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The use of f~nvard selection stepwise regression has been criticized for both interpretive misunderstandings and 
statistical aberrations. A major statistical problem with stepwise'regression and other procedures that involve 
multiple significance tests is the inflation of the Type I error rate. Common approaches to control the family-wise 
error rate (e.g., the Bonferroni and Sidak corrections) are based on the assumptions of independent tests which 
typically reduce power. Because the presence of correlated predictors is a more realistic situation, other algorithms 
based on the average correlation in the predictor matrix have been proposed. The present study proposes an 
algorithm based on the maximum eigenvalue and the determinant of the predictor matrix for controlling the family­
wise Type I error rate for multiple, correlated tests in forward selection regression under the complete null 
hypothesis. A Monte Carlo simulation with 5,000 replications was performed to demonstrate the effectiveness of 
the proposed algorithm. 

Most users of multiple regression techniques in 
educational research are attempting to reduce a 
set of k predictor variables in order to report a 

simplified model. Typically, if a set of k predictors are 
regressed on a dependent variable, Y, only those 
predictors that are found statistically significant will be 
considered substantively valuable. Furthermore, 
because of the nature of many educational and 
psychological measurement scales, researchers are less 
likely to estimate regression coefficients as a way of 
interpreting substantive findings. Rather, F-ratios or p­
values arc used in a dichotomous decision process such 
that the relationship between a predictor and a criterion 
variable is "significant or not" (e.g., Thompson, 
1989b). Furthermore, it is possible to have a 
statistically significant model (i.e., significant full 
model R 2) when the component variables are 
individually nonsignificant in either a zero-order or 
partial manner. However, educational researchers arc 
not likely to consider such a model in the development 
of theory. Therefore, the forward selection procedure of 
stepwise regression became popular among educational 
researchers because it begins with significance tests of 
zero-order correlations and proceeds to more complex 
models. 

For several years now, applied statisticians 
(e.g., Thompson, I 989a; Wilkinson, 1979) have been 
calling attention to the abuses of stepwise regression in 
its common use by less statistically sophisticated 
researchers. But theses and dissertations continue to 
step (unwisely) across the desks of graduate educators, 
and articles with many of these same problems continue 
to appear in print. It is hoped that elaborating these 
limitations and proposing new methods for using 

stepwise regression will bring about its more 
appropriate use. Three statistical procedures are 
considered under the rubric of stepwise regression: 
Forward selection; backward elimination; and true 
stepwise (Draper & Smith, 1981). Specifically, the 
forward selection procedure forms a model from the set 
of k dependent variables by first selecting the single 
best predictor. The second best predictor is then chosen 
by the criteria of strongest contribution to the prediction 
of Y, while controlling for the effects of the first 
predictor entered. Thus, the first step involves k 
simultaneous tests of 1.ero-ordcr correlations, while the 
second step involves (k • 1) simultaneous tests of first­
order semi-partial correlations (Aitkin, 1974). The 
process continues so that at each step the variable 
selected for inclusion significantly increases the 
prediction of Y (i.e., full model R2). 

The use of the various stepwise regression 
procedures has been criticized for many interpretative 
misuses and statistical aberrations. First, researchers 
often interpret the final solution of a reduced set of g 
predictors as being the best subset of predictors overall 
and of that size. Also, there is a tendency to confuse 
the order of entry and variable importance (Huberty, 
1989). Stepwise procedures suffer from the use of the 
largest partial F as a test of a potential entry variable 
which is not in the regression model at that stage. The 
correct null sampling distribution for this test in not the 
ordinary F distribution, but is a partial F distribution 
which is very difficult to obtain. (Draper & Smith, 
1981). Moreover, researchers often proceed to test each 
stage in a stepwise regression as if the partial F 
distribution does not exist and as if the test at that step 
is the only test that has or will occur. Furthermore, the 
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degrees of freedom (dj) used for these tests are often 
incorrect. For example, in the forward selection 
procedure the dfs used for the.first step, a test ofzero­
order correlations, is (N - 2), while (N - k - 1) would be 
more appropriate. These considerations, in general, tend 
to inflate the probability of at least one Type I error 
(i.e., the probability of forming an erroneous model). 

