 45). Only
the single best variable subset models of each size are

reported.
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Table 6 (cont.)) Mallows Cp and Principal Components Regression Comparison (nj = 100)

Best Varable

Subset Model Mallows Cp Principal Components
8 SEg t P B SEg t P R2
X1 .10 .03 3.33 .0004 1.03 .09 11.44 .0001 .63
X2 .02 .01 2.00 .05 .18 .10 1.80 .09
X3 .09 .02 4.50 .0001 .03 A1 .27 7
Xs .08 .02 4.00 .0001 .30 1 2.72 .01
X6 .05 .02 2.50 .03 .01 .13 .08 .92
X8 .09 .03 3.00 .0004 .12 .13 .92 .36
X9 .05 .02 2.50 .03 .25 .14 1.78 .09
X10 .05 ,02 2.50 .03 -.05 .14 -.36 .75
X1 .09 .03 3.00 .0004 .99 .08 12.38 .0001 .64
X2 .02 .01 2.00 .05 24 .10 2.40 .02
X3 .08 .02 4.00 .0001 .03 Jt 27 .77
X4 .08 .03 1.67 .10 10 11 .91 .36
Xs 07" .02 3.50 .0004 -.08 .13 .62 .52
X6 .05 .02 2.50 .03 .08 13 .62 .52
X8 09 - .03 3.00 .0004 .02 .14 .14 91
X9 05 .02 2.50 .03 -001 .14 007 .99
X10 .05 .02 2.50 .03 33 15 2.20 .04
X1 .09 03 3.00 .0004 .97 .08 12.13 .0001 .65
X2 .02 01 2.00 .05 27 10 2.70 .008
X3 .08 .02 4.00 0001 .05 10 .50 ,60
X4 .05 .03 1.67 10 -.09 11 -.82 42
Xs .07 .02 3.50 0004 .06 At .55 - .59
X6 0S5 .02 2.50 03 .06 12 .80 .60
X7 .02 .02 1.00 .25 <07 ¢ 12 .58 57
X8 09 .03 3.00 0004 01 14 .07 .94
X9 .04 .02 2.00 05 23 .15 1.53 12
X10 04 .02 2.00 .05 19 .15 1.27 21

Note Regression paramoters have besn rounded to iwo decimal piaces unless otherwise noted. The | value = 8/ SEg.

Table 7 LASSI Subscale Inter-Correlations, Means, and Standard Deviations (n = 156)

LASSI Subscale 1 2 3 4 5 6 7 8 9 10
1 Attention

2 Motivation .59

3 Time Mngmnt .39 .60

4 Anxiety/Worry .32 15 .09

5 Concentration .57 .62 .62 .33

6 Information .20 .15 .39 .03 .26

7 Select ldeas .25 .36 31 .37 .47 .30

8 Support .24 .40 47 .05 .38 45 .40

9 Class Prep. .38 .50 .63 .06 .55 .56 .39 .64

10 Test Strategy .54 .47 .33 .50 .66 .20 .60 .21 34

Mean 34.33 33.12 24.91 28.38 28.56 28.94 18.32 26.03 27.36 31.46
sD 4,17 4.73 6.18 5.92 4.93 5.24 3.51 596 5.84 4.58

Notg. The values have been rounded to two decimal places.
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Table 8 Best Model Sélection Criteria by Subset Size

Variables
in Subset Model

Subset
Size

Q)

)8

(2)(6)(8)

(2).4).(8).(9)

(2)(4)(6).8).9)
(2(4).6).(7)8).(9)
(1,(2),4).(6).(1).(8)(9)
(1:2).(9:.(6)(7).(8),(9).(10)
(142),3)(4)(5).(6)(8).(9).(10)
(1.(2).3)(4(5).(6).(7){8)(9),(10)

=000 IANAWNLE WN -

[~

R2 Cp
.09 10.88
A1 8.01
14 5.16
17 2.72
.18 293
18 3.68
19 5.10
19 7.05
19 10.04
19 11.00

Note, The four variable subset model according to the Cp criteria would be selected a8 the best mode!.

The best subset model for cach subset size with the
corresponding criteria are in Table 8. The Mallows Cp
of 2.72 indicated a four variable subset model. The four
variable subset model for predicting college grade point
was Anxiety/ (4), Study Aids (8), and Self Testing (9).
The Cp criteria also indicated the overfitting caused by
having too many variables in the model. The large Cp

values indicated equations with larger mean square error.
If Cp > (p + 1), for any subset size p, then bias was
present. If Cp < (p + 1), for any subset size p, then the
model contained too many variables. A plot of the Cp
values against the number of predictors, compared to a
plot of the (p + 1) values, visually displays this
phenomenon in Figure 1.

Table 9 Principal Component Regression

Model Typell SS df MS F p. R?
Regression 1076 10 1.08 335 001 .19
Modcl :

Components

a1 4.16 1 .

