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A Comparison of the Mallows Cp and 
Principal Component Regression 

Criteria for Best Model Selection in 
Multiple Regression 

Randall E. Scluunalcer 
University of North Texas 

A cross validation comparison of the Mallows Cp subset model selection criteria using randomly generated data sets 
indicated that different subset models may be identified. The principal component regression method using Type II sum of 
aquares with orthogonal principal component variables indicated II slightly different set of "best" V11riables. The two 
methods in the presence of multicollinearity can yield different subset models. It is recommended that re11earchers base 
regresaion models on subst11ntive theory, model validation, and effect sizes for proper model testing and interpretation. 

M ultiple rearession permits model testina 
wherein a set of independent variables are 
hypothesized to predict a dependent variable, 

Often when the set of variables selected does not 
sianificantly predict, the researcher searches for a 
"subset" of variables that provides the best prediction 
model. The statistical packages provide several 
stepwise methods for this purpose, 

A review of the literature, however, indicates that 
most researchers misuse stepwise methods in 
determining the best predictor set or interpreting the 
importance of predictor variables (I lubcrty, 1989; 
Snyder, 1991; Thompson, 1989; Thompson, Smith, 
Miller, & Thomson, 1991; Welge, 1990), Tracz, 
Brown, and Kopriva (1991) summarized much of the 
literature to indicate that the results of stepwise 
procedures do not yield a "best" equation because 
different criteria can be used in the selection of different 
sets of variables; that when variables are intercorrelated, 
there is no satisfactory way to detennine the relative 
contribution of the variables to R-squared because 
various subsets of variables could yield a similar 
R-squared value; that stepwise methods inflate Type I 
error rates by not using the correct degrees of freedom in 
calculating the change in R-squared; and that the order of 
variable entry is incorrectly interpreted as defining the 
importance of the variable or "best set" of predictors. 

Current research literature indicates that the all 
possible subset approach is preferred over the stepwise 
methods for determining the best model (Berk, 1977; 
Cummings, 1982; Thayer, 1986; Davidson, 1988; 
Henderson & Denison, 1989; Welge, 1990; Thayer, 
1990; Tracz, Brown, & Kopriva, 1991). Several 
criteria, however, arc available for selecting the best - . 

!lubsct model when using the all possible subset 
approach: R-squarcd, adjusted R-squared, mean squared 
error, Mallow's Cp, or a principal component 
regression. Constas and Francis (1992) presented a 
graphical method for selecting the best subset rearession 
model using R-squarcd and adjusted R-squared, They 
plolted R-squared and adjust«! R-squared aaninst the 
number of predictors in the model. The maximum 
number of predictors for best subset model was 
dctennined at the point where the R-sqW1red w1d/or the 
adju.'lted R-sqlllll'Cd values descended. 

The Mallows Cp criteria has also been 
recommended for selecting the best subset of predictor 
variables in contrast to the stepwise methods using a 
sample data set (fracz, Brown, & Kopriva, 1991; 
Zuccaro, 1992). The Cp statistic measures the effect of 
underfitting (important predictors left out of the model) 
or overfilling (include predictors that make no 
contribution or are marginal). Mallows (1966; 1973) 
has suggested that the selection of the best subset model 
with the lowest bias is indicated by the smallest 
Mallows Cp criteria, especially in the presence of 
multicollinearity. The SAS package (Freund & Littell, 
1991) currently prints the Mallows Cp value and a 
variance inflation factor (VIF) which can be used to 
detennine which variables may be involved in the 
multicollinearity. Pohlmann (1983) had previously 
noted that multicollinearity among a set of predictor 
variables didn't affect the Type I error rate, but did affect 
the Type II error rate and width of the confidence 
interval. His findings suggest that sample size and 
model validity could compensate for multicollinearity 
effects, especially when certain research questions 
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require models with highly correlated predictors, for 
example, Y = 81X1 + 82X21 + e. • 

The principal component regression (PCR) has also 
been proposed as a criteria for selecting the best 
predictor model. 'Ibis method appears to be useful when 
predicting values in one sample based upon estimates 
from another sample and when multicollinearity exists 
among a set of variables (Morrison, 1976). The 
indication for using a PCR approach is when the mean 
squared error of a biased estimate is smaller than the 
variance of an unbiased estimate. The PCR method, 
however, is not appropriate for multiple regression 
subset mo~els containing interactions (Aiken & West, 
1993). S10ce the PCR method creates a set of new 
variables called principal components, which are 
uncorrelated or orthogonal, it should not be used when 
models depict nonlinear, correlated predicter sets. 