Another interpretative problem arises when 
two or more predictor variables are highly correlated. In 
such situations, there is a strong probability that one of 
the variables will absorb the majority of the other 
variables' prediction power and therefore cause their 
exclusion from subsequent models. Not only does a set 
of correlated predictors lead to potential substantive 
misinterpretations, it also makes estimating the 
probability of a Type I error more complex. Thus, due 
to multiple tests, incorrect dfs, misunderstood partial F 
tests, and correlated predictor variables, it is difficult to 
determine the correct Type I error rate in stepwise 
regression. To compound these problems, the p-value 
associated with each variable entered stepwise into a 
regression equation (except for the final step) is 
incorrect in many canned statistical packages. 

MULTIPLE TESTING AND THE TYPE I 
ERROR RATE 

As with any statistical procedure, two kinds of 
inferential errors can be made. A Type I error occurs if 
a variable is selected when the population regression 
weight is zero. A Type II error occurs when a variable 
is not selected when it has a non-zero population 
regression weight. Many educational researchers adopt 
one of the traditional fixed significance levels (i.e., ex• 
,05 or .01) when evaluating an F-ratio. This 
significance level determines the Type I error rate for 
each test independently. However, it is rare that 
educational researchers test a single hypothesis. Several 
variables and multiple significance tests arc common. 
Thus, a researcher must consider the probability of 
committing a Type I error when multiple hypotheses 
arc tested (i.e., the family-wise error rate). 

In the context of post-hoc tests in the analysis 
of variance (ANOVA), the true family-wise Type I error 
rate (a.T) fork independent (i.e., orthogonal) tests with 
the same alpha level (a.1) is defined by the following 
equation: 

(l) 
assuming the complete null hypothesis (i.e., all groups 
have identical means). Thus, the family size of the 
tests performed is equal to k. In order to return the 
Type I error to the nominal alpha (a.;), one could adjust 
a.1 by the Sidak method: 

_ Ilk 
a. adj - 1 • (1 • a. ; ) (2) 

--
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This correction would yield an alpha level smaller than 
the nominal alpha, but over the course of multiple 
tests, this adjusted alpha (2) is expected to yield a Type 
I error rate equivalent to the nominal alpha, a.i. 

Similarly, the forward selection method in 
stepwise regression conducts no less than k 
simultaneous tests of significance as if multiple tests 
are not performed. That is, the first predictor is selected 
by the largest zero-order correlation of all k variables 
without consideration for the number of tests being 
conducted. Thus, if an educational researcher using 
forward selection regression were to commit a Type I 
error under the complete null hypothesis (i.e., all k 
zero-order correlations between Y and the predictors were 
null), it would occur on the first step. That is, when all 
predictors are not correlated with the dependent variable, 
testing the maximum of the k zero-order dependent 
variable-predictor correlations determines the Type I 
error rate of the forward selection procedure. Thus, 
assuming independent predictors, the probability of a 
Type I error on the first step is equal to (l ). To adjust 
a.T so that the Type I error rate returned to the nominal 
alpha (a.1), one could assume the family size is equal to 
k and adjust a.1 with (2). However, if the k predictors 
were all perfectly correlated, then the family size would 
be equal to one (k • 1) and the Type I error rate would 
equal the nominal alpha (i.e., a.T • a1). In the more 
realistic situation of correlated predictors, the solution 
for the correct Type I error rate is considerably more 
complex and requires the integration of the correlated F 
distribution (Pope & Webster, 1972), Furthermore, 
only limited tables of critical values are available (e.g., 
Games, 1977), while a few Monte Carlo 
approximations based on averaged correlations have 
been proposed (i.e., Krishnaiah & Armitage, 1965; 
Pohlmann, 1979). 

For example, Pohlmann ( 1979) proposed a 
metl1od based on the average squared correlation in the 
predictor matrix to control the Type I error in forward 
selection regression. To elaborate, a value, c, can 
estimate family size and substitute fork in (2) in order 
to control the family-wise Type I error rate. Pohlmann 
suggested the following function: 

c = k - (k - l )r~, (3) 

where k equals the number of predictors and r~ equals 
the averaged squared inter-predictor correlation. 
Pohlmann also suggested correcting r~ by using a less 
biased estimate of the squared correlation based on the 
McNemar (1969) shrinkage formula. Initially, each 
squared correlation in the predictor matrix is corrected 
by: 

(4) 
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where N equals the number of cases and i equals the 

square of the ijth element of the predictor matrix. Then 
~ is calculated by: 

k- I k 
2 L L ,.ij 

-2 _ I= I / = i + I 
rx------

k(k - I )/2 
(5) 

and entered into (3). However, Pohlmann's study 
simulated cases in which all correlations within the 
predictor matrix were equal which is an unrealistic 
expectation. That is, a variety of correlation patterns 
may yield the same average squared correlation, but it is 
not likely that the family-wise Type I error rates would 
be equal for these matrices. 

