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Simulation results indicated that when groups were sampled from the same platykurtic population the O’Brien
(1981) transformation was preferred except when a positive sample size/variance correlation existed, then the Welch
test performed on the O’Brien scores was more powerful. Also consistent with previous research, when grouped data
were sampled from the same leptokurtic population the Brown & Forsythe (1974) transformation was preferred for
equal sample sizes. The O’Brien test was more powerful with an indirect sample size/variance relationship regardless
on distribution shape(e.g., Algina ct al., 1989; Olejnik & Algina, 1987, 1988). The study also demonstrated that
the Welch test performed on Brown-Forsythe scores was more powerful when a positive sample size/variance
correlation existed in leptokurtic data. Furthermore, choosing a test of variance based on an initial test of kurtosis
may improve power (Ramsey, 1994). When data were sampled from populations with drastically different shapes
(kurtosis), the Type I error rate of most tests was unstable excluding the Hartley Fmax test which performed

surprisingly well.

most widely used statistical procedures in

educational rescarch. Namely, it is the technique
of choice for True Experiments in which members
sampled from the same population are randomly
assigned to trcatment conditions. In ficld rescarch and
Quasi-Experiments, comparisons among groups are also
of interest, however, there exists the possibility that
these groups are sampled from different populations. In
cither case, behavioral rescarchers often compare groups
with different distributional propertics, which may be a
result of (a) sampling from different populations or (b)
an expcrimental treatment affecting something other
than central location. Thus, as far as analytic
procedures are concernced, the distinction between True
and Quasi-Experiments becomes ambiguous. For the
purposes of this study, a True Experiment is defined as
sampling data from a single population and randomly
assigning cases to groups. A Quasi-Experiment is
defined by scparately sampling data from populations
which differ in distributional shape (i.e., skew and
kurtosis).

One of the most critical conditions for any linear
modcling procedure involves the assumption of
homoscedasticity across levels of the independent
variable. In the ANOVA, it follows that heterogeneous
variances may obscure the magnitude of test statistics
for comparisons among means. Thus, testing variance
equality appropriately is important in checking a vital
assumption of the ANOVA. Furthermore, despite the
existence of differences in central location,

T he analysis of variance (ANOVA) is one of the

heterogeneous variances may constitute substantive and
theoretically valuable results.

That is, it may be

interesting to know that the responses of two separately
sampled populations differ in scale or that an
experimental treatment significantly affects response
variability.

Traditional tests of variance homogeneity (e.g.,
Hartley's Fmax) can be very simple, calculating the ratio
of two sample variances. The Fmax test, however, has
long been known to be extremely sensitive to
deviations in kurtosis (Box, 1953; Scheffe’, 1959).
Slight departures from normality which involve
kurtosis have been shown to make substantial difference
in the Type I error rate of the Fmax test (Pearson &
Please, 1975). For instance, Hartley’s Fmax test has
beecn shown to be conscrvative for platykurtic
distributions and liberal when distributions have
positive kurtosis (Durrand, 1969). Although several
tests of variance have been proposed, the Fmax remains
popular in a variety of applicd studies because of its
simplicity.

In a simulation study, Conover, Johnson, and
Johnson (1981) compared several procedures for testing
homogeneous variances and found that most are liberal
(i.e., the Type I error rate was considerably larger that
the nominal alpha). Thus few tests exist that actually
control the Type I error rate. Over the past two decades,
robust tests of variances based on applying the ANOVA
to transformed scores (e.g., Brown & Forsythe, 1974,
O'Brien, 1981) have been proposed. Under conditions
of a “True Experiment” and equal sample sizes, these
tests have been shown to be powerful in a variety of
population distributions (Algina, Olejnik, & Ocanto,
1989; Olejnik & Algina, 1987, Ramsey, 1994, Ramsey
& Brailsford, 1990). The Brown-Forsythe (BF) test has
been criticized because it has low power for small, odd
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sample sizes and only moderate power for platykurtic
and normal populations (O'Brien, 1981; Olejnik &
Algina, 1987). Under these same conditions, the most
common form of the O'Brien (OB) procedure has been
shown to be more powerful than BF. Also for unequal
sample sizes, OB has been suggested for platykurtic
distributions and BF with symmetric and/or leptokurtic
distributions (Algina et al., 1989).

Despite these recommendations based on the
kurtosis of distributions, a criterion for identifying
population shape was not suggested. Ramsey and
Brailsford (1990) noted that tests of kurtosis could be
used to decide between BF and Fmax. Following the
suggestions of previous studies, Ramsey (1994) has
recently suggested two conditional procedures based on
testing kurtosis for each group separately. Ramsey's
results confirmed the robustness of OB and BF but
indicated that optimal power can be established with the
conditional procedure of testing kurtosis to decide
between the these tests. However, the power of these
conditional procedures has been shown to be dependent
on the power of the test of kurtosis. Also, Ramsey's
results are limited in the sense that only the conditions
of a True Experiment were simulated. That is, the two
groups were sampled from the same population, In
field research and Quasi-Experiments, comparisons of
groups sampled from different populations are often of
interest and the suggested conditional procedures have
yet to be fully investigated under such conditions.

Olejnik and Algina (1988) found that both OB and
BF held the Type I error rate for a limited number of
distributions which diffcred in location and form, The
OB tended to be most powerful with equal sample sizes
and with an inverse relationship between sample sizes
and population variances (i.c., larger sample has the
smaller variance). When sample sizes and population
variances had a dircet relationship (i.e., larger sample
has the larger variance), using OB transformed scores as
dependent variables and performing the Welch (1951)
statistic was the most powerful procedure.

A variety of nonparametric tests of variance are also
available;, however, they have presented problem$ with
robustness and low power. Two of the better known
procedures were proposed by Klotz (1962) and Siegel
and Tukey (1960). When data were sampled from a
normal population, both tests demonstrated the
appropriate Type 1 error rate (Penfield & Koffler, 1985,
Olejnik & Algina, 1985). Also, the Klotz test had
power equal to or greater than the power of OB or BF
when samples differed in variance only. However, both
the Siegel-Tukey and Klotz tests were strongly affected
by differences in central location (Moses, 1963). When
the sampled distributions share the same asymmetric
shape but differ in location, the tests are liberal. Yet,
both tests become less powerful as location parameters
increase when groups share the same symmetric shape
(Olejnik & Algina, 1985). To date, attempts to modify
these tests through mean- and median-alignment have

MLRYV, Winter, 1995 37

not drastically improved their statistical properties (e.g.,
Conover et al., 1981; Olejnik & Algina, 1988).