In summary, the all possible subset approach is 
recommended as an alternative over stepwise methods 
for selecting the best set of predictor variables. The 
Mallows Cp criteria or a principal components 
regression approach is advocated for determining the 
best subset model over the use of R-squared, especially 
when the predictors are correlated. The principal 
component regression method, which determines the 
best model for prediction by creating orthogonal 
variables, appears more useful when estimates from one 
sample are used to predict in another sample or when 
multicollinearity exists amona the predictors. 

How do these criteria compare when selecting the 
best subset model? When miaht a researcher choose 

Table 1 Population Correlation Matrhc, Means, 

y XI X2 X3 X4 

Xl .44 
X2 .25 .10 
X3 .34 . 13 .10 
X4 .43 .19 .10 .15 ' 
X5 .42 . 19 .11 .13 .19 
X6 .30 . 13 .09 .11 .13 
X7 .24 .11 .07 .06 .10 
X8 .so .22 .13 .17 .21 
X9 .28 .12 .08 .10 .12 
XlO .26 .11 .OS .07 .11 

Mean 9.99 17.92 16.12 18.94 21.96 
S.D. 2.00 4.44 8.21 6.00 4.66 

t!l!.1£, All • alue1 have been rowided lo two decimal places. 
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one criteria over another for selecting the best model? 
A comparison of the Mallows Cp selection criteria 
upon cross validation and a comparison of the parameter 
estimates and standard errors between the multiple 
regression and the PCR approach should shed further 
light on their usefulness for subset model selection. 
An applied example will further elaborate the 
comparison of the two criteria 

Simulation 
A SAS program was used to generate a heuristic 

po~ulation (n = 10,000 observations) with a dependent 
vanable and ten correlated predictor variables. The 
program then randomly sampled the population data set 
for n = 200 observations. This data set was then 
randomly divided to create two separate data sets of equal 
size (nt = 02 = 100 observations). The SAS programs 
used in this simulation are available from the author. 

The population correlation matrix, variable means 
and standard deviations are in Table I. The correlation 
matrix, variable means and standard deviations for the 
sample data set used to compute the parameter estimates 
are in Table 2. The correlation matrix, variable means 
and standard deviations for the cross validation data set 
are in Table 3. Parameter estimates, computed using 
the ordinary least squares criterion from the first data 
set, were used with the second data set to calculate R2 
and the Mallows Cp values, and to detennine the best 
variable subset models. 

and Standard Deviations (n • 10,000) 

X5 X6 X7 XS X9 XIO 

.12 

.08 .07 

.21 .16 .11 

.11 .09 .07 .15 

.12 .06 .08 .14 .08 

28.05 25.97 38.90 42.05 33.97 12.05 
4.95 6.61 8.61 4.12 6.95 8.12 
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Table 2 Sample C~~r~l~~lon M~trb:, Me~~s, and Standard Dnlatlons for Estimation Sample 
(n 1 = !00) '".• : 1 ' 

Xl 
X2 
X3 
X4 
XS 
X6 
X7 
X8 
X9 
Xl0 

Mean 
S.D. 

y 

.41 

.28 

.41 

.38 

.24 
',33 
.25 
.39 
.33 
.46 

10.18 
1.80 

.02 

.OS 

.23 
~.01 
.02 
.16 
.22 
.19 
.23 

.23 

.01 

.Q4 

.16 

.08 

.13 

.07 
'.08 

18.40, 15.37 
4.61 8.88 

' ' ,:,1, " 

