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Linear Logistic Regression is a simple but a very powerful tool to assess the likelihood of being in one 
"category" for an observation with specific independent characteristic values, i.e., when the response variable is 
dichotomous and the data is replicated, the conditional probability, that an observation belongs to one of the two 
categories given independent characteristic values, can easily be estimated through Logistic Regression. For 
various reasons, stratified sampling, sometimes, causes a different sample proportion between the two groups 
from the population. Many statistical packages allow their users to adjust weights to fix this bias problem as an 
option in using the Logistic Procedure. The users, however, would experience more computing cost by using 
the option. In many cases, the purpose of the biased sampling is for computational economy and if the 
computing cost stays the same, using the biased sample with adjusted weights is not a4vantageous. 

In this study, simple bias correction without using adjusted weights is explained using simulated bankruptcy 
data. Since the method can be used for any software without adjusting weights, computational economy can be 
achieved with unbiased results. 

1. Introduction 

T wo group classification techniques arc 
instrumental in many cases of decision making 
in business, finance, and marketing, etc. For 

example, when credit grantors extend credit, they need 
to assess each applicant's credit worthiness or risk for 
the extension of credit. In marketing analysis, they 
want to target more potentially responsive 
populations for direct mailing. These examples arc 
typical cases where the dependent variable is binary, 
i.e., risk versus non-risk, or response versus non
response. Logistic regression analysis, parametric or 
nonparametric discriminant function analysis, and 
neural net arc usual candidate tools for such cases. 
These methods are known to be comparable one to 
another in terms of classification accuracy. Each of 
these has merits and demerits depending on the user's 
point of view such as cost, purpose of analysis, etc. 
Logistic regression, for many reasons, often has been 
preferred to other methods, especially to discriminant 
function analysis. Press and Wilson ( l 978) made 
empirical applications to compare logistic regression 
and discriminant function analysis using breast cancer 
data and population change data of the U.S. They 
concluded that Logistic regression outperforms linear 
discriminant function analysis when the normality 
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assumption is violated. Fienberg ( 1980), also, 
mentioned the superiority of logistic regression over 
discriminant function analysis in case of non-nonnal 
populations. In reality, the nonnality assumption is 
not easily met, especially in most of the credit or 
demographic profile data. One of the advantages of 
using the logistic regression model is that it provides 
the likelihood of being in one group for an 
observation given characteristic profile values. 
Let E be an event that an observation is from one 
category and a vector .l be the characteristic values of 
the observation. Then, the logistic regression model 
is 

p(x) = Pr{E I .1} = l/[l+ exp{ - (a.+ ~.l)}], 

where (a., ~) are unknown parameters that are to be 
estimated from the sample. This model is used to 
classify an observation into one of the two mutually 
exclusive categories based on,1. 

In actual analysis, the binary dependent variable, 
usually coded O or I for event or non-event, is 
regressed on ,1. 

1.1 Sample Bias 

In many cases of two group classification, the 
proportion of one group is far smaller than the other. 
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For instance, the proportion of cancer patients among 
the population, or the proportion of bankrupt 
accounts in a portfolio is observed to be very low. In 
such a case, analysts would rather choose stratified 
random sampling than simple random sampling. For 
instance, n observations are taken randomly from the 
event population, and m observations are taken from 
the non-event population. The sample ratio between 
event and non-event in such a sample is quite different 
from that in the population. For classification 
purposes, such an uneven proportion shouldn't be a 
problem, because a classification model developed on 
an unevenly proportioned sample would work as well 
as a model developed on an evenly proportioned 
sample. Such sampling scheme saves sampling cost 
and in using the data, later on, will bring a reduction 
of computing cost as well. Immeasurability is, of 
course, sometimes a cause of the uneven proportion. 
In this study, we like to consider sample bias in the 
sense of an uneven or distorted ratio between two 
mutually exclusive categories. 

1.2 Model Bias 

If a logistic regression model is derived based on 
a biased sample, the estimated probability of event 
given .1. would be either underestimated or 
overestimated even though the model has almost the 
same classification power as that derived from 
unbiased data. Let's consider, as a more detailed 
example, a case when bankruptcy is an event. That is, 
a model is developed to assess likelihood of 
bankruptcy given a vector of characteristic values. 
The risk assessment is biased if the model is 
developed by using biased data. 