Thus the purpose of this study was to investigate
the robustness and power of OB, BF, and the use of the
Welch statistic on these transformed scores (WQOR and
WRBF, respectively) under conditions of a True
Experiment (i.e., groups are randomly constructed from
the same population) and a Quasi-Experiment (i.e.,
groups are sampled from two different populations).
Furthermore, the effectiveness of conditional procedures
based on tests of kurtosis (e.g., Ramsey, 1994) was
examined. Although tests of variance are themselves of
interest, in most educational research differences in
central location are to be expected; therefore,
nonparametric procedures such as the Siegel-Tukey and
Klotz tests were excluded from this study. Under
several circumstances, the results were expected to
replicate those of Ramsey (1994) and Olejnik and
Algina (1987, 1988). Furthermore, the findings of this
study should address the issue of the appropriate

. procedure for testing variances in Quasi-Experiments in

which the populations may differ in variance and form
and the samples differ in size.

Statistics for Testing Variances

Although many statistical tests for comparing
population variances have been developed, only a few of
these procedures have demonstrated robustness when
populations are nonnormal (i.e., Conover et al., 1981).
Of these tests, the general lincar model procedures,
which involve performing the ANOVA (or some
variant) on transformed scores, have shown both
robustness and supcrior power.

Hartley’s Fmax test. This test was investigated
because of its wide use and known properties when
kurtosis deviates form normality, The Fmax test is the
ratio of the largest to the smallest of J variance,
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Symallest .

The degrees of freedom are (,,,,,, - 1) for the numerator
and (n,,.., - 1) for the denominator, Although it is
often recommended that the Fmax test only be used with
approximately equal sample n’s, its statistical properties
were examined under all condition of this study.
Critical values were obtained from the sampling
distribution derived by Hartley (1950).
Brown-Forsythe Transformation. To test
differences in variances, Levene (1960) proposed using
the ANOVA but replacing each score, y,, of subject i
within group j with the absolute deviation from its
respective group mean. Although this procedure is
fairly robust, it was found not to be adequately powerful
(Conover et al., 1981). Brown and Forsythe (1974)




38 MLRYV, Winter, 1995

proposed applying the ANOVA to absolute deviations
from respective group medians, m,, such that:

by = ly,-m| . 2)

O’Brien Transformation. O’Brier: (1979)
proposed that the original score, y,, of sutyect / in
group j be replaced with '

ry(w) =

(W +n;-2) nj(py-33) -ws, (n,-1)
(ny-1) (ny-2)
, €)
where w is a parameter ranging between zero and one
and:y—/ equals the mean, sz equals the variance, and nj
equals the sample size of group /. For most cases,

O'Brien (1981) has recommended a value of w = 0.5
from which the group means for r in (3) are the

variances of each group y; 7, = sjz. The ANOVA is
performed on the transformed r values,

Welch Statistic, It is not known whether the
OB or BF tests are asymptotically distribution free.
Furthermore, because the variance of r is dependent on
sample size, O'Brien (1981) suggested using a Welch
(1951) approximate degrees of freedom analysis on r
values in place of the ANOVA when sample sizes are
not cqual (WOB). This procedure may also be
performed on BF transformed scores (WBF). The Welch
statistic is calculated by

J
T @ NIU-1

W= @)
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where J equals thc number of groups, ¢; = n; /s/2 ,

cr=Xcj, and y=3 ¢ jlc. The Welch statistic is
approximately distributed as F with degrees of freedom
equal to (/- 1) and

J y -
[ T a-D%@;-n]' ©
J2- 1 7j=1
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For J = 2 groups, the degrees of freedom in (5) follow
the Satterthwaite (1946) formula.

Conditional Tests. Based on the simulation
studies of Olejnik & Algina (1987, 1988), BF is .
preferred for leptokurtic populations, while OB is
recommended for normal and platykurtic distributions.
To achieve optimal power, Ramsey (1994) proposed
two procedures for testing variances that are conditioned
on applying a test for kurtosis.

Pearson's traditional sample measure of population

kurtosis, y,, in group jis b2 = m4 / m2, where

me=Y (v -y,)" /nj. Thus my is the second
moment about the mean, the biased sample variance.
Although standardized population moments for
skewness and kurtosis provide popular significance
tests, Ramsey and Ramsey (1993) have supplied a
detailed and accurate table of critical values for b,,
which are used to test kurtosis against the null
hypothesis (Ho: 8, = 3).

For the tests proposed by Ramsey, tests of kurtosis
are applied in each of the two samples at the a = .05
significance level. A score of -1, 0, or +1 is recorded
depending on whether the test of b, indicates that the
distribution was significantly platykurtic,
nonsignificant, or significantly leptokurtic,
respectively. Combining scores from the two samples
results in a total score, S, ranging from -2 to +2, Ina
J-group study, S would range from </ to +J. The test of
kurtosis is taken as identifying the population for the
entire experiment as platykurtic if S < -1, mesokurtic if
S = 0, and leptokurtic if S > +1. In onc conditional
procedure, OBBF, kurtosis is tested and OB is applied if
the samples are platykurtic or mesokurtic (S < 0) and
BF if the distributions arc significantly leptokurtic (S >
+1). This approach is based on the recommendations of
Olcjnik and Algina (1987) but docs not control the
Type I error rate under certain distributional conditions;
therefore, Ramsey (1994) suggested another conditional
procedure that demonstrated superior power and adequate
robustness. This approach, BFQR, involves testing the
fourth moment and applying OB with significantly
platykurtic distributions (S < -1) and BF otherwise (S >
0).

Methods

Consistent with previous studies (e.g., Miller,
1968; Olejnik & Algina, 1987, 1988; Ramsey &
Brailsford, 1990), the present investigation was
restricted to the two-group case. These studies yielded
results congruent with multi-group studies.
Furthermore, the restriction to two groups allows more
careful consideration of other factors. Since previous
studies have indicated that shifts in central location have
little to no effect on general linear model tests of
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variance, (Beasley & O'Connor, 1995; Olejnik &
Algina, 1988), three population variables were
manipulated; shape in the form of kurtosis (y,),
variance in one group, (2); sample size (n;).