X3 X4 

.15 

.02 .16 

.09 .08 

.03 .. 01 
-.04, .19 
.04 .24 
.24 .21 

XS 

.08 

.01 

.06 
-.15 
.03 

20.49, 22.76 28.41 
5.94' 4,;30 • 4.99 

l:iASS, All nluea have beffl rounded lo two decimal pl•-• ,, 

X6 X7 X8 

.10 

.21 .01 

.03 : .22 ,·. .21 

.10 ,'17 .11 

25.88 • 39.SS 
6.79 7.81 

,3 .. , 

41.89 
4.13 

X9 

;J7 

34.27 
6.80 

XIO 

11.04 
8.13 

Table 3 Sample Correlation Matrix, Means, and Standard Deviations for Cross Validation 
Sample (n2 • 100) 

y XI X2 X3 X4 ·XS X6 X7 XS X9 XIO 

XI .39 
X2 .28 .14 
X3 .34 -.OS -.08 
X4 .52 .03 .13 .20 
X5 .54 .17 .20 .28 .37 
X6 .26 .01 .01 .07 .18 .19 
X7 .14 .03 .OS .08 .07 .01 -.03 
XS .55 .27 .11 .26 .26 .21 .06 .02 
X9 .32 .26 .18 -.09 .20 .07 .11 .09 .09 
XIO .31 .26 .07 .11 .12 .21 .11 .19 .09 .24 

Mean 9.94 17.91 16.55 19.26 21.37 28.40 25.34 39.23 41.92 33.93 10.38 
S.D. 1.99 4.86 8.57 6.13 5.35 4.75 6.82 9.43 4.27 6.73 7.78 

J:i2k. All value, have been rounded to two decimal place,. 

- . 
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Table 4 R1 and Cp Values for Samplet And Sample2 Best Variable Subset Models 
(DJ = Dl = 100) 

Subset Variables in Subset Model Sample1 
Size R2 Cp 

1 (10) .21 102.92 
2 (3),(8) .33 74.44 
3 (3),(8),(10) .44 49.79 
4 (1),(3),(8),(10) .50 36.13 
5 ( 1),(3),(6),(8),( 10) .54 27.42 
6 (1),(3),(5),(8),(9),(10) .58 19.74 
7 ( 1),(3),(5),(6),(8),(9),( 10) .62 12.26 
8 (1),(2),(3),(5),(6),(8),(9),(10) - .63 11.85 
9 ( 1 ),(2),(3),( 4 ),(5),(6),(8),(9),( 10) .64 11.27 
10 (1),(2),(3),(4),(5),(6),(7),(8),(9),(10) · .65 11.00 

Samplei 
R2 Cp 

1 (8) 30 101.79 
2 (5),(8) .49 50.44 
3 (4),(5),(8) .55 33.41 
4 (1),(4),(5),(8) .61 21.34 
5 (l),(4),(5),(8),(9) .63 17.05 
6 ( 1),(3),(4),(5),(8),(9) .65 13.37 
7 ( 1 ),(3),(4),(5),(6),(8),(9) .66 11.58 
8 ( 1),(2),(3),( 4),(5),(6),(8),(9) .67 9.79 
9 ( I ),(2),(3 ),( 4),(5),(6),(7),(8),(9) .68 9.96 
10 ( l ),(2),(3),( 4 ),(5),(6),(7),{8),(9M 10) .68 11.00 

Table 5 Cross Validation Comparison of R2 and Cp Value,: Samplet to Sample2 for Best 
Variable Subset Models (nt = n2 = 100) 

Subset Variables in Subset Model Srunplet Sample2 
Size Cp R2 Cp R2 

1 (10) .21 102.92 .15 159.53 
2 (3),(8) .33 74.44 .36 92.08 
3 (3),(8),(10) .44 49.79 .40 77.64 
4 ( 1 ),(3 ),(8),( 10) .so 36.13 .45 65.44 
5 ( 1),(3 ),(6),(8),( 10) .54 27.42 .47 55.78 
6 ( 1),(3),(5),(8),(9),( 10) .58 19.74 .59 26.35 
7 ( 1),(3 ),(5),(6),(8),(9),( 10) .62 12.26 .61 23.38 
8 ( 1),(2),(3),(5),(6),(8),(9),(10) .63 11.85 .62 20.82 

