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M ultiple regression may be used to examine 
the relationship between a single dependent 
variable and a set of several independent 

variables. The ANOV A power tables presented by 
Cohen (1988) can be considered such a data set. In 
these tables, the power of a balanced one-factor 
ANOV A design may be considered the dependent 
variable which is predicted by four independent 
variables: sample size, alpha level, number of 
groups, and effect size. Cohen's 66 pages of tables 
provide 15,526 power values for various combination 
of values of the four independent variables. 

This article presents regression equations fitted to 
Cohen's ANOV A power tables in an effort to obtain 
simple yet accurate formulae for estimating the power 
of an ANOV A design. Simple equations were sought 
because power analysis is presently receiving limited 
attention in research planning (Cohen, 1988). 
Having a simple, easy-to-use formula which 
estimates a design's power might lead to improved 
designs. Obviously accurate power estimates arc 
desirable, but the criterion. of accuracy is less 
stringent than might be supposed. The researcher 
who is planning an ANOV A design docs not usually 
require a power estimate to the nearest percentage 
point as Cohen's tables provide. For example, if a 
design's power were estimated to be .88 with a ±.06 
margin of error, the experiment could proceed with 
with reasonable confidence of having high power even 
though the exact power is unknown. 

In contrast to the simplicity criterion which 
required subjective judgment, the accuracy criterion 
was quantifiable. We used 2 indicators of accura? for 
evaluating and comparing regression models: R (the 
proportion of variance "explained" by the formulae) 
and RMSE (the root mean square error). We sought 
equations with R2 > .95 and RMSE ~ .03. 
Regrettably, these two criteria for desirable formulae, 
simplicity and accuracy, conflicted with each other. 
The simplest formulae were not the most accurate and 
the most accurate formulae were not simple. 

Linear Formulae 
The first attempt to model ANOV A power was a 

simple linear model in which the dependent variable 

was Cohen's (1988) ANOVA power values. The 
independent variables were cx, u, n, and f, described in 
Table I. Cohen's tables provided 15,526 power 
values between .01 and .99, which served as data 
points on a hyper-surface. As expected, this first 
model failed to meet the accuracy criterion (R2 = 
.4320). General knowledge of power curves as well 
as inspection of Cohen's tables suggested the surface 
was curvilinear rather than linear. To accommodate 
the curvature, and still keep the models composed of 
fairly simple terms, the predictor set was increased 
from 4 to 24 variables by including the square, the 
cube, the square root, the natural logarithm (ln), and 
the natural logarithm of the natural logarithm (ln(ln)) 
of each basic predictor. The last of these new 
predictors was undefined for some data points because 
ln(ln(l)) is undefined. Therefore, the basic variables 
were modified: cx was multiplied by 1000, f by 100, 
and u by 10. R2 values for various models created 
from the 24 variables did not exceed .95. 

The search for a better model progressed by 
imposing a restriction on the data set. This was 
justified because a user of the resulting formulae 
probably would not need accuracy for very high or 
very low power values. A very low power, whether 
.10 or .25, indicates the proposed design is probably 
not worthy of further consideration. On the other 
hand, a very high power, whether .95 or ,99, suggests 
a design worthy of further consideration. Because a 
research planner probably needs only limited accuracy 
at either end of the power range, the data points of 
these asymptotic tails of the power data (which offer 
the greatest difficulty in fitting a linear model) were 
eliminated. The greatest R 2 value of the new models 
(. 9524 using the predictor set ln(f), ln(n}, ✓u, ✓a, 
ln(ln(n)), and u2) was observed when power was 
restricted to the interval (.25, .95). Thus, a decision 
was made to continue the search for linear formulae 
using only the reduced data set. 