Conditions

Population Kurtosis. Previous studies have
indicated that skewness affects the robustness and power
of nonparametric tests (Olejnik & Algina, 1988) but
only affects the statistical properties of parametric tests
in combination with nonnormal kurtosis (Conover et
al.,, 1981; Olejnik & Algina, 1988; Pearson & Please,
1975). The normal and six nonnormal distributions
that had no skewness but varied in kurtosis were
simulated. They are presented in ascending order from
platykurtic to leptokurtic. The first population was
extremely platykurtic (XPLT) and continuous with
skewness (y1) equal to zero and kurtosis (y2) equal to
-1.80. The second population was also platykurtic
(PLAT) and continuous with skewness (y;) equal to
zero and kurtosis (y;) equal to -1.00. It was chosen
because it has been used in a variety of other simulation
studies (e.g., Olejnik & Algina, 1987, 1988). The third
population was slightly platykurtic (SPLT) with y; =
0.0 and y5 = -0.50. It was selected as a continuous
distribution which closely matches the moments of one
of Micceri's (1989) data sets. The fourth population
was the normal distribution NORM) generated with the
SAS RANNOR function, The fifth population (LEP1)
was sclected as a slightly leptokurtic, y; = +1.00,
continuous distribution with no skew comparable to the
sccond population (PLAT). The sixth (LEP3) and
seventh (XLEP) were selected as highly leptokurtic (v,
= +3.00 and +3.75, respectively) with no expected
skewness,

Group Size and Varlance Ratio
Parameters. Equal sample sizes of n; = 10, 13, and
20 and uncqual sample sizes of (10, 20) and (13, 20)
were employed. To investigate power, variance ratios
of VR = 2.0 and 5.0 were imposed by taking the
population from which Group Two was sampled and
multiplying it by constant equal to the square root of
VR.

Because Olejnik and Algina (1988) found that tests
of variance were differentially powerful depending on the
relationship between group size and population
variance, all conditions were crossed when power was
investigated. For example, when the variance ratio was
VR = 2.0 and Group One, with n] = 13, was sampled
from the normal distribution, while Group Two (n; =
20) was sampled from a platykurtic distribution, an
inverse relationship between group size and population
variance (negative condition) was imposed. In order to
create a positive condition, the sample sizes were
reversed so that the larger group had the larger variance.
Also because power and robustness may depend on
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population shape, the seven populations were
systematically manipulated as long as conditions did not
duplicate (e.g., when investigating Type I error rate for
equal sample sizes all population combinations are not
necessary). Table 1 shows the sample size conditions
for the analyses in this study. Note that two sample
size configurations were added to impose positive and
negative sample size/variance correlations for
investigating power in True Experiments. For Quasi-
Experiments, all possible sample size conditions were
used since the Type I error rate has been shown to
depend on sample size/kurtosis configurations. In
examining power, variance constants were imposed on
both Group One and Group Two because power has also
been shown to depend on the configuration of sample
size, kurtosis, and variance (Beasley & O'Connor, 1995;
Olejnik & Algina, 1988).

Procedure

The second through seventh populations were '
generated separately for each group using the RANNOR
function is SAS/IML, which provides a clock generated
pseudorandom standard normal deviate, zjj (SAS
Institute, 1990). Fleishman’s (1978) method was used
to transform these distributions into non-normal data
with specified mean, variance, skewness, and kurtosis
values via a polynomial equation of the form,

yy=a+bzy+cz} +dzj . ©)

Since the minimum kurtosis derived by Flcishman is
¥4 = -1.00, the first population (XPLT) was simulated
by combining three uniform distributions that varied in
central location. A small distribution of 20 cases that
centered around O and two larger distributions of 990
cascs cach which centered around -0.75 and 0.75 were
concatenated to create this heavy-tailed distribution.
Lincar transformations were used in order to have the
expected variances used in this study. During the
simulation procedures, observations were randomly
sampled from these distributions during each
replication. For each condition elaborated, 5,000
replications were completed. The proportions of
rcjections at the o = .05 level of significance were used
as measures of empirical power and Type I error rate.
Since 5,000 replications were conducted in each
condition with o = .05, the standard error is .0031.
Thus, any Type I error rate of .0562 or greater exceeded
two standard errors and was considered a significant
inflation of the Type I error rate. Other less stringent
criteria include upper limits of .06 (Cochran, 1954) and
075 (Bradley, 1978). In order to avoid the problems
with making multiple comparisons within this study,
the standard error of simulation was used as a general
heuristic rather than as a statistical test when comparing
empirical power estimates. Furthermore, if the
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empirical Type I error rate of a test exceeded the
nominal alpha by two standard errors, its power was
interpreted cautiously. If its Type I error rate exceeded
Cochran’s limit of .06, its power estimate was not

reported.
Results

Simulation Accuracy

When multiplied as in (6), the resulting mean,
variance, skewness, and kurtosis of y; approximate the
characteristics of the distribution of interest. It should
be noted, however, that the simulated data are not
governed by a known mathematical function, Rather,
the simulated data represent a distribution with the same
skewness and kurtosis as the desired distribution. Table
2 demonstrates the adequacy of the Fleishman
simulation method in this study. Values for the mean
(1), variance (o), skew (y;) and kurtosis (y2) for each
group of nj were taken across 15,000 replications for ;
=10 and 13 and across 30,000 replications for n; =20.
For all seven populations, p, o, and, y; were
adequately simulated, Furthermore, kurtosis (yz) was
reasonably simulated for platy- and mesokurtic
distributions, especially with nj =20. For leptokurtic
distributions, however, the kurtosis of the group was
drastically underestimated which is most likely due to
the small sample sizes used.

True Experiments

Type I Error. Table 3 shows the empirical Type
I error rate for the seven sampled populations under the
conditions of a True Experiment (i.c., both groups
drawn from the samec population). As would be
expected the Hartley’s Fmax test showed a conservative
rejection rate with platykurtic populations (c.g., XPLT,
PLAT, & SPLT) but more importantly was liberal
when the data were sampled from leptokurtic
populations. Furthermore, when sample sizes are
uncqual, the suspension of the Fmax test is often
suggested. However, the Type I error rate remained
under the nominal alpha of .05 even with unequal
samples under the meso- and platykurtic conditions.
All other tests, except for WOB which exhibited minor
inflation with disparate sample sizes, held the Type 1
error rate under the nominal alpha.

