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Simulation results indicated that when groups were sampled from the same platykurtic population the O'Brien 
(1981) transformation was preferred except when a positive sample size/variance correlation existed, then the Welch 
test performed on the O'Brien scores was more powerful. Also consistent with previous research, when grouped data 
were sampled from the same leptokurtic population the Brown & Forsythe (1974) transformation was preferred for 
equal sample sizes. The O'Brien test was more powerful with an indirect sample size/variance relationship regardless 
on distribution shape(e.g., Algina et al., 1989; Olejnik & Algina, 1987, 1988). The study also demonstrated that 
the Welch test performed on Brown-Forsythe scores was more powerful when a positive sample size/variance 
correlation existed in leptokurtic data. Furthermore, choosing a test of variance based on an initial test of kurtosis 
may improve power (Ramsey, 1994). When data were sampled from populations with drastically different shapes 
(kurtosis), the Type I error rate of most tests was unstable excluding the Hartley Fmax test which performed 
surprisingly well. 

The analysis of variance (ANOVA) is one of the 
most widely used statistical procedures in 
educational research. Namely, it is the technique 

of choice for True Experiments in which members 
sampled from the same population are randomly 
assigned to treatment conditions. In field research and 
Quasi-Experiments, comparisons among groups are also 
of interest; however, there exists the possibility that 
these groups arc sampled from different populations. In 
either case, behavioral researchers often compare groups 
with different distributional properties, which may be a 
result of (a) sampling from different populations or (b) 
an experimental treatment affecting something other 
than central location. Thus, as far as analytic 
procedures are concerned, the distinction between True 
and Quasi-Experiments becomes ambiguous. For the 
purposes of this study, a True Experiment is defined as 
sampling data from a single population and randomly 
assigning cases to groups. A Quasi-Experiment is 
defined by separately sampling data from populations 
which differ in distributional shape (i.e., skew and 
kurtosis). 

One of the most critical conditions for any linear 
modeling procedure involves the assumption of 
homoscedasticity across levels of the independent 
variable. In the ANOV A, it follows that heterogeneous 
variances may obscure the magnitude of test statistics 
for comparisons among means. Thus, testing variance 
equality appropriately is important in checking a vital 
assumption of the ANOV A. Furthermore, despite the 
existence of differences in central location, 
heterogeneous variances may constitute substantive and 
theoretically valuable results. That is, it may be 

- . 

interesting to know that the responses of two separately 
sampled populations differ in scale or that an 
experimental treatment significantly affects response 
variability. 

Traditional tests of variance homogeneity (e.g., 
Hartley's Fmax) can be very simple, calculating the ratio 
of two sample variances. The Fmax test, however, has 
long been known to be extremely sensitive to 
deviations in kurtosis (Box, 1953; Scheffe', 1959). 
Slight departures from normality which involve 
kurtosis have been shown to make substantial difference 
in the Type I error rate of the Fmax test (Pearson & 
Please, 1975). For instance, Hartley's Fmax test has 
been shown to be conservative for platykurtic 
distributions and liberal when distributions have 
positive kurtosis (Ourrand, 1969). Although several 
tests of variance have been proposed, the Fmax remains 
popular in a variety of applied studies because of its 
simplicity. 

In a simulation study, Conover, Johnson, and 
Johnson (1981) compared several procedures for testing 
homogeneous variances and found that most are liberal 
(i.e., the Type I error rate was considerably larger that 
the nominal alpha). Thus few tests exist that actually 
control the Type I error rate. Over the past two decades, 
robust tests of variances based on applying the ANOV A 
to transformed scores (e.g., Brown & Forsythe, 1974; 
O'Brien, 1981) have been proposed. Under conditions 
of a "True Experiment" and equal sample sizes, these 
tests have been shown to be powerful in a variety of 
population distributions (Algina, Olejnik, & Ocanto, 
1989; Olejnik & Algina, 1987; Ramsey, 1994; Ramsey 
& Brailsford, 1990). The Brown-Forsythe (BF) test has 
been criticized because it has low power for small, odd 
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sample sizes and only moderate power for platykurtic 
and normal populations (O'Brien, 1981; Olejnik & 
Algina, 1987). Under these same conditions, the most 
common form of the O'Brien (OB) procedure has been 
shown to be more powerful than BF. Also for unequal 
sample sizes, OB has been suggested for platykurtic 
distributions and BF with symmetric and/or leptokurtic 
distributions (Algina et al., 1989). 

Despite these recommendations based on the 
kurtosis of distributions, a criterion for identifying' 
population shape was not suggested. Ramsey and 
Brailsford (1990) noted that tests of kurtosis could be 
used to decide between BF and Fmax. Following the 
suggestions of previous studies, Ramsey (1994) has 
recently suggested two conditional procedures based on 
testing kurtosis for each group separately. Ramsey's 
results confirmed the robustness of OB and BF but 
indicated that optimal power can be established with the 
conditional procedure of testing kurtosis to decide 
between the these tests. However, the power of these 
conditional procedures has been shown to be dependent 
on the power of the test of kurtosis. Also, Ramsey's 
results are limited in the sense that only the conditions 
of a True Experiment were simulated. That is, the two 
groups were sampled from the same population. In 
field research and Quasi-Experiments, comparisons of 
groups sampled from different populations are often of 
interest and the suggested conditional procedures have 
yet to be fully investigated under such conditions. 

Olcjnik and Algina ( 1988) found that both OB and 
BF held the Type I error rate for a limited number of 
distributions which differed in location and form. The 
OB tended to be most powerful with equal sample sizes 
and with an inverse relationship between sample sizes 
and population variances (i.e., larger sample has the 
smaller variance). When sample sizes and population 
variances had a direct relationship (i.e., larger sample 
has the larger variance), using OB transformed scores as 
dependent variables and performing the Welch (1951) 
statistic was the most powerful procedure. 

A variety of nonparametric tests of variance are also 
available; however, they have presented problem! with 
robustness and low power. Two of the better known 
procedures were proposed by Klotz (1962) and Siegel 
and Tukey ( 1960). When data were sampled from a 
normal population, both tests demonstrated the 
appropriate Type I error rate (Penfield & Koffler, 1985; 
Olejnik & Algina, 1985). Also, the Klotz test had 
power equal to or greater than the power of OB or BF 
when samples differed in variance only. However, both 
the Siegel-Tukey and Klotz tests were strongly affected 
by differences in central location (Moses, 1963). When 
the sampled distributions share the same asymmetric 
shape but differ in location, the tests are liberal. Yet, 
both tests become less powerful as location parameters 
increase when groups share the same symmetric shape 
(Olejnik & Algina, 1985). To date, attempts to modify 
these tests through mean- and median-alignment have 
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not drastically improved their statistical properties (e.g., 
Conover et al., 1981; Olejnik & Algina, 1988). 

Thus the purpose of this study was to investigate 
the robustness and power of OB, BF, and the use of the 
Welch statistic on these transformed scores (WoB and 
WBF, respectively) under conditions of a True 
Experiment (i.e., groups are randomly constructed from 
the same population) and a Quasi-Experiment (i.e., 
groups are sampled from two different populations). 
Furthermore, the effectiveness of conditional procedures 
based on tests of kurtosis (e,g., Ramsey, 1994) was 
examined. Although tests of variance are themselves of 
interest, in most educational research differences in 
central location are to be expected; therefore, 
nonparametric procedures such as the Siegel-Tukey and 
Klotz tests were excluded from this study. Under 
several circumstances, the results were expected to 
replicate those of Ramsey (1994) and Olejnik and 
Algina (1987, 1988). Furthermore, the findings of this 
study should address the issue of the appropriate 
procedure for testing variances in Quasi-Experiments in 
which the populations may differ in variance and form 
and the samples differ in size. 

Statistics for Testing Variances 
Although many statistical tests for comparing 

population variances have been developed, only a few of 
these procedures have demonstrated robustness when 
populations are nonnonnal (i.e., Conover et al., 1981). 
Of these tests, the general linear model procedures, 
which involve performing the ANOVA (or some 
variant) on transformed scores, have shown both 
robustness and superior power. 

1/art/ey's Fmax test. This test was investigated 
because of its wide use and known properties when 
kurtosis deviates fonn normality. The Fmax test is the 
ratio of the largest to the smallest of J variance, 

s2 
Fmax = largeJt 

S
. 2 
JmalleJt 

(I) 

The degrees of freedom are (n1ar,,,, - 1) for the numerator 
and (n,,.a1,,,, - I) for the denominator. Although it_ is 
often recommended that the Fmax test only be used with 
approximately equal sample n's, its statistical properties 
were examined under all condition of this study. 
Critical values were obtained from the sampling 
distribution derived by Hartley (1950). 