The next step was to increase the set of predictors 
by including the products of pairs of the 24 predictors 
so that interactive effects of the predictor variables 
could be accommodated. For each basic predictor, a 
set of 6 predictors had already been included, such as 
f, r", f, ln(f), ln(ln(f)), and {f. When each of the 6 
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f predictors was paired with each of the 6 n predictors, 
36 predictors were possible. When all 4 basic 
predictor variables were considered, a total of 216 
product pairs were added to the fonner 24 predictors, 
creating a set of 240 predictors. Regression by the 
forward, stepwise, and all-possible techniques was 
employed in search of tenns that explained large 
portions of the variance in p. When the residuals of 
models based on these predictors were plotted, three 
somewhat parallel curves were observed. This 
prompted separation of the data set into three sets, 

2 one for each a level. R values greater than .98 were 
obtained for each a level considered separately. Such 
fonnulae marginally satisfied the accuracy criterion 
but did not meet the simplicity criterion in which one 
formula incorporating all a levels was desired. 

In the interest of simplicity, all terms containing 
logarithms were eliminated from the model. This 
reduced the possible P.redictor set from 240 to 112 
predictors. Similar R2 's were attained without the 
complexity of the lo~arithmic terms. While 
marginally acceptable R levels were obtained for 
specific a levels, the R 2 values obtained for general 
formulae were not deemed acceptable. 

Several recurring predictors were observed in the 
formulae for the separate a levels, and it was hoped 
some form of a could be entered as a factor with 
these predictors to develop formulae that were 
acceptable for all a levels. Especially encouraging 
was the pair f-fii and f 2n, the second being the 
square of the first. Because f-fii continued to be 
prominent throughout the experimentation, r, (eta) 

was defined u 2 to simplify future predictor notations. 
Experimentation with powers of r, and a, along with 
various other tenns from the current models, failed at 
this point to obtain acceptable fonnulae, however. 

As stated earlier, the above models included only 
power values in the interval [.25, .95]. Continuing 
the search for formulae which would be simpler and 
more accurate another reduction of the data set was 
tested. Becaus'e the user of a k-group ANOVA design 
is only rarely concerned with a comparison of more 
than five groups, the data for six or more groups was 
removed. Because u = k-1, this reduction meant only 
data points with values ofu in the interval (1, 4] were 
used in the continuing search. This restriction of the 
data set permitted a model which included all a 
levels and which attained an R2 =.9656 for the 

2 ~ 2 3 2f3 predictor set 11, fri , v ua, ua, U a , and n . 
Individual models for specific a levels attained R

2 

>.99. The best model (for a =.01 using the 
2r f2 f2 • R2 predictors 11, 11 , vu, f, , and 11) attamed 

=.9962. 
Many other possibilities were explored in the 

search for good models. Just as the separation of a 
levels had been explored, a separation off levels was 
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tested. Models in which p was replaced with ln(p ), 
exp(p), or a trigonometric function of p were tried. 
None of these experiments yielded any improvement 
when compared to those models already reported. 

To balance the two criteria, simplicity and 
accuracy, a compromise was required. Having chosen 
an accuracy requirement of RMSE < .03, it appeared 
the best general formula (given here in a factored 
form) contained six predictors and seven constants: 

p = -.034r,3 +(.240-. no../a)r,2 

+(2.11s✓a +.043u)r, -(.192f+.268) 
(1) 

The accuracy of Formula I was attained by 
considering only data points with power in (.25, .90] 
and u in (1, 4]. While Formula I is not as simple as 
originally hoped, its simplicity was deemed 
reasonable, considering the magnitude of the problem. 
The simplest possible linear combination of the four 
basic predictors would require five constants for the 
four terms plus an intercept term. That simple 
model, however, demonstrated very poor accuracy. 
Formula I requires only seven constants and it 
provides good accuracy, so it may be considered 
reasonable by potential users. 

To reduce the number of tenns (and constants) 
required in the model, consideration was given to re
entering logarithmic predictors into the model. Many 
combinations were tried using all possible regressions 
on various predictor sets. The model 

p =.058+.149ln(a) + 

(. 355+. 045u) r,+. l 971n( n)../f 
(2) 

emerged after much experimentation. Fonnula 2 has 
only five constants, compared to seven in Fonnula 1. 
The four predictors arc, however, more complex than 
the six predictors of Formula 1. 