Power. Tables 4 and 5 show representative results
from the comparative power analysis of True
Experiments with different populations and variance
ratios of ¥R = 2.0 and 5.0, respectively. For all tests,
except Fmax, it can be seen that heavy-tailed
distributions presented a more powerful situation when
testing variance heterogeneity. For example, the
empirical power estimates were higher when data were
sampled from the PLAT population as compared to
normally distributed data. Also, higher power estimates
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were yielded when data were sampled from the normal
distribution as compared to the leptokurtic
populations(e.g., LEP1 and XLEP, see Tables 4 & 5).

Under the conditions of a normally distributed
population, the Hartley’s Fmax was robust and
demonstrated superior power, except when there was a
positive relationship between sample size and group
variance. In this case, the WOB was most powerful.
When the sample size/variance correlation was negative
Fmax and OB were of similar power.

When data were sampled from the PLAT
distribution, the OB transformation and Ramsey’s
OBRBF were the clear choices in low power situations
(see Table 4). However, with a variance ratio of VR =
5.0, the Fmax test was more powerful except when the
sample size/variance correlation was positive. Thus, in
cases where the smaller group had the smaller variance,
WOB was most powerful namely because neither Fmax
nor the Ramsey’s procedures make provisions for such
situations, In high power situations (VR = 5.0)
whether the data were meso- or platykurtic, the Fmax
was more powerful. However, both Fmax and OB are
very likely to reject the null hypothesis in such cases.
Thus, if the data sampled are platykurtic, one should
consider the O’Brien transformation in low power
situations. In all conditions with meso- and platykurtic
data and a positive relationship between sample size and
variance, performing the Welch statistic on O’Brien
scores was the most powerful procedure,

When data were sampled from leptokurtic
populations, the Fmax test was disqualificd because it
inflated the Type I error rate (sce Table 3). Of the
remaining tests, BF and BFop had similar empirical
power cstimates with small (n; = 10) cqually sized
samples. Similarly, as was obscrved with platykurtic
distribution, BFp; was more powerful than BF, which
indicates that the Ramscy conditional procedures can
provide more power. When sample sizes were unequal
and positively related to the group variances, the WBF
was more powerful. This finding scems consistent with
previous research but has yet to be reported in the
literature. When a negative relationship between
sample sizes and group variances existed, OB was more
powerful regardless of the leptokurtosis of the sampled
population. Increasing the group Variance Ratio to VR
= 5.0 magnified these findings. However, under these
more powerful conditions, the power estimates of BF
were more competitive and actually exceeded those of
OB when there was an inverse sample size/variance
relationship. For example in Table 5, when n] = 20,

0':;' = 1.0, n2 = 13, and 0% = 5.0, the power of BF,
.5590 was much higher than that of OB, .5110. This
indicates that OB is only more powerful under negative
sample size/variance conditions in low power situations
(i.e., small sample sizes, small differences in variance).
That is, if samples are rather large and drawn from
leptokurtic populations, the BF and WBF may be better
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choices for testing variances. Thus, consistent with
previous research, when there is a negative correlation
between sample sizes and variances, the advantage in
power of OB over BF seems to dissipate with increasing
(a) sample sizes for both groups, (b) variance for the
smaller group, and/or (c) kurtosis of the sampled
population (Olejnik & Algina, 1988; Ramsey, 1994).

Quasi-Experiments

Type I Error. When one group was sampled from
a population with extremely negative kurtosis (XPLT),
while the second group was sampled from population of
varying shapes, the Type I error rates for all tests,
except for Fmax, were unstable and generally above the
nominal alpha of .05 (see Table 6). However, as the
extremity of platykurtosis declined, the Type I error
rates became more stable for most tests (see Table 7).

When the two groups were sampled from
populations with similar positive kurtosis, the results
were predictable from the Type I Error results for True
Experiments. Table 8 shows that when both groups
had positive kurtosis most tests, except for Fmax, held
the Type 1 error rate at the nominal alpha of .05.
However, WOB showed inflations when the larger
group was sampled from a less leptokurtic distribution.
These results extended to situations where one group is
sampled from a slightly leptokurtic distribution (LEP1)
and the other is sampled from a slightly platykurtic
distribution (SPLT).

Although the mixture of LEP1 and the normal
distribution did not affect the Type I error rate of most
tests (sce Table 8), when the variance of a normally
distributed samplc was tested against the variance of data
sampled from more leptokurtic populations (c.g.,
LEP3, XLEP), the Type I Error rate of all tests were
affected when sample sizes were uncqual (see Table 7).
When the normally distributed data were compared to
samples from platykurtic populations (PLAT), the Type
I crror rate was controlled for all tests with equal sample
sizcs. When sample sizes were not equal, only Fmax
and BF were consistently robust to these violations to
the normality assumption. When the larger group was
more platykurtic, OB, WOB, and OBpgy tended to inflate
the Type I error rate (see Table 7). Thus it would
appcar that if data are sampled from different
populations with similar kurtosis, keeping group sizes
approximately equal would be a reasonable step in
controlling the Type I error rate.

In some situations where the kurtosis of the sampled
distributions differed in sign, the Type I error rate of
Fmax remained under the nominal alpha of .05.
However, when the disparity in kurtosis increased this
was not the case. For example, in comparing the
variance of data sampled form the extremely platykurtic
population (XPLT, y; = -1.80) to the variance of
samples from highly leptokurtic distributions (LEP3,
¥ = 3.00), no test was robust (see Table 6). Thus, it
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appears that if the kurtosis of distributions differ in sign
to the same absolute degree, then the Fmax test of
variance is robust. This supposition was confirmed in
an ad-hoc simulation in which the variance of data
sampled from the XPLT distribution was tested against
the variance of two leptokurtic distributions with
population kurtosis values of y, = 1.75 and 2.00.
When comparing these variances under the null
hypothesis, the Type I error rate of Fmax remained under
the nominal alpha of .05 while all other tests were not
robust.

Power. It should be noted that since Type I error
rates for these tests of variance were dependent on the
sample size and population kurtosis configuration,
power was also dependent on combinations of sample
size, population kurtosis, and group variance. In
general, when the group with the larger variance was
sampled from the heavier-tailed distribution there was
more power for the tests of variance. When the more
leptokurtic distribution was more variant, a reduction in
power was observed. Therefore, results comparing the
power of these tests are reported for both situations.

In quasi-experimental situations in which one group
was sampled from the extremely platykurtic population,
only Fmax controlled the Type I error. Therefore, only
Fmax can be validly used for testing variances when
only one group is sampled from an extremely
platykurtic population. As this negative kurtosis
increased in value and became less extreme, more
comparisons were possible.