9 ( 1 ),(2),(3 ),( 4).(5),(6),(8),(9),( 10) .64 11.27 .63 10.34 

10 ( 1 ).(2),(3 ),( 4),(5),(6),(7),(8) ,(9),( 10) .65 11.00 .66 11.00 
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Table 4 indicates the model subset selection for 
each sample data set. Table 5 indicates a comparison 
between the R 2 and Mallows Cp values from the 
estimation sample data set to the cross validation 
sample data set using parameter estimates from the 
estimation sample. The Mallows Cp values were 
inflated because the parameter estimates applied to the 
second data set altered the residual sums of squares used 
in the formula to calculate them. Although the relative 
ordering of Cp values were the same, these values did 
not indicate the same single best variable subset model 
in the second data set. 

Table 6 compares the parameter estimates using the 
Mallows Cp and the principal components regression 
method for each best variable subset model. The R2 
values will be the same regardless of which method is 
used. The real difference is seen when comparing the 
relative significance of the parameter estimates. The 
Mallows Cp method with correlated predictors indicated 
that i!ll the parameter estimates were significant. This 
was not the case in the principal components regression 
approach. An applied example will further illustrate 
this distinction between the two methods. 

Applied Example 

Subjects 
Participants in the study were a cohort of students 

accepted into the Texas Academy of Mathematics and 
Science (TAMS) at the University of North Texas in 
Fall, 1993. TAMS is an early college entrance program 
in which students earn approximately 60 hours of 
college credit by talcing University of North Texas 
courses. Students enter TAMS at the beginning of their 
11th year in high school. They live on campus in a 
speci1~ residence hall and talce regular university courses 
in mathcnu,tics, science and the hunianitics. After two 
years, participants receive a special high school diploma 
and have an1a.~scd at least 60 hours of college credit. 
Each year 11pproxim11tcly 200 high school sophomores, 
who have met the selection criteria and completed the 
10th grade, arc accepted into the Texas Academy of 
Mathematics and Science. 

In the study year, TAMS ncccpted 204 students. Of 
these, 156 students attended an August orientation, 
which occurred a week prior to their first semester of 
college coursework, and completed the LASSI. There 
were 80 females and 76 males who participated in the 
study. The students who took the LASS! were similar 
in demographic background and academic ability as 
previous classes because of the academy's consistent 
admission requirements and pool of applicants. The 
participants' SAT-Mand SAT-V means and standard 
deviations, respectively, were: M=651, SO=57; and 
M=530, SO=75. 

Instrument 
The LASSI is an English language assessment tool 

designed to measure college students' use of learning and 
study strategies. It was designed to provide assessment 
and pre-post achievement measures for students 
participating in a learning strategies and study skills 
project. A high-school version is available, but it was 
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not recommended for use with accelerated students in 
these programs (Eldredge, 1990). The LASSI can be 
administered in a group setting in approximately ,30 
minutes. The carbonless test format allows participants 
to score their own assessment and take a copy of the 
results with them from the testing session. 

The ten LASSI subscales focus on thoughts and 
behaviors related to successful learning. The ten 
subscales are (1) Attitude, (2) Motivation, (3) Time 
Management, (4) Anxiety, (5) Concentration, (6) 
Information Processing, (7) Selecting the Main Ideas, 
(8) Study Aids, (9) Self-testing, and (10) Test Strategies 
(for more details see Weinstein, 1987). Reliability 
studies reported Cronbach alpha internal consistency 
values ranging from ,70 to .86 and test-retest 
reliabilities from .70 to .85. Validity studies have also 
reported normative data for high school and college 
students with different instruments for each group 
(Weinstein, Palmer, & Schulte, 1987). Students 
respond to individual items on each subscale using a 
five-point scale: (5) very typical of me; (4) fairly 
typical of me; (3) somewhat typical of me; (2) not very 
typical of me; and (1) not at all typical of me. Some 
item values are reverse keyed before being added to 
obtain a subscale score. The subscale scores are 
compared by graphing them onto a normal curve 
equivalent percentile chart. 