Brown-Forsythe Transformation. To test 
differences in variances, Levene (1960) proposed using 
the ANOV A but replacing each score, YtJ, of subject i 
within group J with the absolute deviation from its 
respective group mean. Although this procedure is 
fairly robust, it was found not to be adequately powerful 
(Conover et al., 1981). Brown and Forsythe (1974) 
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proposed applying the ANOV A to absolute deviations 
from respective group medians, m1 , such that: 

'2) 

O'Brien Transformation. O'Brien (1979) 
proposed that the original score, Yu, of suhJCct i in 
group j be replaced with 

(w +nr 2) n1(YiJ-Y1) - ws 1(n 1 - I) 

(n1- 1) (n1- 2) 

' (3) 
where w is a parameter ranging between zero and one 

and - 2 Yi equals the mean, s1 equals the variance, and nj 
equals the sample size of group j. For most cases, 
O'Brien (1981) has recommended a value of w = 0.5 
from which the group means for r in (3) are the 

variances of each group y: ff = s} . The ANOVA is 
performed on the transformed r values. 

Welch Statistic, It is not known whether the 
OB or BF tests are asymptotically distribution free. 
Furthermore, because the variance of r is dependent on 
sample size, O'Brien (1981) suggested using a Welch 
(1951) approximate degrees of freedom analysis on r 
values in place of the ANOV A when sample sizes are 
not equal (WOB). This procedure may also be 
performed on BF transformed scores (WBF). The Welch 
statistic is calculated by 

J 
!: cl <Yr f) I (J - I ) 

W •---""-•-I-------- (4) 

where J equals the number of groups, CJ= n1 Is}, 

c• = "'f,c1, and Y = L cir /c. The Welch statistic is 
approximately distributed as F with degrees of freedom 
equal to (J - l) and 

(5) 

- . 

--
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For J = 2 groups, the degrees of freedom in (5) follow 
the Satterthwaite ( 1946) fonnula. 

Conditional Tests. Based on the simulation 
studies of Olejnik & Algina (1987, 1988), BF is 
preferred for leptokurtic populations, while OB is 
recommended for normal and platykurtic distributions. 
To achieve optimal power, Ramsey (1994) proposed 
two procedures for testing variances that are conditioned 
on applying a test for kurtosis. 

Pearson's traditional sample measure of population 

kurtosis, y2 , in group J is b 2 = m 4 Im t where 

mr = L (Yi/ -y1l ln1. Thus m2 is the second 
moment about the mean, the biased sample variance. 
Although standardized population moments for 
skewness and kurtosis provide popular significance 
tests, Ramsey and Ramsey (1993) have supplied a 
detailed and accurate table of critical values for b2, 

which are used to test kurtosis against the null 
hypothesis (Ho: J32 = 3). 

For the tests proposed by Ramsey, tests of kurtosis 
are applied in each of the two samples at the a = ,05 
significance level. A score of -1, 0, or + I is recorded 
depending on whether the test of b2 indicates that the 
distribution was significantly platykurtic, 
nonsignificant, or significantly leptokurtic, 
respectively. Combining scores from the two samples 
results in a total score, S, ranging from -2 to +2, In a 
J-group study, S would range from .J to +J. The test of 
kurtosis is taken as identifying the population for the 
entire experiment as platykurtic if S .:S -1, mcsokurtic if 
S • 0, and leptokurtic if S ~ +l. In one conditional 
procedure, OBBF, kurtosis is tested and OB is applied if 
the samples are platykurtic or mesokurtic (S .:S 0) and 
BF if the distributions are significantly lcptokurtic (S 2: 
+1). This approach is based on the recommendations of 
Olejnik and Algina ( 1987) but docs not control the 
Type I error rate under certain distributional conditions; 
therefore, Ramsey (1994) suggested another conditional 
procedure that demonstrated superior power and adequate 
robustness. This approach, BFoa, involves testing the 
fourth moment and applying OB with significantly 
platykurtic distributions (S .:S -1) and BF otherwise (S .2: 
0). 

Methods 

Consistent with previous studies (e.g., Miller, 
1968; Olejnik & Algina, 1987, 1988; Ramsey & 
Brailsford, 1990), the present investigation was 
restricted to the two-group case. These studies yielded 
results congruent with multi-group studies. 
Furthennore, the restriction to two groups allows more 
careful consideration of other factors. Since previous 
studies have indicated that shifts in central location have 
little to no effect on general linear model tests of 

n 
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variance, (Beasley & O'Connor, 1995; Olejnik & 
Algina, 1988), three population variables were 
manipulated: shape in the form of kurtosis (y2), 

variance in one group, (cr2); sample size (nj), 

Conditions 
Population Kurtosis. Previous studies have 

indicated that skewness affects the robustness and power 
of nonparametric tests (Olejnik & Algina, 1988) but 
only affects the statistical properties of parametric tests 
in combination with nonnormal kurtosis (Conover et 
al., 1981; Olejnik & Algina, 1988; Pearson & Please, 
1975). The normal and six nonnormal distributions 
that had no skewness but varied in kurtosis were 
simulated. They are presented in ascending order from 
platykurtic to leptokurtic. The first population was 
extremely platykurtic (XPL T) and continuous with 
skewness (Yt) equal to zero and kurtosis (n) equal to 
-1.80. The second population was also platykurtic 
(PLAT) and continuous with skewness (y1) equal to 
zero and kurtosis (y2) equal to -1.00. It was chosen 
because it has been used in a variety of other simulation 
studies (e.g., Olejnik & Algina, 1987, 1988). The third 
population was slightly platykurtic (SPL T) with y1 = 
0.0 and Y2 = -0.50. It was selected as a continuous 
distribution which closely matches the moments of one 
of Micceri's (1989) data sets. The fourth population 
was the normal distribution (NORM) generated with tl1e 
SAS RANNOR function. The fifth population (LEP 1) 
was selected as a slightly leptokurtic, y2 • + 1.00, 
continuous distribution with no skew comparable to tl1e 
second population (PLAT). The sixth (LEP3) and 
seventh (XLEP) were selected as highly leptokurtic (y2 
= +3.00 and +3.75, respectively) with no expected 
skewness. 

Group Sl:;e and Variance Ratio 
Parameters. Equal sample sizes of nj = IO, 13, and 
20 and unequal sample sizes of (10, 20) and (13, 20) 
were employed. To investigate power, variance ratios 
of VR = 2.0 and 5.0 were imposed by taking the 
population from which Group Two was sampled and 
multiplying it by constant equal to the square root of 
VR. 

Because Olejnik and Algina ( 1988) found that tests 
of variance were differentially powerful depending on the 
relationship between group size and population 
variance, all conditions were crossed when power was 
investigated. For example, when the variance ratio was 
VR = 2.0 and Group One, with n J = 13, was sampled 
from the normal distribution, while Group Two (nj = 
20) was sampled from a platykurtic distribution, an 
inverse relationship between group size and population 
variance (negative condition) was imposed. In order to 
create a positive condition, the sample sizes were 
reversed so that the larger group had the larger variance. 
Also because power and robustness may depend on 
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population shape, the seven populations were 
systematically manipulated as long as conditions did not 
duplicate (e.g., when investigating Type I error rate for 
equal sample sizes all population combinations are not 
necessary). Table 1 shows the sample size conditions 
for the analyses in this study. Note that two sample 
size configurations were added to impose positive and 
negative sample size/variance correlations for 
investigating power in True Experiments. For Quasi
Experiments, all possible sample size conditions were 
used since the Type I error rate has been shown to 
depend on sample size/kurtosis configurations. In 
examining power, variance constants were imposed on 
both Group One and Group Two because power has also 
been shown to depend on the configuration of sample 
size, kurtosis, and variance (Beasley & O'Connor, 1995; 
Olejnik & Algina, 1988). 

Procedure 

The second through seventh populations were 
generated separately for each group using the RANNOR 
function is SAS/IML, which provides a clock generated 
pseudorandom standard normal deviate, Zij (SAS 
Institute, 1990). Fleishman's (1978) method was used 
to transform these distributions into non-normal data 
with specified mean, variance, skewness, and kurtosis 
values via a polynomial equation of the form, 

YIJ • a + bz11 + czi; +dz,~ . (6) 

Since the minimum kurtosis derived by Fleishman is 
Y2 • -1.00, the first population (XPL T) was simulated 
by combining_tlU'Ce uniform distributions that varied in 
central location. A small distribution of 20 cases that 
centered around O and two larger distributions of 990 
cases each which centered around -0.75 and 0.75 were 
concatenated to create this heavy-tailed distribution. 
Linear transf onnations were used in order to have the 
expected variances used in this study. During the 
simulation procedures, observations were randomly 
sampled from these distributions during each 
replication. For each condition elaborated, 5,000 
replications were completed. The proportions of 
rejections at the a = .05 level of significance were used 
as measures of empirical power and Type I error rate. 