When one group was sampled from the platykurtic
population (PLAT, y2 = -1.00) whilc the other group
was normally distributed, all tests of variance held the
Type | crror ratc for cqual sample sizcs and arc
comparable (see Table 7). Table 9 shows that under
these conditions, OB and OBBF were thc most
powerful, With uncqual sample sizes, OB, WOB, and
OBBRBF, tended to inflate the Type | crror rate, and
thercfore, Fmax and BF scem to be the most dependable
tests. Furthermore, when there was a positive sample
size/variance corrclation, WBF was robust and more
powerful as long as the disparity in sample sizes was
not extreme. With an inverse sample size/variance
relationship, Fmax is robust and adequately powerful.
However, onc may consider that OB, WOB, and OBBF
only inflated the Type I error rate when the more
platykurtic group was larger in size. Thus, under
conditions wherc the sample sizes are equal or the
smaller group is more platykurtic, OB and OBBF were
more powerful except when the larger (more leptokurtic)
sample had the larger variance, in which case, WOB was
more powcerful.

As with the extremely platykurtic population, the
Type | error ratc was controlled by Fmax when the
platykurtic distribution (PLAT, y; = -1.00) was
compared to a group sampled from a population with an
equal degree of leptokurtosis (LEPI, vy, = 1.00);
however. no other test was robust (see Table 8). Thus
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for a test of variance to be valid when one group is
platykurtic, the other group must be eithc: (a) similarlv
platykurtic, (b) symmetric, or (c) lept:::urtic to th:
same degree. If the sampled distributios. :are similari:
platykurtic, OB or WOB are preferred. If a second groups
is symmetric in shape then overall, Fmax is adequate;
however, if the platykurtic distribution has more
variance, OB, WOB, BF, WBF may be considered. If
the kurtosis of groups differ in sign to the same degrec,
only Fmax is adequate.

Table 9 also shows that when normally distributed
scores were compared to data sampled from a leptokurtic
distribution with y, = 1,00, all tests of variance that did
not violate the Type I error rate were similarly
powerful. Since OB and BF exhibited similar power,
one of the conditional procedures may be used to decide
which test to perform. That is, BFOB or OBRBF can
provide more power (Ramsey, 1994). With a positive
sample size/variance correlation, the Welch procedures
(WOB and WBF) showed more power relative to the
other tests. With a negative sample size/variance
correlation, OB remained the test of choice. Similar
findings extend to situations where one group was
leptokurtic (y; = 1.00) and the other was slightly
platykurtic (y; = -0.50; see Table 10). However, in
this situation the Welch procedures were more likely to
inflate the Type I error rate, and BF should be considered
when the sample size-variance correlation is positive.

As was the case when samples were selected from
the samc leptokurtic distribution, sampling from
differcnt leptokurtic populations demonstrated the
supcriority of the BF proccdure and its variants. For
example, Table 10 shows comparative power cstimates
for the tests of variance when one group was sampled
from an extremely leptokurtic population (LEP3, y; =
3.00) whilc the other group was less Icptokurtic (y2 =
1.00). With equal samplc sizes, BF and BFop were
more powerful. As was the case in True Experiments,
the high power of BFop relative to BF indicates the
cffectivencss of testing kurtosis before applying a test
of variance (Ramsey, 1994). When the sample
size/variance correlation is positive, WBF was clearly
the most powcrful procedure, while OB was more
powerful with a negative rclationship. As with the
results for True Experiments, the advantage of OB with
an inverse sample size/variance relationship dissipated
in high power situations (V'R =5.0, results not shown).

Discussion
Summary

The results demonstrated that when data were
sampled from the same population and randomly
assigned (i.e., True Experiments) to equally sized
groups, Hartley’s Fmax test was only robust when the
population kurtosis was ncar or below zero. This
confirms the findings of many other studies and
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establishes the need for analytic alternatives for testing
variances when data are nonnonnal. When data had a
negative kurtosis, the O'Brien (1981) transformation
was generally the best choice, while the Brown &
Forsythe (1974) transformation was robust and showed
superior power for testing variances in leptokurtic data.
Also consistent with previous studies, the O’Brien test
was generally more powerful when sample sizes and
variances were negatively correlated, regardless of the
shape of the distribution (Algina et al., 1989; Olejnik
& Algina, 1988; Ramsey, 1994). The Welch procedure
performed on O’Brien scores was more powerful when
the sample size/variance correlation was positive in
platykurtic samples (Algina et al., 1989).

Furthermore, under the conditions of a positive
sample size/variance correlation in leptokurtic samples,
the Welch test applied to Brown-Forsythe scores was
robust and demonstrated superior power. Although this
finding seems reasonable given previous research, it had
yet to be empirically confirmed until this study. The
results also demonstrated that choosing a test of
variance based on an initial test of kurtosis can increase
power (Ramsey, 1994); however, the power of these
conditional tests has been shown to be dependent on the
power of the test of kurtosis (Beasley & O'Connor,
1995). Thus, if tests of kurtosis are to be used to
determine the most powerful and appropriate test of
variance to perform, one must be concerned with the
power of both tests.

This study also presented many new findings about
the statistical propertics of testing variances when
groups werc not sampled from the same population
(i.c., Quasi-Experiments). When both groups were
sampled from similarly platykurtic or similarly
leptokurtic distributions, the results were predictable
from the results of True Experiments. However, when
onc group was extremely platykurtic, only the Fmax
tests controlled the Type I error ratc.  Furthermore, if
the kurtosis of the groups differed in sign to the same
absolute degree, the Fmax test was robust.

When the variance of normally distributed data were
tested against the variance of data sampled from a
platykurtic population, the Type I error rate of many
tests were less stable which in turn affected the validity
of power estimates and recommendations for use. Most
notably, when the larger group was normally distributed
with a larger variance and the smaller, platykurtic group
was less variable, WOB was robust and more powerful.
Fmax was preferable when sample sizes were equal or
negatively correlated to variances. However, when the
larger group was platykurtic, the Type I error rates of
OB and WOB were inflated. Thus, when the more
platykurtic group had a larger variance, the OB exhibited
more power when the sample sizes were equal or
inversely related to variance (platykurtic group was
smaller in size). For a positive sample size/variance
correlation (i.e., larger platykurtic group had larger
variance) only BF was robust and adequately powerful.
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When the variance of normally distributed data was
tested against the variance of data sampled from
leptokurtic populations, the Type I error rate of Fmax is
extremely inflated and the BF is preferred when sample
sizes are equal; however, OB showed similar power.
When the sample size/variance correlation was positive
the Welch test applied to BF scores is generally more
powerful, while OB was more powerful when the
smaller group had a larger variance despite the
leptokurtic shape of one group.