The two formulae presented above appeared 
comparable in simplicity. To test the accuracy of 
Formulae 1 and 2, their residuals were analyzed (see 
Table 2) and the two formulae were again found to be 
comparable. The residual plots indicated a high 
degree of accuracy had been attained, but each plot 
exhibited a curvature which invited further exploration 
using a cubic function of p. Thus a two stage 
estimation procedure was considered. Stage One was 
either of the above two formulae. Stage Two then 
entered the resulting p into the model 
P = b0 + b1p + b2p2 + b3p3

. The new P gave a better 
power prediction but the improvement was judged too 
minimal to warrant the application of Stage Two. 
The first formulae were already less simple than 
desired and it was felt the application of a second 
stage formula would probably not be attractive to any 
user. 
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Non-Linear Formulae 
Because power data is not linear, non-linear models 

such as p = b0 (1-exp(b1ue1ae2nc3f°4 )) and 

p=b0 +b1uc1 ac2 +b2ne3f"◄ were tested using 
computer iterations to detennine the b and e parameter 
values which most closely fit the surface. Although 
many models failed to converge to a set of 
parameters, the above models did each converge with 
RMSE < .04. These results were less satisfactory, 
however, than the results from the linear Fonnulae I 
and 2 already reported. Finally, the logistic model 
was considered because its graph approximates a 
power curve in shape, being asymptotic to zero and 
one. The logistic model, unlike linear models, might 
allow use of the full data set and might model 
ANOVA power well. 

The logistic model is based on a sigmoidal 
I 

curve with an equation similar to Y = 
1 

+ e-x • 

I 
With P ... Y and a transfonned p' ... x, P = -

1 
JI • 

+e 

Solving, p = In( 
1 ~P). Although P is sigmoidal, 

the transformed p' is linear. This p • was regressed on 
various sets of predictors using the linear model 

k 
p' = {30 + r, /J 1x1 . The resulting coefficients were 

/•I 
then substituted yielding a model similar to 

1 
P=----.---

Po+ r.Pr; 
1 + e .,.. 

For initial trials, the five predictors (a, u, n, f, and 
71) were tested. The standard deviation of the residuals 
was .0858 with the data set limited to power in the 
interval (.25, .95J but when the entire data set was 
allowed, the standard deviation of the residuals was 
. 0768. The logistic model performed as well, if not 
better, with an unrestricted data set. As 
experimentation continued, the predictors which had 
been discovered in the search for linear models were 
found to be helpful in the search for logistic models. 

Although logistic regression produced pleasing 
power estimates in the asymptotic tales, a disturbing 
feature of these models was the wide range of the 
prediction errors indicated by the minimums and 
maximums of the residuals. Even in the best model, 
one residual was as large as .39. Through analysis of 
the data, the source of these extreme residuals was 
found to be cases of very low n and large u. When 
the restrictions n 2: IO and u in [I, 4) were placed on 
the data, similar to the restrictions used in developing 
the linear models, a better fit was obtained: 
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p= 

(3) 

In Fonnula 3, all errors were within± .05 
and the standard deviation of the errors was .0150, a 
very pleasing result when considering the accuracy 
criterion of acceptable formulae. However, the 
simplicity criterion was challenged by this model. 
Any logistic model is by nature complex when 
compared to a linear model. 

The Formulae Compared 
The three fonnulae produced by this study each 

have features which may be attractive to users. 
Fonnula I is simple but lengthy. Fonnula 2 is more 
compact, but it includes logarithmic tenns. Fonnula 
3 is the most accurate, but it is also the most 
complex. In addition to these basic comparisons, the 
user might consider the tables of residuals associated 
with the formulae. Tables 3, 4, and 5 show the 
standard deviations of the residuals as well as the 
minimum and maximum residuals under various 
restrictions of the predictor variables. As an example, 
a design of five groups (u = 4) and five subjects per 
group (n .. 5) is described in the next to last line of 
each table. If Formula 3 is chosen, the standard 
deviation of the residuals is .0125. Assuming 
normality of the residuals, 95% of the predicted power 
values would be within± 1.96(.0125) • ± .0245. 
For the worst case, the predicted power value could be 
as much as .0984 too great or .0320 too small. 
(Power• predicted power+ error.) 