Since 5,000 replications were conducted in each 
condition with a = .05, the standard error is .0031. 
Thus, any Type I error rate of .0562 or greater exceeded 
two standard errors and was considered a significant 
inflation of the Type I error rate. Other less stringent 
criteria include upper limits of .06 (Cochran, 1954) and 
.075 (Bradley, 1978). In order to avoid the problems 
with making multiple comparisons within this study, 
the standard error of simulation was used as a general 
heuristic rather than as a statistical test when comparing 
empirical power estimates. Furthermore, if the 
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empirical Type I error rate of a test exceeded the 
nominal alpha by two standard errors, its power was 
interpreted cautiously. If its Type I error rate exceeded 
Cochran's limit of .06, its power estimate was not 
reported. 

Results 

Simulation Accuracy 
:When multiplied as in (6), the resulting mean, 

vanance, skewness, and kurtosis of YJ approximate the 
characteristics of the distribution of interest. It should 
be noted, however, that the simulated data are not 
governed by a known mathematical function. Rather, 
the simulated data represent a distribution with the same 
skewness and kurtosis as the desired distribution. Table 
2 demonstrates the adequacy of the Fleishman 
simulation method in this study. Values for the mean 
(µ), variance (cr\ skew (Y1) and kurtosis (y2) for each 
group of n1 were taken across 15,000 replications for n1 
= 10 and 13 and across 30,000 replications for n1 =20. 
For all seven populations, µ, a 1 

, and, y I were 
adequately simulated. Furthermore, kurtosis (y2) was 
reasonably simulated for platy- and mesokurtic 
distributions, especially with n1 =20. For leptokurtic 
distributions, however, the kurtosis of the group was 
drastically underestimated which is most likely due to 
the small sample sizes used. 

True Experiment., 

Type I Error. Table 3 shows the empirical Type 
I error rate for the seven sampled populations under the 
conditions of a True Experiment (i.e., both groups 
drawn from the same population). As would be 
expected the Hartley's Fmax test showed a conservative 
rejection rate with platykurtic populations (e.g., XPLT, 
PLAT, & SPL T) but more importantly was liberal 
when the data were sampled from leptokurtic 
populations. Furthermore, when sample sizes are 
unequal, the suspension of the Fmax test is often 
suggested. However, the Type I error rate remained 
under the nominal alpha of .05 even with unequal 
samples under the meso- and platykurtic conditions. 
All other tests, except for WOB which exhibited minor 
inflation with disparate sample sizes, held the Type I 
error rate under the nominal alpha. 

Power. Tables 4 and 5 show representative results 
from the comparative power analysis of True 
Experiments with different populations and variance 
ratios of VR = 2.0 and 5.0, respectively. For all tests, 
except Fmax, it can be seen that heavy-tailed 
distributions presented a more powerful situation when 
testing variance heterogeneity. For example, the 
empirical power estimates were higher when data were 
sampled from the PLAT population as compared to 
normally distributed data. Also, higher power estimates 

Beasley 

were yielded when data were sampled from the normal 
distribution as compared to the leptokurtic 
populations(e.g., LEPl and XLEP, see Tables 4 & 5). 

Under the conditions of a normally distributed 
population, the Hartley's Fmax was robust and 
demonstrated superior power, except when there was a 
positive relationship between sample size and group 
variance. In this case, the WOB was most powerful. 
When the sample size/variance correlation was negative 
Fmax and OB were of similar power. 

When data were sampled from the PLAT 
distribution, the OB transformation and Ramsey's 
OBBF were the clear choices in low power situations 
(see Table 4). However, with a variance ratio of VR = 
5.0, the Fmax test was more powerful except when the 
sample size/variance correlation was positive. Thus, in 
cases where the smaller group had the smaller variance, 
WOB was most powerful namely because neither Fmax 
nor the Ramsey's procedures make provisions for such 
situations. In high power situations (VR = 5.0) 
whether the data were meso- or platykurtic, the Fmax 
was more powerful. However, both Fmax and OB are 
very likely to reject the null hypothesis in such cases. 
Thus, if the data sampled are platykurtic, one should 
consider the O'Brien transformation in low power 
situations. In all conditions with meso- and platykurtic 
data and a positive relationship between sample size and 
variance, performing the Welch statistic on O'Brien 
scores was the most powerful procedure. 

When data were sampled from leptokurtic 
populations, the Fmax test was disqualified because it 
inflated the Type I error rate (sec Table 3 ). Of the 
remaining tests, BF and BFou had similar empirical 
power estimates with small (nj • 10) equally sized 
samples. Similarly, as was observed with platykurtic 
distribution, BF00 was more powerful than BF, which 
indicates that the Ramsey conditional procedures can 
provide more power. When sample sizes were unequal 
and positively related to the group variances, the WBF 
was more powerful. This finding seems consistent with 
previous research but has yet to be reported in the 
literature. When a negative relationship between 
sample sizes and group variances existed, OB was more 
powerful regardless of the leptokurtosis of the sampled 
population. Increasing the group Variance Ratio to VR 
= 5.0 magnified these findings. However, under these 
more powerful conditions, the power estimates of BF 
were more competitive and actually exceeded those of 
OB when there was an inverse sample size/variance 
relationship. For example in Table 5, when n l = 20, 

2 2 
O't = 1.0, n2 = 13, and 0'2 = 5.0, the power of BF, 
.5590 was much higher than that of OB, .5110. This 
indicates that OB is only more powerful under negative 
sample size/variance conditions in low power situations 
(i.e., small sample sizes, small differences in variance). 
That is, if samples are rather large and drawn from 
leptokurtic populations, the BF and WBF may be better 
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choices for testing variances. Thus, consistent with 
previous research, when there is a negative correlation 
between sample sizes and variances, the advantage in 
power of OB over BF seems to dissipate with increasing 
(a) sample sizes for both groups, (b) variance for the 
smaller group, and/or (c) kurtosis of the sampled 
population (Olejnik & Algina, 1988; Ramsey, l 994). 

Quasi-Experiments 

Type I Error. When one group was sampled from 
a population with extremely negative kurtosis (XPL T), 
while the second group was sampled from population of 
varying shapes, the Type I error rates for all tests, 
except for Fmax, were unstable and generally above the 
nominal alpha of .05 (see Table 6). However, as the 
extremity of platykurtosis declined, the Type I error 
rates became more stable for most tests (see Table 7). 

When the two groups were sampled from 
populations with similar positive kurtosis, the results 
were predictable from the Type I Error results for True 
Experiments. Table 8 shows that when both groups 
had positive kurtosis most tests, except for F max, held 
the Type I error rate at the nominal alpha of .05. 
However, WOB showed inflations when the larger 
group was sampled from a less leptokurtic distribution. 
These results extended to situations where one group is 
sampled from a slightly leptokurtic distribution (LEP I) 
and the other is sampled from a slightly platykurtic 
distribution (SPL T). 

Although the mixture of LEP I and the normal 
distribution did not affect the Type I error rate of most 
tests (sec Table 8), when the variance of a normally 
distributed sample was tested against the variance of data 
sampled from more leptokurtic populations (e.g., 
LEP3, XLEP), the Type I Error rate of all tests were 
aff ccted when sample sizes were unequal (sec Table 7). 
When the normally distributed data were compared to 
samples from platykurtic populations (PLAT), the Type 
I error rate was controlled for all tests with equal sample 
sizes. When sample sizes were not equal, only Fmax 
and BF were consistently robust to these violatidns to 
the nonnality assumption. When the larger group was 
more platykurtic, OB, WOB, and OBaF tended to inflate 
the Type I error rate (see Table 7). Thus it would 
appear that if data arc sampled from different 
populations with similar kurtosis, keeping group sizes 
approximately equal would be a reasonable step in 
controlling the Type I error rate. 