) 99 1

3) 1.13 1

@) 1.93 1

&) 09 1

©) 23 1

Y] 58 1

8) 133 1

)] 29 1

(10) 03 1

Error 46.58 145 32

Total 5734 155

Nots. Adj. R = .13, PCR R?| 4 g = 69 % (7.42/10.76).




then start to increase. The plot of Cp values is similar
to a "scree" plot in factor analysis and as such a
multiple regression method might also be useful in
determining the number of variables to retain (Zoski &
Jurs, 1993). The best subset model is indicated when
the Cp values begin to increase and cross the (p + 1)
values (Figure 1). - &
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Figure 1 Overlay Plot of Cp and (p + 1) Values
12 +
Lo
t
' o
11 «+ c ¢
' i
|
I
10 + x M
I ¥
!
!
9 + * c o
I .
| S
|
8 + c *
|
M |
a - |
] 7 + b c
1 i :
o |
w o 'f l . A &
] '/6 + ) L]
o | '
Cp |
| c
5 + L c
' “
]
|
4 + J
| c
|
!
3 + * c
! c
|
]
|
2 4 .
I
|
|
1+
4t + + + + + + + + +
0 1 2 3 4 6 7 8 9 10
Number of predictors in model (*)
The present pattem‘of Cp values for the various incipal Components Regressio
subsets of size p are typical when multicollinearity is — btained b .
esent. The Cp values initially become smaller, but . Principal components are obtained by computing
pr ' eigenvalues from the correlation matrix.  The

correlation matrix is used so that variables are not
affected by the scale of measurement as in the use of a
variance-covariance matrix. Since eigenvalues are the
variances of the principal component variables, the sum
of the eigenvalues equal the number of variables in the
full model, just as the sum of standardized variable
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variances would equal the number of variables. This
sum is the measure of the total variation in the data set.
A wide variation in the eigenvalues would suggest the
presence of multicollinearity among the variables. The
number of eigenvalues greater than unity, as in factor
analysis, would indicate the number of variables from
the full mode] that would explain most of the variance
in the data set. The eigenvectors, in contrast, contain
the coefficients for each principal component variable.
These coefficients are used to create the observed values
of the original variables. These observed values are
then used in multiple regression as orthogonal predictor
values with no multicollinearity present.

Preliminary inspection of the model components
(Type 11 SS) in Table 9 indicated three principal
component variables (1, 4, and B) that accounted for
69% of the variance in predicting college grade point
average (7.42/10.76). The first model component alone
explained 39 % of the variance (4.16/10.76).

A comparison of the full mode] parameter estimates
in Table 10 between the original correlated predictors
and the principal component regression variables sheds
better ingight into the best variable subset model
selection criteria. The multiple regression analysis with
correlated predictors identified Motivation (2) and
Support (8) while the principal component method
identified Attention (1), Anxiety/worry (4), and Support
(8).

Summary

The Cp criteria identified a four variable predictor
model as best: Motivation (2), Anxicty/worry (4),
Support (8), and Class Preparation (9). This four
variable subsct modcl was further verified by examining
where the plot of Cp values against the (p + 1) valucs
crossed. The Cp criteria selected the smallest variable
subset model in the presence of variable
multicollincarity. The principal components approach
identificd Attention (1), Anxicty(4), and Study Aids (8).
In examining the paramcter estimates in the multiple
regression analysis, only Motivation (2) and Study Aids

(8) were significant relative to the other predictors in the
model. The Mallows Cp and PCR criteria indicated
slightly different sets of predictor variables depending
upon whether the independent variables were correlated.

In using multiple regression it is important to have
a theoretical basis for the regression model and to
consider model validation. A common misconception
in multiple regression is that the model with all the
significant predictors included is the best model. This
isn't always the case. The problem is that the beta
values and R-squared values are data dependent due to the
least squares criterion being applied to a specific sample
of data. A different sample will usually result in
different parameter estimates and variance explained.
Although the standard errors of the beta values do
provide the researcher with some indication of the
amouat of change expected from sample to sample, the
fact remains that the estimates obtained from one
sample may predict poorly when applied to a new set of
sample data. The primary method to assess any change
in estimates is to replicate the regression model using
other sample data. The Mallows Cp criteria was
similarly suspect because values were inflated upon
cross validation and the best variable subset model in
one sample was not identified in the other sample.
Obviously, if the mean square error estimaltes and the
residual sums of squares fluctuate, then model selection
will be erroneous (sce Mallows Cp formula).

The rationale behind a regression model is to
estimate G2 (the true model's mean square crror
variance). Since 02 is not generally known, a
researcher must estimate it from a knowledge of prior
research (02 = 2, ,), obtain estimates from a model
containing all theoretically relevant predictors, replicate
the study, or usc bootstrapping, jacknifing, and cross-
validation methods. In this regard, effcct size
considerations, as recommended by Thompson et al.
(1991), become important to consider in cvaluating a
regression model.

Table 10 Multiple Regression and Principal Component Parameter Estimate Comparisons

ws Ci Principal Components

Variable [ SEg t p B SEg t p

| .01 .02 .68 .50 .08 02 3.60 001
2 .03 .02 2.29 .02 .06 04 1.76 .081
3 .002 .01 19 .84 -.08 .04 -1.88 .062
4 02 01 184 07 .14 .06 245 .015
5 -.003 .02 - 17 .87 -03 .06 -53 .600
6 .01 .01 130 .20 05 .06 .84 404
7 -02 02 -1.02 31 10 .08 134 .182
8 -03 .01 282 .005 -18 .09 -2.03 .044
9 .02 .01 128 .20 .09 .09 .95 341
10 .005 .02 27 .79 -03 .10 -31 .758
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