PROPOSED ALGORITHM FOR 
ESTIMATING FAMILY SIZE 

To consider another perspective, however, the 
appropriate Type I error rate may approach (1) w~th b 
orthogonal factors rather than these algorithms based on 
the average correlation of k predictors. To elaborate, 
one possible approach to the p-value problem would be 
to perform a principal component analysis (PCA) on 
the predictor correlation matrix and extract b orthogonal 
components. In fact, it can easily be shown that such a 
linear transformation will not affect the full model R2. 
That is, if all k variables and the k components 
extracted from the predictor matrix are used as separate 
models to predict a criterion variable, Y, then both 
models would have the same full model R2. The 
expected Type I error rate when using the k orthogonal 
principal components, however, will equal (I) for the 
first step of a forward selection stepwise regression. 
Thus, decomposing the set of k predictors into h 
orthogonal components and modifying algorithms for 
correlated predictors may provide a better approximation 
of the family-wise Type I error rate. Importantly, this 
indicates a relationship between the transformation 
matrix and the family-wise Type I error rate. Thus, it is 
proposed that the maximum eigenvalue (Amad from an 
unrotated principal components analysis and the 
determinant, IPI, of the predictor correlation matrix, P, 
is related to the proportion of Type I errors on the first­
step, which defines the probability of forming an 
erroneous model under the complete null hypothesis. 

The eigenvalues of a correlation matrix, P, are 
commonly used as indices of the number of factors that 
underlie a correlation matrix (e.g., Kaiser, 1970). 
Furthermore, the maximum eigenvalue provides an 
index for the proportion of variance accounted for by the 
largest principal component, the average correlation of 
P, and the number of underlying factors (Tatsuoka, 
1988). The determinant of a correlation matrix, IPI has 
been used in establishing the independence of variables 
in PCA (Nagarsenker, 1976). The determinant of the 
covariance matrix, ICI, gives the generalized variance 
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(f atsuoka, 1988), and the determinant of the correlation 
matrix, IPI, is equal to ICI divided by the determinant of 
the diagonal variance matrix IVI, 

(6) 

Thus, it follows that the generalized proportion of 
variance in P, that is the generalized R2, is equal to: 

Therefore, in combination ')..mtX and IPI provide rather 
unique information about the inter-correlation of the 
predictor matrix. Specifically in PCA, Amac divided by 
k gives the proportion of variance in P accounted for by 
the first and largest principal component. However, 
Amac is known to always be greater than one even in 
random data matrices (Horn, 1965). In fact, when the 
variables are independent and all off-diagonal elements 
in P are zero then P is an Identity matrix, I, and the 
expected value of Arna. equals one, 

Ii m A.max = l (
8
) 

P ➔ I 
Therefore, subtracting one from A.mac and dividing by k 
would provide a corrected proportion of variance for the 
largest principal component 

Au,ax • 
k 

(9) 
Also, if the variables are independent, then the 
detem1inant, IPI, equals one, 

lim!Pl=I 
p ➔ I 

(10) 
Although it is left undefined because such a matrix is 
not invcrtablc, one can imagine that if all predictor 
variables were perfectly correlated, then Amac would 
equal k. That is, the limit of A.mar: as all the elements 
of P approach unity is k: 

I im A.max= k 
P ➔ l (II) 

Furthermore, since the product of the eigenvalues must 
equal the determinant, then under the same conditions 
specified for (11), the limit of IPI equals zero as Amac 
approaches k : 

lim IPl=o and lim IPl=o 02) 
P ➔ I Amax➔k 
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Given conditions (11) and (12), all predictors are 
perfectly correlated and there is only one "true" variable 
and the family size (denoted as c) should be equal to 
one, which can be described as: 

c = k - (k - I) (13) 
Thus, (k - I) multiplied by (9) results in the proportion 
of (k - I) that should be subtracted from k; however, c 
also depends on the correlations in P whose generalized 
estimate comes from IP!. Thus, (k - l) should be 
multiplied by (9) and (7). Therefore, c can be estimated 
by: 