In some situations where the kurtosis of the sampled 
distributions differed in sign, the Type I error rate of 
Fmax remained under the nominal alpha of .05. 
However, when the disparity in kurtosis increased this 
was not the case. For example, in comparing the 
variance of data sampled fonn the extremely platykurtic 
population (XPL T, Y2 = -1.80) to the variance of 
samples from highly leptokurtic distributions (LEP3, 
y2 = 3.00), no test was robust (see Table 6). Thus, it 
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appears that if the kurtosis of distributions differ in sign 
to the same absolute degree, then the F max test of 
variance is robust. This supposition was confinned in 
an ad-hoc simulation in which the variance of data 
sampled from the XPL T distribution was tested against 
the variance of two leptokurtic distributions with 
population kurtosis values of Y2 = 1.75 and 2.00. 
When comparing these variances under the null 
hypothesis, the Type I error rate of Fmax remained under 
the nominal alpha of .05 while all other tests were not 
robust. 

Power. It should be noted that since Type I error 
rates for these tests of variance were dependent on the 
sample size and population kurtosis configuration, 
power was also dependent on combinations of sample 
size, population kurtosis, and group variance. In 
general, when the group with the larger variance was 
sampled from the heavier-tailed distribution there was 
more power for the tests of variance. When the more 
leptokurtic distribution was more variant, a reduction in 
power was observed. Therefore, results comparing the 
power of these tests are reported for both situations. 

In quasi-experimental situations in which one group 
was sampled from the extremely platykurtic population, 
only Fmax controlled the Type I error. Therefore, only 
Fmax can be validly used for testing variances when 
only one group is sampled from an extremely 
platykurtic population. As this negative kurtosis 
increased in value and became less extreme, more 
comparisons were possible. 

When one group was sampled from the platykurtic 
population (PLAT, Y2 • -1.00) while the other group 
was nonnally distributed, all tests of variance held the 
Type I error rate for equal sample sizes and are 
comparable (sec Table 7). Table 9 shows that under 
these conditions, OB and OBBF were the most 
powerful. With unequal sample sizes, OB, WOB, and 
OBBF, tended to inflate the Type I error rate, and 
therefore, Fmax and BF seem to be the most dependable 
tests. Furthennore, when there was a positive sample 
size/variance correlation, WBF was robust and more 
powerful as long as the disparity in sample sizes was 
not extreme. With an inverse sample size/variance 
relationship, Fmax is robust and adequately powerful. 
However, one may consider that OB, WOB, and OBsF 
only inflated the Type I error rate when the more 
platykurtic group was larger in size. Thus, under 
conditions where the sample sizes are equal or the 
smaller group is more platykurtic, OB and OBBF were 
more powerful except when the larger (more lcptokurtic) 
sample had the larger variance, in which case, WOB was 
more powerful. 

As with the extremely platykurtic population, the 
Type I error rate was controlled by Fmax when the 
platykurtic distribution (PLAT, Y2 = -1.00) was 
compared to a group sampled from a population with an 
equal degree of leptokurtosis (LEP 1, Y2 = 1.00); 
however. no other test was robust (see Table 8). Thus 
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for a test of variance to be valid when one group is 
platykurtic, the other group must be either (a) similar):; 
platykurtic, (b) symmetric, or (c) lept. artic to th-. 
same degree. If the sampled distributio1,~ are similarl.1 
platykurtic, OB or WOB are preferred. If a second group 
is symmetric in shape then overall, F max is adequate, 
however, if the platykurtic distribution has more 
variance, OB, WOB, BF, WBF may be considered. If 
the kurtosis of groups differ in sign to the same degree, 
only Fmax is adequate. 

Table 9 also shows that when normally distributed 
scores were compared to data sampled from a leptokurtic 
distribution with y2 = 1.00, all tests of variance that did 
not violate the Type I error rate were similarly 
powerful. Since OB and BF exhibited similar power, 
one of the conditional procedures may be used to decide 
which test to perform. That is, BFOB or OBBF can 
provide more power (Ramsey, 1994). With a positive 
sample size/variance correlation, the Welch procedures 
(WOB and WBF) showed more power relative to the 
other tests. With a negative sample size/variance 
correlation, OB remained the test of choice. Similar 
findings extend to situations where one group was 
leptokurtic (y2 "" 1.00) and the other was slightly 
platykurtic ('Y2 "" -0.50; see Table 10). However, in 
this situation the Welch procedures were more likely to 
inflate the Type I error rate, and BF should be considered 
when the sample size-variance correlation is positive. 

As was the case when samples were selected from 
the same leptokurtic distribution, sampling from 
different leptokurtic populations demonstrated the 
superiority of the BF procedure and its variants. For 
example, Table 10 shows comparative power estimates 
for the tests of variance when one group was sampled 
from an extremely leptokurtic population (LEP3, 'Y2 • 
3.00) while the other group was less leptokurtic (Y2 • 
1.00). With equal sample sizes, BF and BFoB were 
more powerful. As was the case in True Experiments, 
the high power of BFoB relative to BF indicates the 
effectiveness of testing kurtosis before applying a test 
of variance (Ramsey, 1994 ). When the sample 
size/variance correlation is positive, WBF was clearly 
the most powerful procedure, while OB was more 
powerful with a negative relationship. As with the 
results for True Experiments, the advantage of OB with 
an inverse sample size/variance relationship dissipated 
in high power situations (VR =5.0, results not shown). 

Discussion 

Summary 

The results demonstrated that when data were 
sampled from the same population and randomly 
assigned (i.e., True Experiments) to equally sized 
groups, Hartley's Fmax test was only robust when the 
population kurtosis was near or below zero. This 
confirms the findings of many other studies and 
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establishes the need for analytic alternatives for testing 
variances when data are nonnonnal. When data had a 
negative kurtosis, the O'Brien (1981) transformation 
was generally the best choice, while the Brown & 
Forsythe (1974) transformation was robust and showed 
superior power for testing variances in leptokurtic data. 
Also consistent with previous studies, the O'Brien test 
was generally more powerful when sample sizes and 
variances were negatively correlated, regardless of the 
shape of the distribution (Algina et al., 1989; Olejnik 
& Algina, 1988; Ramsey, 1994). The Welch procedure 
performed on O'Brien scores was more powerful when 
the sample size/variance correlation was positive in 
platykurtic samples (Algina et al., 1989). 

Furthermore, under the conditions of a positive 
sample size/variance correlation in leptokurtic samples, 
the Welch test applied to Brown-Forsythe scores was 
robust and demonstrated superior power. Although this 
finding seems reasonable given previous research, it had 
yet to be empirically confirmed until this study. The 
results also demonstrated that choosing a test of 
variance based on an initial test of kurtosis can increase 
power (Ramsey, 1994); however, the power of these 
conditional tests has been shown to be dependent on the 
power of the test of kurtosis (Beasley & O'Connor, 
1995). Thus, if tests of kurtosis are to be used to 
determine the most powerful and appropriate test of 
variance to perform, one must be concerned with the 
power of both tests. 

This study also presented many new findings about 
the statistical properties of testing variances when 
groups were not sampled from the same population 
(i.e., Quasi-Experiments). When both groups were 
sampled from similarly platykurtic or similarly 
leptokurtic distribu.tions, the results were predictable 
from the results of True Experiments. However, when 
one group was extremely platykurtic, only the Fmax 
tests controlled the Type I error rate. Furthermore, if 
the kurtosis of the groups differed in sign to the same 
absolute degree, the Fmax test was robust. 

When the variance of normally distributed data were 
tested against the variance of data sampled from a 
platykurtic population, the Type I error rate of many 
tests were less stable which in turn affected the validity 
of power estimates and recommendations for use. Most 
notably, when the larger group was normally distributed 
with a larger variance and the smaller, platykurtic group 
was less variable, WOB was robust and more powerful. 
Fmax was preferable when sample sizes were equal or 
negatively correlated to variances. However, when the 
larger group was platykurtic, the Type I error rates of 
OB and WOB were inflated. Thus, when the more 
platykurtic group had a larger variance, the OB exhibited 
more power when the sample sizes were equal or 
inversely related to variance (platykurtic group was 
smaller in size). For a positive sample size/variance 
correlation (i.e., larger platykurtic group had larger 
variance) only BF was robust and adequately powerful. 

----. 
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When the variance of nonnally distributed data was 
tested against the variance of data sampled from 
Ieptokurtic populations, the Type I error rate of Fmax is 
extremely inflated and the BF is preferred when sample 
sizes are equal; however, OB showed similar power. 
When the sample size/variance correlation was positive 
the Welch test applied to BF scores is generally more 
powerful, while OB was more powerful when the 
smaller group had a larger variance despite the 
Ieptokurtic shape of one group. 