According to the LASSI user's manual (Weinstein, 
1987), students scorina above the 75th percentile do not 
need to improve that specific skill or strategy. Students 
scorina between the 75th percentile and the 50th 
percentile should consider improvement. Students 
scoring below the 50th percentile on a subscale need 
assistance to improve that skill or strategy, For 
example, students scoring below the 50th percentile on 
the anxiety subscalc would be .considered anxious about 
being in college. Likewise, students scoring below the 
50th percentile on the motivation subscalc lack 
appropriate motivation to do college level work 
cff ecti vcl y. 

Research Question 
The research question of interest was whether the 

ten LASSI subscales could predict a student's colle1e 
grade point average after one semester of college 
coursework. A related question pertained to whether a 
"subset" of the ten LASSI subscales could better predict 
college grade point average for this sample of students. 
Students not maintaining at least a 2.50 grade point 
average after one semester of college coursework were 
dismissed from the Academy. Knowledge of which 
subscales arc best predictors of college grade point 
average would aid staff in identifying potential at-risk 
students upon entering the Academy. 

Data Analysis 
The data were analyzed using a SAS statistical 

program. The student's college grade point average was 
predicted by the ten LASSI subscales using PROC 
REG with the SELECTION statement requesting the 
best subset model criteria. The PROC PRINCOMP 
procedure was used to create ten orthogonal principal 
component variables. The principal component variable 
parameter estimates were then computed using the 
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Table 6 Mallows Cp and Principal Components Regression Comparison (DJ = 100) 

Best Variable 
Subset Model M!!ll21ll ~12 

8 Sfa p 

XlO .IO .02 5.00 .0001 

X3 .13 .03 4.33 .0001 
XS .18 .04 4.50 .0001 

X3 .10 .02 5.00 .0001 
XS .16 .03 5.33 .0001 
XlO .07 .02 3.50 .0001 

Xl .10 .03 3.33 .0009 
X3 .10 .02 5.00 .0001 
XS .14 ,03 4.67 .0001 
Xl0 .06 .02 3.00 .0004 

Xl .11 .03 3.67 .0004 
X3 .IO .02 5.00 .0001 
X6 .06 .02 3.00 .0004 
XS .12 .03 4.00 .0001 
XlO .06 .02 3.00 .0004 

Xl .09 ,03 3.00 .0004 
X3 .10 .02 5.00 .0001 
XS .09 .02 4.50 .0001 
XS .12 .03 4.00 .0001 
X9 .06 .02 3.00 .0004 
Xl0 .06 .02 3.00 .0004 

Xl . 10 .03 3.33 .0004 
X3 ,09 ,02 4.50 ,0001 
XS .08 ,02 4.00 .0001 
X6 .05 ,02 2.50 .03 
XS .10 ,03 3.33 .0004 
X9 .06 .02 3.00 ,0004 
XlO .05 .02 2.50 .03 

PROC REG procedure. The number of significant 
principal component parameter estimates were 
subsequently identified. These procedures are outlined 
in the SAS System for Regression manual (Freund & 
Littell, 1991). 

~ 
The correlation matri~. means and standard 

deviations of the ten LASS[ subscales are in Table 7. 
The intercorrelations among the subscales indicated that 
Arutiety was not significantly correlated with Time 
Management, Information Processing, Support 
Techniques/Materials, and Self-Testing. The lowest 
subscale mean was on Selecting Maio Ideas. 

Mallows Cp 
The Mallows Cp statistic is calculated as: Cp = 

(SSEp/MSE) - (o - 2p) + 1 (Freund & Littell, 1991) or 

fcias.i12al ~m122aeats 

8 Sfa p R2 

.82 .16 5.13 .0001 .21 

.02 .15 .13 .90 .33 
1.05 .15 7.00 .0001 

.98 .12 8.17 .0001 .44 

.42 .14 3.00 .0024 

.21 .16 1.31 . 1951 

1.04 .11 9.45 .0001 .50 
.07 .12 .58 .59 
.28 . 15 1.87 .07 
.14 .16 .88 .39 

1.06 .10 ,60 .0001 .54 
. 1 1 .12 .92 ,35 
.07 .13 .54 .55 
.19 .15 1.27 .20 

-.02 . 15 -.13 .90 

.97 . 10 9.70 .0001 .58 

.42 .11 3.92 .0004 

.31 . 12 2.58 .01 

.22 .14 1.51 .11 
-.11 .14 •.79 .43 
.17 , I 5 1.13 .26 

1.02 .09 11.33 .0001 .62 
.41 .11 3.73 .0002 

-.10 , 11 -.91 ,37 
.09 . 12 .15 .45 
.16 .13 1.23 .24 
.20 . 14 1.43 .16 
.11 .14 .79 .44 