2. Analysis of Data 

In this study, we used simulated bankruptcy data 
from Moody's Industrial Manuals 1968-1972 to 
expand our discussion. The data set has 4 independent 
variables, x1 = (cash flow)/(total debt), "2 = (net 
income)/(total assets), x3 = (current assets)/(current 
liabilities), and x4 = (current assets)/(net sales). The 
dependent variable is coded as O for bankruptcy and 1, 
otherwise. 
For illustration, let's assume that the proportion of 
the event (bankruptcy) is 1/50 (=0.02) in a portfolio. 
A logistic model was derived using a biased 
development sample which has proportion of event 
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(bankruptcy) 1/3 (= 0.33). The parameter estimates on 
the biased sample were 

= ( 2.8603, - 3.6938, - 1.7649, - 1.7286, 0.4760 ). 

Figure-I in the Appendix presents plots between 
estimated risk versus observed risk for the biased 
sample. A smooth curve produced by the authors' 
robust smoother (1990) is superimposed to enhance 
the visual information. Figure-2 presents the same 
plots on an unbiased sample which has the same 
proportion as the population. We can observe that 
there is, in Figure-I, a strong linear relationship 
(almost a 45 degree line with some endurable noise) 
between observed and estimated risks, while, in 
Figure-2, there is no linearity between the two values 
and it presents a bias assessment of risk. In most 
cases, the bias is leaning toward over estimation. That 
is, when the proportion of the event is very low such 
as bankruptcy, the sample proportion of the event is 
usually far higher than the population proportion and 
may result in an overestimation of risk unless an 
adjustment is made in the process of estimation. 

3. Bias Correction 

We can consider two kinds of corrections, i.e., a 
priori adjustment and a posreri correction. 

3.1 A ,,riori Adjustment 

One of the easy ways of a priori adjustment is to 
assign proper weights based on the sampling fraction, 
f = n/N, where, n and N are sample and population 
sizes, respectively. If, in the case of stratified 
sampling, / is 0.5 for a stratum, the corresponding 
sample weight 1// =2 will be assigned in the 
estimation procedure. This kind of adjustment is 
allowed, in most of the commercial software, for the 
price of additional computing cost. To compute 
estimates of the parameters, Iteratively Reweighted 
Least Squares (IRLS) or similar methods are used. For 
example, IRLS for k+ I response categories is used, 
in SAS, as in the following: 

Let Z - (Z z )t be a multinomial j - lj• ... , (k+ I )j 

vector such that 

z .. 
IJ = l if y. = i 

J 
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= 0 otherwise, for j = 1, ... , n 

(In two group case, k = 1 and Y is a binary response 
variable) 

Let Pj = E(Zj) , Vj = Cov(Zj), 
aru 

And, let Dj be the matrix of partial derivatives 
of Pj with respect to y. Then, the estimating equation 
for the regression parameters is 

t,D,1W,(Z· • P·) = 0 
J J J J J ' 

where W J = w;V,", wj is the weight of j-th 
observation, and V/ is a generalized inverse of Vi. 
v: is chosen as the inverse of the diagonal matrix 
with P; as the diagonal. The parameters are estimated 
iteratively as 

I I 

y m+I a 'Y m 

I I 

Where D j, W )' and p'J are evaluated values of Dj, 
WJ, and Pj at y m· 
If the likelihood evaluated at y' m+ 1 is less than that 
evaluated at y' m• then y' m+ 1 is recomputed using half 
the value of the second term of the right hand side, 

As was discussed, by assigning proper weights, 
if it is allowed, or by replicating 1// (to the nearest 
integer) times, if weighting is not allowed, the 
sample bias problem in risk assessment can be easily 
overcome with additional expense. 

Our interest, however, is not in a priori 
adjustment but in a posteri correction. When a model 
is developed already and the development data is no 
longer available, or redevelopment causes unexpected 
inconvenience or cost, posterior correction based on 
minimal information about the population would be 
an economical and efficient alternative. 