C = k _ (k • })(A.max· 1)(1 - IP/) 
k (14) 

Thus under the conditions set in (8), (10), (11), and 
(12), as the relationship among the predictor variables 
approaches perfect multicollinearity, the estimat of 
family size in (14) approaches one. Also if the k 
predictors are independent then (14) equals k. Therefore, 
if a researcher can use k, A,rux, and IPI to estimate the 
independence of the predictors in P with c, then (14) 
could be substituted fork in equation (2) and used as an 
estimate of family size to adjust <X T so that it 
approximates the nominal alpha. Thus in the present 
study, a Monte Carlo simulation of a forward-selection 
stepwise procedure with no expected correlation between 
the dependent variable, Y, and the k predictors was used 
to estimate the correct Type I error rate (p-values) fork 
• 2, 3, 4, 5, 7, and 10 correlated variables under various 
inter-predictor correlation conditions. From these 
results, the proposed formulation of c (14) was 
substituted for k in (2) to determine whether it was 
useful in controlling the Type I error rate. 

For comparison purposes, Pohlmann's (1979) 
algorithm (3) was also used. The Appendix provides 
numerical examples that demonstrate the differences 
between the two methods. 

METHODS 

Simulation Procedure 
A Monte Carlo program was written in 

SAS/IML (SAS Institute, 1990) to simulate the forward 
selection process of stepwise regression. Initially, the 
RANNOR fucnction, which provides a pseudo-random 
clock generated values, was use to generate a nonnally 
distributed predictor matrix, X, with dimensions of n 
rows (cases) and k columns (variables). All predictor 
means were equal to zero and all variances were equal to 
one. Then by using the fundamental postulate of PCA 
(Tatsuoka, 1988) and a method described by Kaiser and 
Dickman ( 1962), a k x k matrix of principal component 
coefficients, F, was derived from a prespecified predictor 
correlation matrix, P and pre-multiplied by the 
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transpose of X to create a transformed data matrix Zp 
that simulates P (see Beasley, 1994): 

(15) 

Then a nonnally distributed dependent variable vector, 
Y, was randomly generated and concatenated with the 
transpose of Zp to form the entire data matrix, M. 
Thus, although there was correlation among the k 
variables in P, there was no expected correlation 
between the predictor variables and Y. This process was 
replicated 5,000 times. Since an infinite number of 
correlation matrices can be simulated, various 
combinations of Amm- and !Pl were used for each level 
of k. Tables 1, 2, and 3 in the Results section reference 
the values of A.mac and IPI that were imposed on X. 
The number of predictors was manipulated from k = 2, 
3, 4, 5, 7, and 10. The number of cases was held 
constant at a fairly large number of N = 200 in order to 
avoid extreme shrinkage of R2 (Harris, 1975) and to 
reduce the residual error in the transpose of Zp as it 
simulates the predictor correlation matrix, P. 
Test Procedures 

Under conditions of the complete null 
hypothesis, if an erroneous model is to be formed (i.e., 
Type I error committed) using a forward selection 
procedure then it will occur on the first step. 
Furthermore most packaged stepwise programs (i.e., 
SAS STEPWISE, SPSS REGRESSION) perform the 
first entry with (N - 2) d/s. Therefore, the maximum 
zero-order correlation in the predictor column of M was 
tested. If the calculated F( 1, 180) exceeded the critical 
values for Fat the ex. • .OS level of significance, then it 
was counted as a Type I error. The number of rejections 
divided by the 5,000 replications served as empirical p­
values and estimates of the true family-wise Type I error 
rate, CY.T, The results of this procedure were used to 
help estimate family size,c. That is, if a.T and ex.; are 
known then family size, c, can be solved as follows: 

c = /n(l - ar) 
/n(I - a,) ' 

where In refers to the Naperian logarithm. 