Recommendations

Educational researchers are typically interested in
estimating change and differences. However, simply
examining shifts in central location does not fully
address these issues, all distributional differences should
be investigated. Thus testing all moments in the
distribution is recommended when comparing groups
whether they are intact or randomly constructed. Not
only does this approach test the major assumptions for
the ANOVA, but it also investigates the issue of
whether a treatment condition affected the shape or
response variability of a distribution of scores in True
Experiments. In this case, tests such as the
Kolmogorov-Smimov test may be used to answer the
question “Did the treatment affect the distribution of
scores?” If intact groups are compared in central location
or if differences in scale of the dependent variable are of
interest, a test of variance is nceded. The results
demonstrate that the shape of the distributions should be
cxamined before choosing a test of variance.

Table 11 shows a summary of thesc
recommendations based on the kurtosis of the
distributions and whether the sample sizes are cqual,
positively correlated, or negatively correlated with the
variances.  Entrics on the diagonal c¢xhibit
_recommendations for data sampled from the same (i.c.,
Truc Experiments) or similar populations. Off-diagonal
entrics reveal the recommendations for Quasi-
Experiments and field research. Since the conditional
tests examined arc used to select one of these tests of
variance (i.c., OB and BF), they are not represented.
Furthermore, conditionally choosing the most powerful
test based on sample characteristics may capitalize on
chance differences in the data and inflate the Type I error
rate.

In evaluating the recommendations in Table 11, one
should consider that educational data tends to be
platykurtic in nature (Micceri, 1989). It should also be
noted that the recommendations for situations where the
groups are either both leptokurtic or both platykurtic
extend to most values of kurtosis. However, one
should be aware that for situations in which one group
is leptokurtic and the other is platykurtic the
recommendations in Table 11 apply only if the kurtosis
is of similar absolute value. Thus it is suggested that
all relevant tests of variance be performed and agreement
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among the results assessed. If all tests reject the null
hypothesis under conditions in which the Type I error
rate is controlled, then the statistical significance is
likely to represent a valid result. If there is
disagreement among tests, then the consistency of
disagreements with empirical findings should be
assessed. For example, if equally sized, platykurtic
samples are tested for variance heterogeneity and only
the O'Brien test rejects the null hypothesis, there is
indication of statistical significance because the O'Brien
test is robust and most powerful in this situation (see
Table 11).

Although this investigation was limited to the two-
sample tests, it is believed that these results extend to
most multi-group situations. For True Experiments,
other studies have shown this to be the case (e.g.,
Miller, 1968). For Quasi-Experiment .
recommendations, one should consider the several
factors. If the kurtosis values for all groups indicate
similar positive or similar negative kurtosis, then the
recommendations for leptokurtic and platykurtic groups
in Table 11 should be valid. Also if about half of the
groups are mesokurtic while the other half are either
lepto- or platykurtic, then Table 11 can be used. If the
groups are mostly leptokurtic, using the leptokurtic
recommendations is advised; however, if the groups are
mostly platykurtic, recommendations are more difficult
to make. If the groups have drastically different shapes,
the results indicated that Fmax was the preferred test in
the two group situation, but one must consider that the
Fmax only uses the data of two groups. Thus, if
multiple groups are present and the groups with the
largest and smallest variances (the values used for Fmax)
have kurtosis estimates of opposite signs, Fmax may be
allowable as long as the kurtosis values have
approximately the same absolute value.
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Table 1. Summary of conditions analyzed for Sample Size and Population configurations

True Experiment Quasi-Experiment

Type 1 Power Type 1 Power " Power
(n1, n3) Error (021 < 0'22) Error (0‘21 < 0‘%) (c?i > 0’%)
(10’ 10) * * * x *
(13’ 13) * * * * *
(20’ 20) * * * * *
(10, 20) * + * + ;
(13, 20) * + * + -
(20, 10) U - * - +
(20, 13) U - * - +

Note. * idicates the analysis was completed. U indicates the analysis was
unnecessary and not completed. - indicates a negative relationship between
sample size and variance. + indicates a positive relationship between sample size
and variance. '

Table 2, Average population parameters across Type I error simulations.

Population Parameter
Population H o} Y1 Y2
1. XPLT E(y;) = -1.80
n=10 +0,003937 1.009481 -0.001320 -0.964967
n=13 +0.003508 1.011025 -0.006166 -1.205637
n=20 -0.003517 1.006298 -0.010828 -1.447347
2. PLAT E(y;) = -1.00
n=10 +0.005843 1.007704 -0.012320 -0.421073
n=13 +0.005508 1.009243 -0.008166 -0.541785
n=20 +0.013517 1.011201 -0.030828 -0.686890
3. SPLT E(yp) =-0.50
n=10 +0.,000090 1.017263 +0.039203 -0.172836
n=13 +0.001756 1.015814 +0.046087 -0.233373
n=20 -0.004001 1.012889 +0,058859 -0.302452
4. NORM E(yz) = 0.00 R
n=10 -0.002803 1.006276 -0.027654 -0.003053
n=13 -0.001429 1.001976 -0.034611 -0.009850
n=20 +0.000057 1.003101 -0.028943 -0.010843
5. LEP1 E(y,;) = +1.00
n=10 -0.000713 1.024512 +0.061602 +0.261224
n=13 +0.058517 1.022624 +0.065461 +0.339038
n=20 +0.023376 1.027412 +0.052777 +0.493708
6. LEP3 E(y;) = +3.00
n=10 +0.011568 1.028524 +0.032652 +0.553391
n=13 +0.008883 1.012206 +0.035397 +0.765899
n=20 +0.005923 1.020455 +0.213038 +1.218371
7. XLEP E(y,) =+3.75
n=10 +0.010142 1.013801 +0.040116 +0.662791
n=13 +0.005774 1.028358 +0.017173 +0.904860

n=20 +0.004539 0.998350 +0.017142 +1.357478
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Table 3. Empirical Type I Error Rate for seven procedures in True Experiments with no differences in central
location.