Cp = (1/2 (RSSp}. n + 2p] (Mallows, 1973): where 
RSSp is the residual sum of squares from the best 
variable subset model, MSE and/ or 2 is the mean square 
error from the full model with all predictor variables, 
n = sample size, and p = ownber of predictors. 

The procedure for finding the optimum subset of all 
possible subset sizes requires computing 2m equations. 
The ten subscale predictors in the model yielded 1024 
regression equations (210) with associated selection 
criteria statistics {Note: the determination of the number 
of subset equations generated for I! predictor variables 
from an m variable full model is: m!/[p!(m-p)!]. For 
e~ample, the number of 2 variable subset equations 
generated from a 10 variable model would be 45}. Only 
the single best variable subset models of each size are 
reported. 
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Table 6 (cont.) Mallows Cp and Principal Components Regression Comparison (DJ = 100) 

Best Variable 
Subset Model Mallows Ct2 fi:iD£it2lll Q?m122nents 

B Sfe p 8 SF.ti p R2 

Xl .10 .03 3.33 .0004 1.03 .09 11.44 .0001 .63 
X2 .02 .01 2.00 .05 .18 .10 1.80 .09 
X3 .09 .02 4.50 .0001 .03 .11 .27 .77 
XS .08 .02 4.00 .0001 .30 .11 2.72 .01 
X6 .05 .02 2.50 ,03 .01 .13 .08 .92 
XS .09 .03 3.00 .0004 .12 .13 .92 .36 
X9 .05 .02 2.50 .03 .25 .14 1.78 .09 
XlO .05 .02 2.50 .03 -.05 .14 -.36 .75 

Xl .09 .03 3.00 .0004 ,99 ,08 12.38 ,0001 .64 
X2 ,02 .01 2.00 .05 .24 .10 2.40 .02 
X3 ,08 .02 4.00 .0001 ,03 .11 ,27 .77 
X4 .05 .03 1.67 .10 .10 .11 ,91 ,36 
XS .07 .02 3.50 ,0004 -.08 .13 -.62 • .52 
X6 .OS .02 2.50 .03 .08 .13 .62 .52 
XS ,09 ,03 3,00 .0004 .02 .14 .14 ,91 
X9 ,05 .02 2.50 .03 -.001 .14 ,007 ,99 
Xl0 .OS .02 2.50 .03 .33 .15 2.20 .04 

XI .09 .03 3.00 .0004 .97 ,08 12. 13 .0001 .65 
X2 ,02 ,01 2.00 .OS .27 , 10 2.70 .008 
X3 ,08 .02 4.00 ,0001 ,OS .10 .so ,60 
X4 .OS .03 1.67 .10 -.09 , 11 -,82 .42 
XS .07 .02 3.50 ,0004 ,06 .11 .ss .59 
X6 .OS .02 2,50 ,03 .06 .12 ;50 ,60 
X7 .02 .02 1.00 .2S -.07 .12 .58 ,57 
XS .09 .03 3.00 .0004 ,01 .14 .07 .94 
X9 .04 ,02 2.00 .OS ,23 .15 1.53 .12 
Xl0 ,04 .02 2.00 ,05 , 19 .15 1.27 .21 

litdl, R11nulon p111'111Mlffl ha•• been rounded lo. two decimal placn uni- oth•rwil• notld. Th• t Hlue •II SIJa, 

Table 7 LASSI Subscale Inter-Correlations, Means, and Standard Deviations (n • 1!6) 