(16) 

The expected values of k, AmtX, and !Pl using 
the formula described in (14) were regressed on c derived 
from the simulations and ( I 6) to investigate the 
goodness of fit. These results were also compared to 
the results of Pohlmann's (1979) algorithm (3). 
Furthermore, the effectiveness of (14) in controlling the 
family-wise Type I error rate was assessed by 
substituting these estimates of c for k in (2) to set a 
more stringent a.; in each simulation. These corrected 
Type I error rates were compared to the nominal alpha 
of .05 .. 
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RESULTS 

Using the expected values of k, ')..,mtK, and IPI, 
the family size estimates of c from (14) were regressed 
on the empirical values of c derived from the proportion 
of rejections at the a. = .05 level of significance during 
the 5,000 replications. Thus, the following model was 
tested 

(k - l)(A.ma.t • 1)(1 • /Pl) 
cerq:, = bl k + b2 k 

(17) 
with the intercept restricted to zero and the coefficients 
bl and b2 restricted to one. The model R2 with these 
restriction was 0.9858. Figure I (upper panel) shows a 
scatter plot of this analysis with different elements for 
each value of k. The model R2 when using Pohlmann's 
(1979) algorithm (3) based on averaged squared 
correlations was 0.9147. A scatter plot of that 
regression is shown in the lower panel of Figure I. 
The diagonals on each panel represent a perfect fit of the 
expected and empirical values of family size. As can be 
seen, many more estimates of family size, c, deviate 
from the perfect fit diagonal for the Pohlmann's average 
squared correlation estimate of c as compared to the 
current proposed algorithm. Using a dependent /-test for 
correlations, the proposed correction (14) was found to 
be significantly better than Pohlmann's estimate of c, 
/(67) • 9.70, p < .001. 

Tables 1, 2, and 3 show the expected values for 
the average squared correlation within the predictor 
matrix, P, the maximum eigenvalue (A-n,C)(,), and the 
determinant of P, IPI, These tables also show the 
empirical values of the family-wise Type I error rate· 
(Empirical p-values), the estimated value of family size, 
c from (14), and the corrected p-values after controlling 
Type I errors with (14). 

As can be seen by looking across Tables I, 2, 
and 3, when the number of predictors increased from k = 
2 to 10 the expected increase in the family-wise Type I 
error rate also occurred. Also, by examining the first 
entry for any number of predictors (k), when the average 
squared correlation of the predictor matrix is zero, the 
empirical p-values approximate their estimated value 
from (I). For example, for k = 4 independent 

predictors(i.e., E(i:?) = 0), the expected family size is 

four. Using (I) the expected family-wise Type I error 
rate under the complete null hypothesis is 0.1855. In 
comparison, the simulation in this study estimated the 
family-wise Type I error rate with an empirical p-value 
of0.1870. From (16), the estimated family size is c = 
4.0361 (see Table 2, upper panel). One can also see by 
looking within any Table that as the expected average 
squared correlation increases the Type I error rate and 
family size. Yet, some matrices with the same average 
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family size calculated from (14) 

2 3 4 5 6 7 8 9 10 

family size estimated from 
average squared correlation (3) 

17 

Figure 1. Empirical family size, c, derived from (16) 
as a function of the estimated family size from (14; 
upper panel) and from the average squared correlation (3; 
lower panel). 

p2 have different values for A-n,C)(, and IP I and more 
importantly different empirical proportions of Type I 
errors. This is most notable in Table 3 with k = IO. It 
is important to note that when corrected with (14) the 
Type I error rates (corrected p-values) are reasonably 
close to the nominal alpha of .05 regardless of these 
discrepancies. Corrections based on average squared 
correlations (i.e., Pohlmann, 1979), however, would 
correct these discrepant configurations in the same 
manner. Thus, logically as well as statistically, the 
correction formula ( 14) provides a better adjustment for 
controlling Type I errors for multiple, correlated tests. 
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In any Monte Carlo study, one must consider 
the sampling error of the simulation process. Based on 
the nominal alpha of cx = .05 and 5,000 replications, 
the standard error of each estimate is se = .003, which is 
used as a general heuristic to evaluate the proposed 
procedure. Although several corrected p-values exceed 
the + 2 standard error range, most are within the range 
of acceptability set by Bradley (1978). Explanation for 
these aberrations for the currently proposed correction 
may be twofold. One problem may be that some 
correction for sample size is necessary. Since sample 

Table 1. 
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size was held constant in this study, it should not have 
presented a serious problem. However, this possibility 
warrants further attention. A second problem is 
consistent with technical issues involving 
multicollinearity, in that the use of highly correlated 
predictor matrices yields extremely small determinants. 
In this case the accuracy of estimating such small 
values present a serious computational problem. That 
is, slight estimation errors can lead to rather large 
computational errors. 