3.2 A posteri Correction 

This approach is used to alleviate a biased risk 
estimation due to an uneven sampling fraction by 
computing a simple correction factor. For illustration, 
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assume a situation that a probability model is derived 
using biased data and it is applied in an application 
data set. The application data is not used for the 
derivation of the model. We assume, further, that the 
proportion of the event in the application data will be 
approximately the same as that of the population. The 
probability of the event predicted will be biased and it 
should be corrected. To simplify the discussion, let's 
define the following: 

p: population proportion of events 

p': sample proportion of events in a biased data 
set 

cj>': estimated likelihood of an event for given .i 
on an application data using the biased model 
developed on the biased data set 

m: number o.f events observed at cj>' in the biased 
dataset 

n: number of non-events observed at cj>' in the 
biased data set 

M: total number of events in the biased 
data set 

N: total number of non-events in the 
biased data set 

Further, let: 

f' • m/M (Relative frequency of event at cl>' in 
the biased data set) 

g' = n/N (Relative frequency of non event at 
cj>' in the biased data set) 

Then the likelihood of event for an observation 
estim'ated on the application data, even though the 
data is not biased, would be, 

cj>' = m / (m + n) 

= f * M / (f * M + g' * N) .................. (1) 

Since the model was derived on the biased data, 4>', 
the conditional probability given characteristic values 
.l., is biased although it is calculated on the 
application data. It always results . in _the sam.e 
likelihood for .i and implies the same likehhood as if 
it were calculated on the biased sample. 

---
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The true likelihood of event at ~• can be calculated most of the observed risks occur. This shows that the 
by, biased risk is corrected. 

~ = p * f I [p * f + (1-p) * g] ................. (2) 

,where f and g are population relative frequencies for 
event and non-event, respectively. 

The problem is how to estimate (or approximate)~ in 
(2) using ~• in (1). 
One necessary condition that can be easily proven 
empirically is that 

f = f and g' = g for any f and p'. 

From (1), using above condition, 

wr1 
- I= ( g'/f) * (NIM) 

=(g/f) *(NIM) ................................. (3) 

By multiplying (MIN) * ((1-p)/p] and adding I on 
both sides of (3), 

< wr1
- 1} •(MIN)* l<I-p)/pJ + 1 

= [ f • p + g • (1-p)] / (f • p) ............... (4) 

From (2) and (4), we get, 

•I 
~ = { [(I-~')W J •(MIN)• ((1-p)/p] + I} , 

or by using the fact that (MIN)• [p'/(1-p')], we get 

.J 
~ = { [(l~')W ]*(p'/(1-p')}*[(l-p)/p] + I} f 

The last fonnula is for bias correction. It sllows 
that the biased likelihood ~, can be corrected easily 
and the only necessary information about the 
population is the proportion of the event. The 
formula was applied to the estimated likelihood of 
event (estimated risk) in Figure - 2 and the corrected 
risk and observed risk is plotted in Figure • 3. A 
strong linear relationship is found between the 
estimated risk and the observed risk, particularly for 
an observed risk under 20%. Titls is the region where 

4. Discussions 

As mentioned above, Logistic regression is a 
very popular tool in classification analysis. Especially 
in the two group case such as risk versus non-risk 
analysis, it is very instrumental in assessing risk 
level for an observation in a portfolio. An uneven 
proportion, however, will cause a biased estimation. 
In business applications, the size of the risk group is 
usually small compared to the portfolio size. For 
example, in developing a bankruptcy forecasting 
model for a portfolio, the number of bankruptcies is 
very low so all the bankruptcies are taken into the 
development sample along with a certain number of 
non-bankruptcies. Even though the resulting model 
has good separation power when measured by the 
Kolmogorov-Smimov test, Apparent Error Rate, or 
Kull-back Leibler information value, etc., the risk 
measured by the model would be overly assessed. For 
worse scenarios, redevelopment of the model is 
impossible because the original data was purged, or 
the biased model is installed on the system already and 
is in production mode. In such cases, a posteri 
correction is very handy. 

Even when the weight option is available in 
using statistical software, if the weight assigned to 
one group is too large compared to the other, such as 
the bankruptcy prediction case, the resulting estimates 
of risk may not be accurate when round-off error or 
wrong direction of convergence is cumulated in the 
process of the iterative rcweightcd algorithm of the 
logistic procedure. If such a situation is expected, 
both the weight assignment and the above correction 
algorithm can be used for a test. 
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Appendix 

Figure - 1: 
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Estimated Risk versus Observed Risk on 
the biased development data set 
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Figure - 2: 
Estimated Risk versus Observed Risk on an 
unbiased application data set 
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Figure - 3: 
Corrected Risk versus Observed Risk on an 
unbiased application data set 
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