The superiority of the logistic Formula 3 of Table 
S is obvious, slrown by the smaller numbers 
throughout. In addition, the logistic formula is based 
on the entire data set with power in [.01, .99J. The 
linear formulae were developed using only the data 
with power values in (.25, .90]. Of course, the 
accuracy of Fomtula 3 was gained at the expense of 
simplicity . 

The user's choice of one of these three formulae 
will depend upon the user's desires and purposes. If 
the user desires the simplest fonnula, one of the 
linear formulae (Formula 1 or Formula 2) should be 
chosen. If greater accuracy is desired, the logistic 
formula (Formula 3) should be chosen. The user 
desiring accurate predictions in the tail regions of the 
model should always choose the logistic fonnula. A 
user may use a linear formula several times to test 
possible models and then, having narrowed the 
choices, use the logistic fonnula to make a ~~l 
model selection. With computer spreadsheets, tt ts 
also possible for the user to consider the results o~ all 
three formulae simultaneously when proposmg 
various ANOVA designs. 

Although the formulae provide good power 
estimates in most cases, a user never knows whether 
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the estimate obtained in a particular case is highly 
accurate or only marginally accurate. Reference to 
plots of residuals can provide further insight for 
interpreting the power predictions calculated from the 
formulae. Figures 2, 3, and 4 show residuals plotted 
against the predicted power for each of the three 
fonnulae. To illustrate, consider Figure 2. Under 
Formula 1, if the predicted power is .75, the plot 
shows the residuals vary from -.04 to .06. Thus the 
actual power of the design is . 71 to . 81. 

Although the user of the fonnulae may not always 
have the residual plots available, the fonnulae can 
still be used effectively if the user understands the 
general shape of the residual plots. The user of the 
linear Formulae 1 and 2 must be aware that the power 
will be over predicted when power is high, and under 
predicted when power is low. This is especially clear 
in Figure 1 where the full data set of power in [.01, 
. 99] is plotted. When such predictions are obtained 
from the fonnulae, the user must interpret the results 
as "high" or "low" power respectively, without 
stating a specific power value. Ati example of 
extreme power predictions is the case of a=.05, 
n=500, u=l, and f=.4 (prediction = 15.602, error= 
-14.612). This error results from the dramatic 
negative effect of the factor r,3 for large values of n. 
Power for n=-500 is expected to be very high, clearly 
outside of the [.25, .90) power range. Computed 
power estimates which fall into the range for which 
the formulae were developed will be reasonable power 
estimates, but the user is warned that any extreme 
power predictions of Formulae 1 or 2 should be 
ignored. . 

The shape of the residual plot of Formula 3 
. (Figure 4) is very different from the shape of tl1e plots 
for the linear formulae, the logistic fonnula being 
more accurate in the tail regions than in the central 
regions. A comparison of the scales of the plots, 
however, demonstrates that the increased tail accuracy 
is not at the expense of accuracy in the central 
regions. Formula 3 meets or exceeds the perform;mce 
of the other two formulae even in the central regions. 

The formulae developed by this study offer a new 
way to compute the power of ANOV A designs. 
These formulae resulted from a directed "trial and 
error" search among those predictors which seemed 
reasonable. Certainly, the study did not exhaust all 
possible predictors of power. Thus, other researchers 
may discover better (simpler and/or more accurate) 
fonnulae than those presented here. This may be 
done with the tool of regression, as used in this 
study, or by some other method not yet considered. 
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Fonnula 
I 
2 

Table 1. Independent Variables of the Linear Regression Model 
Variable Description 

significance level 
Values or Range 

a 
u =k -1 numerator degrees of freedom for 

a k-group ANOVA 

.01, .05, .IO 
I - 24 

n 
f 

per group sample size 2- 1000 
Cohen's effect size .05 - .80 

Table 2. Comparison of Residuals of Fonnula I and Fonnula 2 
Mean Standard Deviation Minimum Maximum 
.0006 .0254 -.1387 .0617 
.0006 .0251 -.0901 .1080 