Expected values for the population average r2, maximum eigenvalue (lmax) and determinant (!Pl) with empirical 
Type I error rate, estimated c from (I 6) and corrected Type I error rate (14) fork= 2 and 3 predictors. 

k=2 

Empirical Corrected 

E(p2) E(A.max) E( IPI) p-value C (16) p-value (14) 

0.00 1.0000• 1.0000 0.0962 1.9719 0,0506 
0,01 1.1000• 0.9900 0.0998 2.0497 0.0518 
0,09 1.3000• 0.9100 0,0934 1.9116 0,0496 
0.25 1.5000• 0.7500 0.0892 1.8215 0.05 IO 
0,49 1.7000• 0.5100 0.0896 1.8301 0.0532 
0.64 1.8000• 0.3600 0,0760 1.5410 0.0454 
0.81 1.9000• 0.1900 0.0714 1.4442 0.0438 

k•3 

0.00 1.0000• 1.0000 0.1474 3,1089 0,0502 
0,09· 1.5695 0.7609 0.1296 2.7061 0,0496 

1.5984 0.7826 0. 1394 2.9268 0.0494 
1.6000• 0.7840 0.1300 2.7150 0.0462 

0.25 1.8922 0.2910 0.1120 2.3158 0.0452 
1.9860 0.4692 0.1286 2.6837 0.0516 
2.0000• 0.5000 0.1250 2.6033 0.0540 

0.49 2.3658 0.0700 0.1052 2.1670 0.0532 
2.3986 0.2531 0.1090 2.2500 0.0504 
2.4000* 0.2160 0.1122 2.3202 0.0492 

0.64 2.5885 0.0384 0.0910 1.860 I 0.0462 
2.6000* 0.1040 0.1004 2.0627 0.0510 

Note. • indicates that all correlations in Pare equal. 
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Table 2. 
Expected values for the population average r2, maximum eigenvalue Omax) and determinant (IPI) with empirical 
Type I error rate, estimated cfrom ( 16) and corrected Type I error rate (14) fork= 4 and 5 predictors. 

k=4 

Empirical Corrected 
E(p2) E(Amax) E( IPl) p-value C (16) p-value (14) 

0.00 1.0000* 1.0000 0.1870 4.0361 0.0494 

0.09 1.7926 0.5832 0.1744 3.7363 0.0470 
1.8016 0.5439 0.1706 3.6467 0.0474 
1.8964 0.6481 0.1746 3.7410 0.0478 
1.9000* 0.6517 0.1790 3.8452 0.0552 

0.25 2.2670 0.ll88 0.1548 3.2788 0.0512 
2.4150 0.1042 0.1508 3.1868 0.0528 
2.4995 0.3019 0.1542 3.2650 0.0582 
2.5000* 0.3125 0.1650 3.5155 0.0572 

0.64 3.3696 0.0011 0.1042 2.1453 0.0538 
3.3984 0,0238 0.1106 2,2851 0,0520 
3.4000* 0,0272 0,1104 2.2807 0.0546 

0.00 1.0000* 1.0000 0,2252 4.9743 0,0460 

0,09 2.0462 0.3866 0.2068 4.5168 0,0516 
2.0558 0.4449 0,2078 4.5414 0.0524 
2.0954 0.3589 0, 1970 4,2774 0.0514 
2.1946 0.5221 0.2112 4,6252 0.0486 
2.2000• 0,5282 0.2124 4.6549 0.0508 

0.25 2.7652 0.0081 0.1648 3.5109 ,0486 
2.8100 0.0768 0.1800 3.8689 0.0556 
2.9094 0.0112 0.1728 3.6985 0.0600 
2.9914 0.1745 0.1758 3.7693 0.0516 
3.oooo• 0.1875 0.1818 3.9118 0.0628 

0.64 4.1957 0.0039 0.1250 2.6033 0.0560 
4.2000* 0.0067 0.1184 2.4568 0.0598 

0.98 4.9600 0.0001 0.0610 1.2271 0.0328 

Note. + indicates that all correlations in P are equal. 
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Table 3. 
Expected values for the population average r2, maximum eigenvalue Omax) and determinant (!Pl) with empirical 
Type I error rate, estimated c from (16) and corrected Type I error rate (14) fork= 7 and IO predictors. 

k=7 

Empirical Corrected 

E(p2) EU. .. max) E( IPI) p-value C (16) p-value (14) 