Recommendations 

Educational researchers are typically interested in 
estimating change and differences. However, simply 
examining shifts in central location does not fully 
address these issues, all distributional differences should 
be investigated. Thus testing all moments in the 
distribution is recommended when comparing groups 
whether they are intact or randomly constructed. Not 
only does this approach test the major assumptions for 
the ANOV A, but it also investigates the issue of 
whether a treatment condition affected the shape or 
response variability of a distribution of scores in True 
Experiments. In this case, tests such as the 
Kolmogorov-Smimov test may be used to answer the 
question "Did the treatment affect the distribution of 
scores?" If intact groups are compared in central location 
or if differences in scale of the dependent variable are of 
interest, a test of variance is needed. The results 
demonstrate that the shape of the distributions should be 
examined before choosing a test of variance. 

Table 11 shows a summary of these 
recommendations based on the kurtosis of the 
distributions and whether the sample sizes arc equal, 
positively correlated, or negatively correlated with the 
variances. Entries on the diagonal exhibit 

. recommendations for data sampled from the same (i.e., 
True Experiments) or similar populations. Off-diagonal 
entries reveal the recommendations for Quasi
Experiments and field research. Since the condiuonal 
tests examined are used to select one of these tests of 
variance (i.e., OB and BF), they are not represented. 
Furthennore, conditionally choosing the most powerful 
test based on sample characteristics may capitalize on 
chance differences in the data and inflate the Type I error 
rate. 

In evaluating the recommendations in Table 11, one 
should consider that educational data tends to be 
platykurtic in nature (Micceri, 1989). It should also be 
noted that the recommendations for situations where the 
groups are either both leptokurtic or both platykurtic 
extend to most values of kurtosis. However, one 
should be aware that for situations in which one group 
is lcptokurtic and the other is platykurtic the 
recommendations in Table 11 apply only if the kurtosis 
is of similar absolute value. Thus it is suggested that 
all relevant tests of variance be perfonned and agreement 
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among the results assessed. If all tests reject the null 
hypothesis under conditions in which the Type I error 
rate is controlled, then the statistical significance is 
likely to represent a valid result. If there is 
disagreement among tests, then the consistency of 
disagreements with empirical findings should be 
assessed. For example, if equally sized, platykurtic 
samples are tested for variance heterogeneity and only 
the O'Brien test rejects the null hypothesis, there is 
indication of statistical significance because the O'Brien 
test is robust and most powerful in this situation (see 
Table 11). 

Although this investigation was limited to the two
sample tests, it is believed that these results extend to 
most multi-group situations. For True Experiments, 
other studies have shown this to be the case (e.g., 
Miller, 1968). For Quasi-Experiment 
recommendations, one should consider the several 
factors. If the kurtosis values for all groups indicate 
similar positive or similar negative kurtosis, then the 
recommendations for leptokurtic and platykurtic groups 
in Table 11 should be valid. Also if about half of the 
groups are mesokurtic while the other half are either 
lepto- or platykurtic, then Table 11 can be used. If the 
groups are mostly leptokurtic, using the leptokurtic 
recommendations is advised; however, if the groups are 
mostly platykurtic, recommendations are more difficult 
to make. If the groups have drastically different shapes, 
the results indicated that F max was the preferred test in 
the two group situation, but one must consider that the 
Fmax only uses the data of two groups. Thus, if 
multiple groups are present and the groups with the 
largest and smallest variances (the values used for Fmax) 
have kurtosis estimates of opposite signs, Fmax may be 
allowable as long as the kurtosis values have 
approximately the same absolute value. 
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Table 1. Summary of conditions analyzed for Sample Size and Population configurations 

True Experiment Quasi-Experiment 

Type I Power Type I Power 

(n1,n2) Error 
2 2 

(cr1 < cr2) Error 
2 2 

(cr1 < cr2) 

(10, 10) * * * * 
(13, 13) * * * * 
(20, 20) * * * * 
(10, 20) * + * + 
(13, 20) * + * + 
(20, 10) u * 
(20, 13) u * 

Note. * indicates the analysis was completed. U indicates the analysis was 
unnecessary and not completed. - indicates a negative relationship between 
sample size and variance. + indicates a positive relationship between sample size 
and variance. • 

Table 2. Average population parameters across Type I error simulations. 

Population Parameter 

Population µ 0'2 Yt Y2 

1. XPLT E(Y2) • -1.80 
n • 10 +0.003937 1.009481 -0.001320 -0.964967 
n • 13 +0.003508 1.011025 -0.006166 -1.205637 
n•20 -0.003517 1.006298 -0.010828 -1.447347 

2. PLAT E(Y2) • -1.00 
n• 10 +0.005843 1.007704 -0.012320 -0.421073 
n • 13 +0.005508 1.009243 -0.008166 -0.541785 
n • 20 +0.013517 1.011201 -0.030828 -0.686890 

3. SPLT E(Y2) = -0.50 
n • 10 +0.000090 1.017263 +0.039203 -0.172836 
n = 13 +0.001756 1.015814 +0.046087 -0.233373 
n = 20 -0.004001 1.012889 +0.058859 -0.302452 

4. NORM E(y2) = 0.00 
n = 10 -0.002803 1.006276 -0.027654 -0.003053 
n = 13 -0.001429 1.001976 -0.034611 -0.009850 
n =20 +0.000057 1.003101 -0.028943 -0.010843 

5. LEPl E(Y2) = +1.00 
n = 10 -0.000713 1.024512 +0.061602 +0.261224 
n = 13 +0.058517 1.022624 +0.065461 +0.339038 
n = 20 +0.023376 1.027412 +0.052777 +0.493708 

6. LEPJ E(Y2) = +3.00 
n = 10 +0.011568 1.028524 +0.032652 +0.553391 
n = 13 +0.008883 1.012206 +0.035397 +0.765899 
n = 20 +0.005923 1.020455 +0.213038 +1.218371 

7. XLEP E(y2) = +3.75 
n = 10 +0.010142 1.013801 +0.040116 +0.662791 
n = 13 +0.005774 1.028358 +0.017173 +0.904860 
n = 20 +0.004539 0.998350 +0.017142 +l.357478 

•• Power 
2 2 

(cr1 > cr2) 

* 
* 
* 

+ 
+ 
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Table 3. Empirical Type I Error Rate for seven procedures in True Experiments with no differences in central 
location. 

Pop. n.,n 2 Fmax OB BF WOB WBF OBBF BFoa 

I. XPLT (y2 = -1.80) 
10, 10 .0006 .0248 .0338 .0242 .0292 .0248 .0284 
13, 13 .0018 .0272 ,0058 .0262 .0054 .0272 .0272 
20, 20 .0006 .0262 .0186 .0256 .0172 .0262 .0272 
10, 20 .0030 .0372 .0366 .0288 .0316 .0372 .0380 
13, 20 .0026 .0296 .0232 .0288 .0114 .0294 .0308 

2. PLAT (y2 = -1.00) 
10, 10 .0152 ,0438 .0344 .0380 .0324 .0444 .0392 
13, 13 .0142 ,0464 .0256 .0430 .0248 ,0468 .0400 
20,20 .0082 .0474 .0386 ,0456 .0378 .0476 ,0444 
10, 20 .0124 .0494 .0384 ,0580* .0436 .0498 ,0474 
13, 20 .0110 ,0464 ,0326 ,0510 .0316 ,0464 ,0424 

3, SPLT (y2 = -0.50) 
10, 10 .0354 .0396 .0330 ,0320 .0312 .0400 ,0362 
13, 13 .0340 ,0416 ,0306 ,0366 .0294 .0422 ,0346 
20,20 .0306 ,0486 .0436 .0458 .0432 .0498 ,0456 
10, 20 ,0368 ,0498 ,0458 ,0604* .0526 ,0518 ,0494 
13, 20 ,0332 ,0458 ,0382 .0472 .0414 ,0468 ,0406 

4. NORM (y2 = 0.00) 
10, 10 ,0484 ,0336 .0402 .0258 .0370 .0352 .0414 
13, 13 .0528 ,0384 ,0312 ,0320 .0274 .0402 ,0346 
20, 20 ,0460 ,0416 .0366 ,0392 ,0358 .0428 ,0368 
10, 20 .0462 ,0364 .0392 ,0530 .0492 ,0380 .0400 
13, 20 .0478 ,0422 .0344 .0442 .0356 .0440 ,0380 