Pop.  non,  Fmax OB BF _ WOB _ WBF OBpf  BFop
1. XPLT (1, = -1.80)
10, 10 0006 0248 0338 0242 0292 0248 0284
13, 13 0018 0272 0058 0262  .0054 .0272  .0272
20, 20 0006 0262 0186 0256 .0172  .0262  .0272
10, 20 0030 0372 0366  .0288 0316 .0372  .0380
13, 20 0026 0296 0232 0288 0114 0294  .0308
. PLAT (y, = -1.00)
10, 10 0152 0438 0344 0380 0324 0444 0392
13, 13 0142 0464 0256 0430 0248 0468  .0400
20, 20 0082 0474 0386 0456 0378 .0476 0444
10, 20 0124 0494 0384  0580% 0436 0498 0474
13, 20 0110 0464 0326 0510 0316 .0464 0424
. SPLT (y, = -0.50)
10, 10 0354 0396 0330 0320 0312  .0400  .0362
13, 13 0340 0416 0306 0366  .0294 0422  .0346
20, 20 0306 0486 .0436 0458 0432 0498 0456
10, 20 0368 0498 0458  .0604* 0526 0518 0494
13, 20 0332 0458 0382 0472 0414 0468 0406
. NORM (y, = 0.00)
10, 10 0484 0336 0402 0258 0370 0352 0414
13, 13 0528 0384 0312 0320 .0274  .0402  .0346
20, 20 0460 0416 0366 .0392 0358  .0428  .0368
10, 20 0462 0364 0392 0530 .0492  .0380  .0400
13, 20 0478 0422 0344 0442 0356  .0440 0380
. LEP1 (y, = 1.00)
10, 10 0648% 0352 0404 0260 .0368  .0366  .0412
13,13 0648* 0362 0324 0316 0298 0376  .0358
20, 20 0678* 0380 0398 0352  .0382  .0412 0388
10, 20 0624% 0368 0366 .0460 0456  .0388 0370
13, 20 0664* 0408 0328 0396 0348 0416 0362
. LEP3 (y, = 3.00)
10, 10 1466% 0278 0328 0188 0286  .0294 0338
13, 13 1538 0332 0346 0278 0316 0364  .0360
20, 20 1766* 0292 0364 0256 0348 0362  .0368
10, 20 J1476* 0366 0358 0438 0494 0420 0368
13, 20 A567* 0316 0384 0302 0396 0368 0392
. XLEP (y, = 3.75)
10, 10 1400% 0240 0340 0168 0278  .0266  .0348
13, 13 1496* 0294 0338 0234 0298  .0326  .0346
20, 20 1752% 0346 0412 0300 .0380  .0438  .0418
10, 20 1502% 0382 0372 0448 0506  .0416  .0390
13, 20 1662* 0340 0370 0344 0412 0388 0384

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of o = .05.
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Table 4. Empirical Power for seven procedures in True Experiments with no differences in central location and G%

2
=1.0and G5 =2.0.

Pop. n,n, Fmax OB BF wOB WBF OBBF BFOB
1. XPLT (y, = -1.80)
10, 10 .0228 4566 .1842 4424 1742 4558 4502
13,13 .0336 6310 0444 .6168 .0420 .6296 .6196
20, 20 .0856 .8662 .2306 .8608 2278 .8662 .8630
Pos. 10,20 .0282 .6502 2004 7602 2024 6494 .6470
Pos. 13,20 .0392 7640 2044 .8330 1952 7642 .7620
Neg. 20,10 .0546 7038 .1846 5224 2192 7036 6964
Neg. 20,13 .0686 7544 .0600 .6422 0302 7542 7458
2. PLAT (y, = -1.00)
10, 10 .0984 1412 1116 .1188 .1050 1424 1262
13,13 1364 2206 1348 2020 1300 2204 .1648
20, 20 .2680 .4086 2950 3950 2910 4084 3392
Pos. 10,20 1230 .1600 1716 .3420% 2480 1620 .1804
Pos. 13,20 .1530 2424 2144 3612 2668 2442 2384
Neg. 20,10 .1898 3176 1740 1184% 0918 3176 2142
Neg. 20,13 2150 3390 J912 1952 1264 3392 2390
4, NORM (v, = 0.00)
10, 10 .1508 0994 1070 0782 .0978 1030 1130
13, 13 2022 1454 1298 1262 226 1484 1368
20, 20 .2850 2348 2182 2190 2122 2412 2250
Pos. 10, 20 1620 0750 1230 2502 2172 .0806 1244
Pos. 13,20 2116 1330 1732 2416 2282 1406 1758
Neg. 20, 10 2530 .2452 1616 0650 0766 2454 1734
Neg. 20,13 2572 .2382 1654 1072 0952 2396 1752
5. LEP1 (y, = 1.00)
10, 10 e 0686 0882 0522 0782 0728 0904
13, 13 - 1040 1114 0870 1044 118 1148
20, 20 - 1610 1864 1470 1812 1850 .1888
Pos. 10, 20 e 0462 1016 1934 2158 0562 .1002
Pos. 13,20 - 0766 1372 1710 1976 0952 1376
Neg. 20,10 = 912 - 1528 0400 0630 1982 1580
Neg. 20,13 ) 1798 1544 0668 0834 1904 1576
7. XLEP (y, = 3.75)
10, 10 - .0602 0830 0444 0724 0672 .0848
13,13 - .0830 1010 .0654 .0900 .0910 .1020
20, 20 - .1438 1776 1322 1712 1764 1792
Pos. 10,20 - .0302 0916 1680 2020 0438 0910
Pos. 13,20 - .0746 1376 .1568 .2034 .0984 .1384
Neg. 20, 10 - .1620 1336 .0280 .0492 .1688 .1366
Neg. 20, 13 - 1520 .1386 0536 .0786 .1668 .1420

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and shou_ld be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06. Pos. indicatesa
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship.
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Table 5. Empirical Power for seven procedures in True Experiments with no differences in central location and 0'21