0.000 1.0000* 1.0000000 0.3024 7.0206 0.0476 

0.090 2.3742 0.1097200 0.2664 6.0396 0.0548 
2.5193 0.1764100 0.2708 6.1569 0.0570 
2.5539 0.2311600 0,2738 6.2373 0.0546 
2.7745 0,3024000 0.2720 6.1890 0.0596 
2.8000* 0.3294200 0.2602 5.8755 0.0576 

0.250 3.3159 0.0016268 0,2138 4.6896 0.0544 
3,5875 0,0004800 0.2040 4.4481 0.0486 
3.6922 0,0125600 0.2234 4.9291 0,0564 
3.7627 0.0001200 0.2072 4.5266 0.0540 
3.9779 0.0554100 0.2344 5.2072 0.0660 
4.0000* 0,0625000 0.2232 4.9241 0.0558 

0,640 5,7938 0.0002600 0.1492 3.1501 0.0586 
5.8000* 0.0003700 0.1466 3.0906 0.0574 

k• 10 

0,000 1.0000• 1.0000000 0.3920 9;7007 0.0456 
0.153 2.3770• 0,5333101 0.3960 9.8289 0.0512 

4.0039 0,0003575 0.2986 6.9147 0.0516 
0.187 2.6830• 0.4163279 0.3634 8.8045 0.0512 

4.4190 0,0000643 0.2794 6.3882 0.0514 
0,205 2.8450• 0.3608996 0.3636 8.8107 0.0484 

4.7727 0.0000260 0,2900 6.6771 0.0532 
0,327 3.9430* 0.1116766 0.3474 8.3206 0.0624 

5.8601 0,0000005 0.2462 5.51004 0.0548 
0.400 4,6000• 0,0463574 0.3062 7. 12708 0.0558 

6.5298 4.49e-8 0.2268 5.01464 0.0536 
0.532 5,7880* 0.0062336 0,2784 6.36115 0.0614 

7.4954 2.84e-9 0.1840 3.96428 0.0550 

Note. • indicates that all correlations in P are equal. 
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DISCUSSION 

The behavioral science literature is replete with 
"significant" findings that fail the ultimate test of 
replication (Pedhazur, 1982; Rosnow & Rosenthal, 
1989). One explanation for this conundrum lies in the 
family-wise Type I error rate that increases when 
stepwise regression or other multiple testing procedures 
are used. Faced with the problem of multiple tests that 
may be correlated, the researcher should take some 
action to correct the Type I error rate. Possible 
approaches to this problem include: 

a). Prior to performing a stepwise regression, conduct 
an omnibus test with all potential predictors in the 
model. 

b). When searching for a significant subset of 
predictors, use stepwise methods with backward 
elimination 

c). When searching for a reduced subset of predictors 
through stepwise methods, perform a PCA and extract 
orthogonal components and use (1) to correct the 
family-wise Type I error rate. 

d). In any multiple test situation, use one of several 
simultaneous inference tests (e.g., Games, 1977; 
Schafer, 1992; Schafer & Macready, 1975) to control 
Type I errors. 

e). Use the Bonferroni inequality, however, one may 
over-correct the probability of a Type I error and lose 
power. 

f). Use the algorithm ( 14) suggested here if multiple, 
correlated test arc being performed. 

It should be noted that there are practically an 
infinite number of configurations a correlation matrix 
can assume; therefore, there is no way to exhauss those 
possibilities. Therefore, these findings arc limited to the 
specific correlation matrices simulated. Thus, although 
extensive replications of this study are needed to assume 
the generality of these findings, it is not unreasonable 
to assume that the proposed algorithm ( 14) will work in 
other situations. 

Although the family-wise Type I error 
correction suggested here has been framed in terms of 
the forward selection procedure of stepwise regression, 
there is no reason for its exclusion from other situations 
that involve a single dependent variable and multiple 
tests that are correlated. For example, a set of 
nonorthogonal contrasts for an ANOVA, although based 
on coded vectors for means have correlations coefficients 
associated with them. Therefore, a matrix of 
correlations among contrasts could be analyzed with 
(14). In conclusion, the suggested algorithm shows 
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adequate control of the family-wise Type I error rate and 
is based on more complete information than estimates 
based simply on the average squared correlation. Yet, in 
the results the suggested correction sometimes deviated 
from the nominal alpha. Thus, further investigation 
will focus on manipulating sample sizes and using a 
shrinkage correction for the determinant of the predictor 
correlation matrix. 
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