5, LEP1 (y2 • 1.00) 
10, 10 .0648• ,0352 .0404 ,0260 .0368 .0366 .0412 
13, 13 .0648• ,0362 .0324 .0316 .0298 .0376 ,0358 
20, 20 .0678* ,0380 .0398 .0352 .0382 .0412 .0388 
10, 20 .0624• ,0368 .0366 .0460 .0456 .0388 .0370 
13, 20 ,0664• .0408 ,0328 .0396 .0348 .0416 ,0362 

6. LEPJ (y2 • 3.00) 
10, 10 .1466• .0278 .0328 .0188 .0286 .0294 ,0338 
13, 13 .1538• .0332 .0346 .0278 .0316 .0364 ,0360 
20, 20 .1766• .0292 .0364 .0256 .0348 .0362 ,0368 
10, 20 .1476• ,0366 ,0358 ,0438 .0494 .0420 .0368 
13, 20 .1567• ,0316 .0384 ,0302 .0396 .0368 ,0392 

7. XLEP (y2 = 3.75) 
10, 10 .1400* .0240 .0340 .0168 .0278 .0266 .0348 
13, 13 .1496* .0294 .0338 ,0234 .0298 .0326 .0346 
20, 20 .1752* ,0346 0412 .0300 .0380 .0438 ,0418 
10, 20 .1502* .0382 .0372 .0448 .0506 .0416 .0390 
13, 20 . 1662* ,0340 .0370 .0344 .0412 .0388 .0384 

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of a= .05. 
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Table 4. Empirical Power for seven procedures in True Experiments with no differences in central location and cr~ 

2 = 1.0 and cr2 = 2.0. 

Pop. npn 2 Fmax OB BF WOB WBF OBBF BFoa 

I. XPLT (y2 = -1.80) 
IO, IO .0228 .4566 .1842 .4424 .1742 .4558 .4502 
13, 13 .0336 .6310 .0444 .6168 .0420 .6296 .6196 
20, 20 .0856 .8662 .2306 .8608 .2278 .8662 .8630 

Pos. 10,20 .0282 .6502 .2004 .7602 .2024 .6494 .6470 
Pos. 13, 20 .0392 .7640 .2044 .8330 .1952 .7642 .7620 
Neg. 20, IO .0546 .7038 .1846 .5224 .2192 .7036 .6964 
Neg. 20, 13 .0686 .7544 .0600 .6422 .0302 .7542 .7458 

2. PLAT (y2 = -1.00) 
IO, IO .0984 .1412 .1116 .1188 .IOSO .1424 .1262 
13, 13 .1364 .2206 .1348 .2020 .1300 .2204 .1648 
20, 20 .2680 .4086 .2950 .3950 .2910 .4084 .3392 

Pos. IO, 20 .1230 .1600 .1716 .3420* .2480 .1620 .1804 
Pos. 13, 20 .1530 .2424 .2144 ,3612 .2668 .2442 .2384 
Neg. 20, IO .1898 .3176 .1740 .1184* ,0918 .3176 .2142 
Neg. 20, 13 .2150 .3390 .1912 .1952 .1264 .3392 .2390 

4. NORM (y2 = 0.00) 
IO, IO .1508 .0994 .1070 .0782 ,0978 .1030 .1130 
13, 13 .2022 .1454 .1298 .1262 .1226 .1484 .1368 
20,20 .2850 .2348 .2182 .2190 .2122 .2412 .2250 

Pos. 10, 20 .1620 .0750 .1230 .2502 .2172 .0806 .1244 
Pos. 13, 20 .2116 .1330 .1732 .2416 .2282 .1406 .1758 
Neg. 20, 10 .2530 .2452 .1616 ,0650 .0766 .2454 .1734 
Neg. 20, 13 .2572 .2382 .1654 .1072 .0952 .2396 .1752 

5. LEP 1 (y1 • 1.00) 
10, 10 .0686 .0882 .0522 .0782 .0728 .0904 
13, 13 .1040 .1114 .0870 .1044 .1118 .1148 
20, 20 .1610 .1864 .1470 .1812 .1850 .1888 

Pos. 10, 20 .0462 .1016 .1934 .2158 .0562 .1002 
Pos. 13, 20 .0766 .1372 .1710 .1976 ,0952 .1376 
Neg. 20, 10 .1912 .1528 .0400 .0630 .1982 .1580 
Neg. 20, 13 .1798 .1544 .0668 .0834 .1904 .1576 

7. XLEP (y2 = 3.75) 
10, 10 .0602 .0830 .0444 .0724 .0672 .0848 
13, 13 .0830 .1010 ,0654 .0900 .0910 .1020 
20,20 .1438 .1776 .1322 .1712 .1764 .1792 

Pos. 10, 20 .0302 ,0916 .1680 .2020 .0438 .0910 
Pos. 13, 20 .0746 .1376 .1568 .2034 .0984 .1384 
Neg. 20, 10 .1620 .1336 .0280 .0492 .1688 .1366 
Neg. 20, 13 .1520 .1386 ,0536 .0786 .1668 .1420 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 
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Table 5. Empirical Power for seven procedures in True Experiments with no differences in central location and cr~ 

2 = 1.0 and cr2 = 5.0. 

Pop. n1,n2 Fmax OB BF WOB WBF OBBF BFoa 

I. XPLT (y2 = -1.80) 
10, IO .6612 .5450 .4874 .4762 .4532 .5476 .5134 
13, 13 .8402 .7594 .6582 .7186 .6332 .7600 .6974 
20, 20 .9724 .9590 .9104 .9526 .9062 .9592 .9406 

Pos. 10, 20 .7794 .6856 .7010 .9348 .8618 .6878 .7170 
Pos. 13, 20 .9040 .8550 .8138 .9452 .8858 .8554 .8352 
Neg. 20, IO .8782 .8684 .7238 .4664 .4442 .8688 .7788 
Neg. 20, 13 .9278 .9158 .8086 .7322 .6380 .9160 .8544 

2. PLAT (y2 = -1.00) 
10, 10 .6612 .5450 .4874 .4762 .4532 .5476 .5134 
13, 13 .8402 .7594 .6582 .7186 .6332 .7600 .6974 
20, 20 .9724 .9590 .9104 .9526 .9062 .9592 .9406 

Pos. 10, 20 .7794 .6856 .7010 .9348* .8618 .6878 .7170 
Pos. 13, 20 ,9040 ,8550 .8138 .9452 .8858 .8554 .8352 
Neg. 20, 10 .8782 ,8684 .7238 .4664* .4442 ,8688 .7788 
Neg. 20, 13 .9278 ,9158 ,8086 .7322 .6380 .9160 ,8544 

4. NORM (y2 • 0.00) 
10, 10 .6396 .3616 .4136 .2876 .3772 ,3698 .4200 
13, 13 .7690 ,5528 .5646 .4924 .5392 .5630 .5726 
20,20 .9350 .8428 .8330 .8198 .8266 .8594 .8396 

Pos. 10, 20 .7264 ,3800 .5680 .7796 .7604 ,3964 ,5654 
Pos. 13, 20 ,8388 ,5860 ,6978 .7894 .8008 ,6052 .6992 
Neg. 20, 10 .8148 ,7458 .6470 .2860 .3664 .7538 .6584 
Neg. 20, 13 .8648 .7880 .7084 .4954 .5342 .7986 .7224 

5. LEP 1 (y2 • 1.00) 
10, 10 .2600 .3432 .1984 .3086 .2762 .3446 
13, 13 .4088 .4924 . .3574 .4640 .4446 .4944 
20,20 .6656 .7536 .6384 .7438 .7454 .1550 

Pos. 10, 20 .2186 .4674 .6032 .6792 .2690 .4628 
Pos. 13, 20 .3838 .5948 .6250 .7142 .4524 .5934 
Neg. 20, 10 .6160 .5600 .1838 .2890 ,6372 .5650 
Neg. 20, 13 .6400 .6362 .3452 .4530 ,6852 .6406 

6. LEPJ (y2 = 3.00) 
10, 10 .2062 .2990 1590 .2636 .2268 .2986 
13, 13 .2948 .4090 .2490 .3866 .3502 .4094 
20, 20 .4962 .6662 .4616 .6532 .6556 .6676 

Pos. 10, 20 .1400 .3666 .4794 .6086 .2082 .3598 
Pos. 13, 20 .2610 .4902 .4750 .6274 .3678 .4878 
Neg. 20, 10 .5262 .5166 .1256 .2366 .5696 .5184 
Neg. 20, 13 .5110 .5590 .2358 .3732 .5888 .5606 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 

- . 
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Tahle 6. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is platykurtic y2 = -1.80. 