LASSI Subscale 2 3· 4 s 6 7 8 9 IO 

1 Attention 
2 Motivation ,59 
3 Time Mngmnt .39 .60 
4 Anxiety/Worry .32 .15 .09 
S Concentration .57 .62 .62 .33 
6 lnfonnation .20 .15 .39 .03 .26 
7 Select Ideas .25 ,36 ,31 .37 .47 .30 
8 Support .24 .40 .47 .05 .38 ,45 .40 
9 Class Prep. .38 .50 .63 .06 .55 .56 .39 .64 
10 Test Strategy .54 .47 .33 .50 .66 .20 .60 . 21 .34 

Mean 34.33 33.12 24.91 28.38 28.56 28.94 18.32 26.03 27.36 31.46 
SD 4.17 4.73 6.18 5.92 4.93 5.24 3.51 5.96 5.84 4.58 

liw£. The •ahiea hue been rounded lo two decimal placea, 

- II 
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Table 8 Best Model Selection Criteria by Subset Size 

Subset 
Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Variables 
in Subset Model 

(2) 
(2).(8) 
(2),(6),(8) 
(2),( 4 ),(8),(9) 
(2),(4).(6),(8),(9) 
(2),(4),(6),(7).(8).(9) 
(1),(2),(4),(6),(7),(8),(9) 
( 1),(2),( 4),(6),(7),(8),(9),( 10) 
( I ),(2),(3),( 4 ),(5),(6),(8),(9),( 10) 
(1),(2),(3),(4),(5),(6),(7),(8),(9),(10) 

R2 

.09 

.11 

.14 

.17 

.18 

.18 

.19 

.19 

.19 

.19 

Cp 

10.88 
8.01 
5.16 
2.72 
2.93 
3.68 
5.10 
7.05 

10.04 
11.00 

Hllll, The four irariable aubact model accordina lo the Cp criteria would be aclccted u the beat model. 

The best subset model for each subset size with the 
corresponding criteria are in Table 8. The Mallows Cp 
of 2.72 indicated af our variable subset model. The four 
variable subset model for predicting college grade point 
was Amiety/ (4), Study Aids (8), and Self Testing (9). 
The Cp criteria also indicated the overfitting caused by 
havini too many variables in the model. The large Cp 

Table 9 Principal Component Re1re11lon 

Model Type II SS df MS 

Rearcssion 10.76 10 1.08 

Model 
Components 

(1) 4.16 l 
(2) .99 l 
(3) 1.13 l 
(4) 1.93 1 
(5) .09 1 
(6) .23 1 
(7) .58 1 
(8) 1.33 1 
(9) .29 1 
(10) .03 1 

Error 46.58 145 .32 

Total 57.34 155 

~- Adj. R2 ., .13, PCR R\4,8 "' 69 % (7,42/10.76). 

values indicated equations with larger mean square error. 
If Cp > (p + 1), for any subset size p, then bias was 
present. If Cp < (p + 1), for any subset size p, then the 
model contained too many variables. A plot of the Cp 
values against the number of predictors, compared to a 
plot of the (p + 1) values, visually displays this 
phenomenon in Fi1ure 1. 

r P. R2 

3.35 .001 .19 
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Figure I Overlay Plot of Cp and (p + 1) Values 
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The present pattern of Cp values ~or ~e va~o~s 
subsets of size I! are typical when multtcolhneanty ts 
present. The Cp values initially become sm~le~, ~ut 
then start to increase. The plot of Cp values 1s similar 
to a "scree" plot in factor analysis and as such a 
multiple regression method ~ght also b~ useful_ in 
determining the number of vanables to retmn (Zoski & 
Jurs, 1993). The best subset model is indicated when 
the Cp values begin to increase and cross the (p + 1) 
values (Figure 1). • 
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Principal Components Regression 
Principal components are obtained by computing 

eigenvalues from the correlation matrix. The 
correlation matrix is used so that variables are not 
affected by the scale of measurement as in the use of a 
variance-covariance matrix. Since eigenvalues are the 
variances of the principal component variables, the sum 
of the eigenvalues equal the number of v~ables i? the 
full model, just as the sum of standardized vanable 



variances would equal the number of variables. This 
sum is the measure of the total variation in the data set. 
A wide variation in the eigenvalues would suggest the 
presence of multicollinearity among the variables. The 
number of eigenvalues greater than unity, as in factor 
analysis, would indicate the number of variables from 
the full model that would explain most of the variance 
in the data set. The eigenvectors, in contrast, contain 
the coefficients for each principal component variable. 
These coefficients are used to create the observed values 
of the original variables. These observed values are 
then used in multiple regression as orthogonal predictor 
values with no multicollinearity present. 