Table 3. Residuals ofLinearFonnula I, pin [.25, .90]. 

p = -.034173 + (.240-. no.fa)112 + (2. 178.fa +.043u)11- (. I92f +.268) 

u Values n Values St Dev Min Max 
All All .1094 -.7782 .0617 

(1, 8) All .0340 -.2301 .0617 
(1,8] n2:5 .0313 -.1466 .0617 
(1, 8] n:?:10 .0306 -.1414 .0608 
(1, 4) All .0254 -.1387 .0617 
(1, 4) n:?:5 .0242 -.0979 .0617 
(1, 41 n;;:;10 .0235 -.0897 .0608 

u Values 
All 

[I, 8] 
[ 1, 8] 
[ 1, 8] 
[ l, 4] 
[ I, 4 I 
(I, 41 

u Values 
All 

[l, 8) 
[l, 8] 
[l, 8] 
[l, 4) 
[l, 4] 
(114) 

Table 4. Residuals of Linear Formula 2, pin [.25, .90). 

p =. 058+.149tn(a) + (.355+.045u)11+. 197ln(n)~ 
n Values St Dev Min 

All .1167 -.7375 
All .0350 -.2027 
n2:5 .0338 -.1221 

n2:I0 .0335 -.1221 
All .0250 -.0901 
n:?:5 .0247 -.0876 

n::;;10 .0243 -.0876 

Table 5. Residuals of Formula 3, p in (.0 I, .99]. 
I 

p= } + 2. 8 la··72u( .31- 2711)11el9lf-(2.31+ 17u)11] 

n Values St Dev Min 
All .0445 -.5195 
All .0160 -.2156 
n:?:5 .0126 -.0984 

n2:10 .0115 -.0516 
All .0143 -.1276 
n:?:5 .0125 -.0984 
glO .0113 -.0516 

Max 
.1080 
.1080 
.1080 
.1080 
.1080 
.1080 
.1080 

Max 
.0320 
.0320 
.0320 
.0295 
.0320 
.0320 
.0295 

31 
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RESIDUAL 
o.s 

0.2 

OJ. 

0.0 

-o.z 

-o.a 

Shaw and McCormack 

ALPHA 444,0J. +++.06 ***JO 
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Figw-c 1. Formula I, pin [.OJ, .99], u in [I, 4], n 
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RESIDUAL 
O.(Yl 

0.06 

0.05 

0.04 

0.03 

0.00 

0.01 

0.00 

-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

-0.06 

-o.rn 

-0.08 

-0.09 

ALPHA 6. 6 6. .01 +++.05 * • • JO 

. . 

.. 

.. 

.. 

.. 

.. 

.. . . . 
. . 

.. . . . 

..... 

.. . ... 
. 

•••• ... 
.ii .. 

.. . ..... 
: !t 

.. . 

•'• 

. .. 

... 
•'• . 
•'• 

. . . 
. . . 
. 

· :·.: 
. . . . 

. . . . . . 
. . . . . . . . . 

. .. . .. 
... 

... . .. 

• . . .. . 
. . . 
.. . 
. . . 

... ... 

... 

. . . 
. . . 

, • • • • I • • • • I 

, .... , 
+ .• t.. . 

,,. • ,., ........ +. •·· . 

+ 

. 
.. . 

'• 

. . ....... . . 

. . . 

+ 

. . . . . . 

I • • • • 'lo 

. ..... 

. .. , 

' 
I 

I 

I 

. . 
. . .. ; • • 

. .: 

OJ 0.2 0.3 0.4 0.6 0.6 

PREDICT 

0.7 0.8 0.9 10 

Figure 2. Fomwla 1, pin [.25, .90), u in [1, 4], n 

p = -.0341? +(.240-. no/a)ry2 +(2.178/a +.043u)r, -{.192f +.268) 
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RESIDUAL 
0..11 

OJO 
0.09 
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o.crr 
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