Group2 
Pop. ni,n 2 Fmax OB BF WOB WBF OBBF BFos 

2. PLAT (y2 = -1.00) 
IO, IO .0092 .0620* .0484 .0584* .0460 .0640* .0632* 
13, 13 .0068 .0642* .0114 .0616* .OIIO .0654* .0634* 
20,20 .0022 .0542 .0476 .0524 .0460 .0550 .0550 
IO, 20 .0048 .0282 .0408 .0402 .0658* .0348 .0364 
13, 20 .0044 .0362 .0160 .0454 .0126 .0388 .0408 
20, IO .0062 .1178* .0532 .0808* .0460 .1180* .1178* 
20, 13 .0054 .0840* .0494 .0600* .0418 .0842* .0844* 

3. SPLT (y2 = -0.50) 
IO, IO .0148 .0734* .0600* .0694* .0568* .0752* .0738* 
13, 13 .0116 .0750* .0160 .0742* .0150 .0766* .0742* 
20,20 .0084 .0674* .0582* .0656* .0566* .0678* .0680* 
IO, 20 .0082 .0358 .0458 .0462 .0682* .0420 .0452 
13, 20 .0068 .0468 .0162 .0560 .0122 .0492 .0492 
20, 10 .0096 .1238* .0660* .0936* .0580* .1240* .1230* 
20, 13 .0108 .0992* .0560 .0782* .0500 .0994* .0990* 

4. NORM (y2 = 0.00) 
IO, IO .0216 .0860* .0668* .0832* .0628* .0880* .0858* 
13, 13 .0170 .0856* .0178 .0830* .0156 .0874* ,0826* 
20, 20 .0136 .0748* .0676* .0738* .0644* .0756* .0786 
10, 20 .0090 .0438 .0464 .0560 .0752* .0480 .0516 
13, 20 .0122 .0606* .0202 .0686* .0132 .0636* .0610* 
20, 10 .0234 .1530* .0814* .1168* .0780* .1528* . 1508* 
20, 13 .0156 .1238* .0752* ,0988* .0652* .1244* .1266* 

5. LEPl (y2 • 1.00) 
10, 10 .0324 .1090* .0712* .1052* .0674* .1106* .1054* 
13, 13 .0262 .1038* .0248 .1022* .0230 .1052* .0992* 
20,20 .0252 .1036* .0872* .1022* .0836* .1040* .1074* 
IO, 20 .0160 .0614* .0548 .0706* .0838* .0642* .0652* 
13, 20 .0224 .0818* .0252 .0886* .0144 .0846* .0790* 
20, IO .0460 .1930* .1034* .1732* .1068* .1934* .1934* 
20, 13 .0354 .1624* .1078* .1440* .1018* .1630* .1626* 

6. LEPJ (y2 = 3.00) 
IO, IO .0538 . 1392* .0934* .1354* .0884* .1400* .1366* 
13, 13 .0564* .1470* .0398 .1454*• .0366 .1470* .1380* 
20, 20 .0608* .1316* .1172* .1300* .1140* .1316* .1438* 
10, 20 .0328 .0844* .0680* .0888* .1012* .0856* .0856* 
13, 20 .0446 .0990* .0404 .1036* .0234 .1006* .0942* 

20, IO .0820* .2430* .1338* .2182* .1518* .2426* .2398* 

20, 13 .0804* .2188* .1418* .1890* .1496* .2190* .2178* 

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of a,= .05. 
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Table 7. Empirkal Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is normally distributed y2 = 0. 

Group2 __ 
Pop. n1.N2 Fmax OB BF WOB WBF OBBF BFoa 

2. PLAT (y2 = -1.00) 
10, IO .0362 .0458 .0432 .0420 .0404 .0470 .0484 
13, 13 .0280 .0472 .0340 .0434 .0328 .0478 .0412 
20, 20 .0280 .0532 .0500 .0516 .0492 .0534 .0506 
10, 20 ,0304 .0588* .0536 .0860* .0668* .0606* .0588* 
13, 20 .0304 .0566* .0484 .0654* .0536 .0578* .0534 
20, 10 .0304 .0516 .0390 .0468 .0404 .0532 .0456 
20, 13 .0228 .0422 .0328 .0360 .0282 .0430 .0400 

3. SPL T (y2 = -0.50) 
10, 10 .0446 ,0400 .0396 .0312 .0370 .0416 .0412 
13, 13 .0408 .0444 .0312 .0368 ,0296 .0454 .0372 
20, 20 ,0428 .0482 .0414 ,0444 .0412 .0498 .0430 
10, 20 ,0442 .0404 ,0404 ,0670* .0592 ,0416 .0406 
13, 20 ,0422 .0474 ,0424 ,0522 ,0460 .0490 .0442 
20, 10 ,0424 .0394 ,0354 ,0454 .0424 ,0410 ,0380 
20, 13 ,0370 .0442 ,0310 ,0402 ,0338 .0454 ,0356 

6. LEPJ (y, • 3.00) 
10, 10 ,1048• ,0478 ,0500 ,0374 ,0440 .0496 .0510 
13, 13 .1060• .0460 ,0442 ,0370 .0404 ,0494 .0464 
20, 20 .1188• .0536 .0562• ,0488 .0542 ,0598• .0572• 
10,20 ,0960* ,0586* .0470 .0292 .0366 .0602* .0492 
13, 20 .1018* .0564* .0454 ,0340 ,0364 .0584* .0482 
20, 10 .1194* .0434 .0614• .0990* ,0926• ,0474 .0624* 
20, 13 .1184* .0524 .0638* ,0730* .0746* .0568* ,0640* 

7. XLEP (y, • 3.75) 
10, 10 .1076* .0422 .0494 ,0326 .0458 .0446 .0500 
13, 13 .1174• .0480 .0474 ,0406 .0452 .0524 ,0510 
20, 20 .1228* .0564* .0658* ,0526 .0648* .0660• .0650* 
10, 20 ,1056* ,0584* .0468 ,0280 ,0336 ,0614* .0484 
13, 20 .1166* .0554 .0510 .0344 .0384 .0606* .0524 
20, 10 .1272* .0496 .0680* , 1040* ,0996• .OSSO ,0686* 
20, 13 .1376* .0548 .0676* ,0802* .0814• .0594* .0672* 

Note. * indicates the Type I error mte exceeded .0562 and is 2 standard errors above the nominal alpha of a= .05 
test. 
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Table 8. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is leptokurtic y2 = 1.00. 

Group2 
Pop. n1,n2 Fmax OB BF WOB WBF OBBF BFoB 

2. PLAT (y2 = -1.00) 
10, IO .0406 .0524 .0434 .0436 .0410 .0530 .0492 
13, 13 .0444 .0622* .0460 .0566* .0436 .0632* .0546 
20, 20 .0448 .0684* .0616* .0656* .0606* .0696* .0656* 
IO, 20 .0538 .0730* .0720* .I 134* .0980* .0756* .0740* 
13, 20 .0478 .0752* .0744* .0954* .0826* .0768* .0756* 
20, IO .0268 .0520 .0362 .0400 .0336 .0520 .0438 
20, 13 .0350 .0548 .0352 .0402 .0322 .0550 .0446 

3. SPL T (y2 = -0.50) 
IO, IO .0602* .0436 .0412 .0350 .0368 .0448 .0442 
13, 13 .0548 .0472 .0350 .0394 .0316 .0474 .0404 
20,20 .0528 .0510 .0464 .0460 .0458 .0534 .0480 
IO, 20 .0622* .0484 .0556 .0922* .0798* .0498 .0576* 
13, 20 .0586* .0468 .0494 .0630* .0562~ .0492 .0502 
20, 10 .0458 .0546 .0380 .0386 .0410 .0558 .0404 
20, 13 .0436 .0452 .0358 .0354 .0288 .0474 .0394 

4. NORM (y2 • 0.00) 
10, 10 .0102• .0322 .0378 .0242 .0348 .0336 .0396 
13, 13 .0102• ,0370 .0302 .0302 .0272 ,0382 .0342 
20,20 ,0772• .0470 .0460 • .0424 .0444 .0516 .0492 
10, 20 ,0734• ,0444 .0444 .0714• .0616• .0466 .0452 
13, 20 .0100• .0400 ,0432 .0514 .0496 .0428 .0444 
20, lO ,0628• ,0436 ,0378 .0402 .0420 .0464 .0402 
20, 13 ,0670• .0400 .0342 ,0346 .0306 .0422 .0360 