Preliminary inspection of the model components 
(Type II SS) in Table 9 indicated three principal 
component variables (1, 4, and 8) that accounted for 
69% of the variance in predicting college grade point 
average (7.42/10.76). The first model component alone 
explained 39 % of the variance (4.16/10.76). 

A comparison of the full model parameter estimates 
in Table 10 between the original correlated predictors 
and the principal component regression variables sheds 
better insight into the best variable subset model 
selection criteria. The multiple regression analysis with 
correlated predictors identified Motivation (2) and 
Support (8) while the principal component method 
identified Attention (1), Anxiety/worry (4), and Support 
(8). 

Summary 
The Cp criteria identified a four variable predictor 

model as best: Motivation (2), Anxiety/worry (4), 
Support (8), and Class Preparation (9). This four 
variable subset model was further verified by examining 
where the plot of Cp values against the (p + I) values 
crossed. The Cp criteria selected the smallest variable 
subset model in the presence of v aria b I c 
multicollinearity. The principal components approach 
identified Attention (I), Anxiety(4), and Study Aids (8). 
In examining the parameter estimates in the multiple 
regression analysis, only Motivation (2) and Study Aids 

Table 10 Multiple Regression and Principal 

Mallows Cp 

Variable 8 SE5 

I .01 .02 .68 
2 .03 .02 2.29 
3 .002 .01 .19 
4 .02 .01 1.84 
5 -.003 .02 -.17 
6 .01 .01 1.30 
7 -.02 .02 -1.02 
8 -.03 .01 -2.82 
9 .02 .01 1.28 
IO .005 .02 .27 
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(8) were significant relative to the other predictors in the 
model. The Mallows Cp and PCR criteria indicated 
slightly different sets of predictor variables depending 
upon whether the independent variables were coirclaled. 

In using multiple regression it is important to have 
a theoretical basis for the regression model and to 
consider model validation. A common misconception 
in multiple regression is that the model with all the 
significant predictors included is the best model. This 
isn't always the case. The problem is that the beta 
values and R-squared values are data dependent due to the 
least squares criterion being applied to a specific sample 
of data. A different sample will usually result in 
different parameter estimates and variance explained. 
Although the standard errors of the beta values do 
provide the researcher with some indication of the 
amount of change expected from sample to sample, the 
fact remains that the estimates obtained from one 
sample may predict poorly when applied to a new set of 
sample data. The primary method to assess any change 
in estimates is to replicate the regression model using 
other sample data. The Mallows Cp criteria was 
similarly suspect be.cause values were inflated upon 
cross validation and the best variable subset model in 
one sample was not identified in the other sample. 
Obviously, if the mean square error estimates and the 
residual sums of squares fluctuate, then model selection 
will be erroneous (see Mallows Cp fonnula). 

The rationale behind a regression model is to 
estimate 62 (the true model's mean square error 
variance). Since 62 is not acnerally known, a 
reiiearchcr must estimate it from a knowledge of prior 
research (62 = 6 2y.it>• obtain estimates from a model 
containing all theoretically relevant predictors, replicate 
the study, or use bootstrapping, jacknifing, and cross
vnli dntion methods. In tliis regard, effect size 
considerations, as recommended by Thompson et al. 
(1991), become important to consider in evaluating a 
regression model. 

Component Parameter Estimate Comparisons 

Principal Components 

p 8 SEB e 
.50 .08 .02 3.60 .001 
.02 .06 .04 1.76 .081 
.84 -.08 .04 -1.88 .062 
.07 .14 .06 2.45 .015 
.87 -.03 .06 -.53 .600 
.20 .05 .06 .84 .404 
.31 .10 .08 1.34 .182 
.005 -.18 .09 -2.03 .044 
.20 .09 .09 .95 .341 
.79 -.03 .10 -.31 .758 
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