6. LEPJ (y 2 • 3.00) 
10, IO ,0858• - ,0326 .0370 .0264 .0328 .0336 .0380 
13, 13 ,0812• .0366 .0354 .0316 .0320 .0384 .0382 
20, 20 ,0982• ,0472 .0472 .0426 .0460 .0512 .0480 
10, 20 .0858• ,0462 .0392 .0350 .0408 .0496 .0402 
13, 20 .0936• ,0434 .0390 .0304 .0342 .0480 .0404 
20, 10 .1134• ,0384 .0476 .0682• .0722* .0424 .0478 
20, 13 .1248* .0380 .0448 • .0522 .0540 .0428 .0456 

7. XLEP (y2 = 3.75) 
10, 10 .1012• ,0352 .0382 .0254 .0338 .0380 .0396 
13, 13 .1078* .0374 .0360 .0296 .0326 .0400 .0360 
20,20 .1200* ,0402 .0492 .0360 .0472 .0500 .0494 
10, 20 .0996* .0492 .0382 .0282 .0342 .0530 .0040 
13, 20 .111 0* .0464 .0438 .0350 .0338 .0526 .0444 
20, 10 .1264* .0408 .0514 .0704* .0734* .0452 .0534 
20, 13 .1210* .0382 .0496 .0568* .0584* .0432 .0502 

Note. * indicates the Type I error rate exceed .0562 and is 2 standard errors above the nominal alpha of a.= .05 test. 
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Table 9. Empirical Power Estimates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is nonnally distributed y, = 0.00. 

Group Two 

PLAT 'Y, = -1.00 
2 

0"1 = 1.0 
2 

0"2 = 2.0 

Pop. n1,n2 Fmax OB BF WOB WBF OBBF BFoa 

10, 10 .1540 .1724 .1550 .1496 .1462 .1748 .1682 
13, 13 .1868 .2386 .1862 .2234 .1784 .2418 .2046 
20, 20 .2956 .3974 .3526 .3888 .3488 .4032 .3672 

Pos. 10, 20 .1684 .2120* .2358 .2380* 
Pos. 13, 20 .2064 .2746* .2758 .3274 .2812* .2842 
Neg. 20, 10 .2104 .2906 .2048 .1242 .1248 .2940 .2198 
Neg. 20, 13 .2276 .3222 .2246 .2038 .1542 .3256 .2456 

Group Two PLAT 'Y2 = -1.00 
2 

crl =2.0 
2 

cr2 = 1.0 

10, 10 ,1292 .0710 ,0722 ,0540 ,0652 ,0722 .0760 
13, 13 .1810 ,1150 ,0856 ,0964 ,0806 .1154 .0960 
20,20 ,2998 .2264 ,1748 ,2086 ,1706 .2268 ,1978 

Neg. 10, 20 .2406 ,2520* ,1386 .1762* 
Neg. 13, 20 .2686 .2396* ,1340 .0718 .2402* .1700 
Pos. 20, 10 .1268 .0474 ,0930 .2142 .1762 .0512 ,0908 
Pos. 20, 10 ,1890 ,0976 .1232 .2182 .1770 .0992 .1262 

Group Two LEPl Yz • 1.00 
2 

cr 1 • 1.0 
2 

0'2 • 2.0 

10, 10 .0640 ,0798 .0458 ,0722 ,0670 ,0814 
13, 13 ,0940 .0890 .0772 .0798 .0968 .0924 
20, 20 .1690 .1690 .1556 .1640 .1844 .1736 

Pos. 10, 20 .0404 ,0878 .1816 ,1820 .0486 .0882 
Pos. 13,20 ,0692 .1130 .1618 .1670 .0794 .1130 
Neg. 20, 10 ,1852 .1238 .1884 .1314 
Neg. 20, 13 ,1676 .1224 ,0608 .0682 .1732 ,1306 

Group Two LEP1 Yz • 1.00 
2 

cr 1 • 2.0 
2 

cr2 • 1.0 

10, 10 .1038 .1148 .0826 .1054 .1088 .1178 
13, 13 .1460 .1420 .1218 .1346 .1514 .1472 
20, 20 .2526 .2646 .2386 .2598 .2690 .2658 

Neg. 10, 20 .2320 .1758 .0608 .0818 .2352 .1822 
Neg. 13, 20 .2348 .1920 .1058 .1118 .2404 .1984 
Pos. 20, 10 .0880 .1654 .0990 .1622 
Pos. 20, 13 .1412 .1998 .2518 .2632 .1574 .2010 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 
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.·Table JO. Empirical Power Estimates for seven procedures in Quasi Experiments with no differences in central 
location and Group One has positive kurtosis y2 = 1.00. 

Group Two SPL T y2 = -0.50 
2 

<r1 = 1.0 
2 

<r2 = 2.0 

Pop. n1,n2 Fmax OB BF WOB WBF OBap BFo8 

10, 10 .1390 .1362 .1102 .1272 .1442 .1418 
13, 13 .2428 .1954 .1782 .1722 .1682 .2012 .1854 
20, 20 .3410 .3082 .3042 .2960 .3006 .3218 .3084 

Pos. IO, 20 .1278 .1866 .1382 .1864* 
Pos. 13, 20 .2652* .1878 .2338 .2974* .1994 .2330 
Neg. 20, 10 .2680 .2582 .2040 .0844 .1114 .2622 .2086 
Neg. 20, 13 .2858 .2706 .2174 .1454 .1462 .2778 .2244 

Group Two SPLT Y2 = -0.50 
2 

<r1 = 2.0 
2 

<r2 = 1.0 

IO, 10 .0588 .0674 .0452 .0602 .0610 .0700 
13, 13 .1740 .0796 .0748 .0638 .0674 .0814 .0782 
20,20 .2730 .1408 .1286 .1298 .1244 .1486 .1362 

Neg. 10, 20 .2242 .1832 .1098 ,0350 .0424 .1854 .1218 
Neg. 13, 20 .2552 .1682 . I 150 .0614 ,0574 .1718 .1258 
Pos. 20, 10 .0318 ,0698 .0364 .0690* 
Pos. 20, 13 .2058• ,0694 ,1032 .1510• ,0768 .1044 

Group Two LEPJ y2 • 3.00 
2 er I • 1.0 

2 
<r2 • 2.0 

10, 10 .0460 ,0630 .0344 ,0530 .0496 ,0650 
13, 13 ,0690 ,0782 ,0558 ,0704 .0768 ,0812 
20, 20 .1048 .1238 .0978 .1196 .1278 .1236 

Pos. 10, 20 .0272 ,0722 .1450 .1654 .0362 .0716 
Pos. 13, 20 .0444 ,0832 .1174 .1386 .0576 .0836 
Neg. 20, 10 .1388 ,1052 .1460 .1086 
Neg. 20, 13 .1272 .1062 .0436 .0530 .1386 .1096 

Group Two LEPJ y2 = 3.00 
2 

<r1 = 2.0 
2 

<r2 = 1.0 

10, 10 .0932 .1174 ,0712 .1002 .0982 .1200 
13, 13 .1112 .1354 .0920 .1234 .1232 .1374 
20, 20 .1898 .2402 .1770 .2346 .2288 .2412 

Pos. 20, 10 .0732 .1490 .2386 .2654 .0876 .1476 
Pos. 20, 13 .1020 .1812 .2104 .2450 .1272 .1796 
Neg. 10, 20 .1962 .1716 .2102 .1746 
Neg. 13, 20 .2010 .1876 .0796 .1112 .2150 .1902 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 
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Table 11. Recommendations based on Variance Ratios and whether the sample sizes are equal, positively 
correlated, or negatively correlated with the variances for both True and Quasi-Experiments. 

Smaller Larger Variance 
Variance PLAT SPLT NORM LEPT 

PLAT 
Equal OB OB,Fmax Fmax Fmax 

Positive WOB WOB WOB Fmax 

Negative OB OB Fmax Fmax 

SPLT 
Equal OB,Fmax OB, Fmax Fmax, OB OB,BF 
Positive WOB WOB WOB BF 
Negative OB OB,Fmax Fmax, OB OB 

NORM 
Equal OB Fmax, OB Fmax BF,OB 
Positive BF WOB WOB WBF,WOB 
Negative OB Fmax, OB Fmax OB 
LEPT 
Equal Fmax OB,BF BF,OB BF 
Positive Fmax BF BF, WBF WBF 
Negative Fmax OB OB OB 

Note. Entries on the diagonal represent recommendations 
for True Experiments, while off-diagonal entries are for 
Quasi-Experiments. PLAT • platykurtic; SPL T • slightly 
platykurtic; NORM• Nonna!; LEPT • leptokurtic; OB• O'Brien 
BF• Brown-Forsythe; W refers to perfonning Welch procedure 