=1.0and 63 =5.0.
Pop.  nym,  Fmax OB BF  WOB  WBF _ OBBF  BFp
1. XPLT (y, = -1.80)
10, 10 6612 5450 4874 4762 4532 5476 5134
13,13 8402 7594 6582 7186  .6332 7600  .6974
20, 20 9724 9590 9104  .9526  .9062  .9592  .9406
Pos. 10,20 7794 6856 7010 9348 8618  .6878  .7170
Pos. 13,20 9040 8550 8138 9452 8858 8554 8352
Neg. 20,10 8782 8684 7238 4664 4442 8688 7788
Neg. 20, 13 9278 9158 8086 7322  .6380 9160  .8544
2. PLAT (y, = -1.00)
10, 10 6612 5450 4874 4762 4532 5476 5134
13,13 8402 7594 6582 7186  .6332 7600  .6974
20, 20 9724 9590 9104 9526  .9062 9592  .9406
Pos. 10,20 7794 6856 7010  .9348* 8618 6878 7170
Pos. 13,20 9040 8550 8138 9452 8858 8554 8352 °
Neg. 20,10 8782 8684 7238  4664* 4442 8688 7788
Neg. 20,13 9278 9158 8086  .7322  .6380 9160  .8544
4. NORM (y, = 0.00)
10, 10 6396 3616 4136 2876 3772 3698 4200
13,13 7690 5528 5646 4924 5392 5630 5726
20, 20 9350 8428 8330 8198  .8266  .8594  .8396
Pos. 10,20 7264 3800 5680 7796  .7604 3964 5654
Pos. 13,20 8388 5860 6978  .7894  .8008  .6052 6992
Neg. 20,10 8148 7458 6470 2860 3664 7538  .6584
Neg. 20, 13 8648 7880 7084 4954 5342 7986 7224
5. LEP1 (y, = 1.00)
10, 10 2600 3432 1984 3086 2762 3446
13,13 4088 4924 . 3574 4640 4446 4944
20, 20 6656 7536 6384 7438 7454 7550
Pos. 10,20 2186 4674 6032 6792 2690 4628
Pos. 13,20 3838 5948 6250 7142 4524 5934
Neg. 20,10 6160 5600  .1838 2890 6372  .5650
Neg. 20,13 6400 6362 3452 4530 6852  .6406
6. LEP3 (y, = 3.00)
10, 10 2062 2990 1590 2636 2268  .2986
13, 13 — 2948 4090 2490 3866 3502  .4094
20, 20 4962 6662 4616 6532 6556  .6676
Pos. 10,20 - 1400 3666 4794 6086 2082 3598
Pos. 13,20 2610 4902 4750 6274 3678  .4878
Neg. 20, 10 5262 5166 1256 2366 5696 5184
Neg. 20,13 5110 5590 2358 3732 5888  .5606

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06. Pos. indicatesa
positive correlation between sample size and variance; Neg. indicates an inverse sample size-vanance relationship.
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Table 6. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central
location and Group One is platykurtic y, = -1.80.

Group 2

Pop . n,n, Fmax OB BF WOB WBF OBBF BFOB

2. PLAT (y, = -1.00)
10, 10 .0092 .0620* 0484 0584* .0460 .0640* .0632*
13, 13 0068 0642* 0114 0616* 0110 .0654* .0634*
20, 20 - .0022 0542 0476 0524 .0460 0550 .0550
10, 20 .0048 .0282 .0408  .0402 .0658*  .0348 - 0364
13, 20 .0044 .0362 0160 .0454 0126 .0388 .0408
20, 10 .0062 .1178* 0532 0808* .0460 .1180* 1178*
20, 13 .0054 .0840* 0494 0600* 0418 0842 0844

3. SPLT (y, = -0.50)
10, 10 0148 0734% 0600%  .0694* 0568* - .0752% 0738*
13, 13 0116 .0750* .0160 0742 .0150 0766* 0742%
20, 20 .0084 0674* 0582*%  0656* .0566* 0678* .0680*
10, 20 .0082 .0358 .0458 0462 0682* .0420 .0452
13, 20 .0068 .0468 0162 0560 0122 .0492 0492
20, 10 0096 1238 0660*  .0936* .0580* .1240% 1230*
20,13 0108 0992+ .0560 0782% 0500 0994* 0990*

4. NORM (v, = 0.00)
10, 10 0216 .0860* 0668* 0832+ 0628* .0880* .0858*
13,13 0170 0856* 0178 0830* 0156 0874+ .0826*
20, 20 0136 0748 0676* 0738 0644* 0756* 0786
10, 20 0090 0438 0464 0560 0752* 0480 0516
13, 20 0122 .0606* 0202 0686* 0132 0636* 0610*
20, 10 0234 A530% 0814+ Jd168* 0780* 1528+ A1508*
20,13 0156 1238* 0752+ 0988+ 0652+ 1244+ .1266*

5. LEP1 (y, = 1.00)
10, 10 0324 1090* 0712+ J1052* 0674* 1106* .1054*
13,13 0262 .1038* 0248 1022* 0230 J052* 0992+
20, 20 0252 1036* 0872% 1022* .0836* .1040* 1074+
10, 20 0160 0614* 0548 0706* 0838* - .0642* 0652*
13, 20 0224 0818* 0252 0886+ 0144 .0846* 0790+
20, 10 0460 .1930* 1034+ 7324 1068+ 1934* 1934*
20,13 0354 .1624* 1078* .1440* .1018* 1630* 1626*

6. LEP3 (y, = 3.00)
10, 10 .0538 1392* 0934* 1354+ 0884+ .1400* A1366*
13, 13 .0564*  .1470* .0398 1454*. 0366 .1470* 1380*
20, 20 .0608* .1316* A172% .1300* .1140* 1316 1438*
10, 20 0328 0844* 0680* .0888* 1012* .0856* .0856*
13, 20 0446 .0990* .0404 .1036* 0234 .1006* 0942+
20, 10 .0820*  .2430* .1338* 2182* 1518* .2426* 2398+
20, 13 .0804*  2188* .1418* .1890* .1496* 2190* 2178*

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of o = 05.




50 MLRYV, Winter, 1995 ) Beasley

Table 7. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central
location and Group One is normally distributed y, = 0.

Group 2 L

Pop. nu, Fmax OB BF WOE WBF OBBF BFop

2. PLAT (y, = -1.00)
10, 10 .0362 .0458 .0432 0420 .0404 .0470 .0484
13, 13 .0280  .0472 0340 .0434 0328  .0478 .0412
20, 20 .0280 .0532 .0500 0516 .0492 .0534 0506
10, 20 .0304 .0588* 0536 .0860* .0668* .0606* .0588*
13, 20 .0304 .0566* 0484 .0654* 0536  .0578* .0534
20, 10 0304 .0516 .0390 0468 0404 0532 .0456
20, 13 0228 .0422 .0328 .0360 0282 .0430  .0400

3. SPLT (y, = -0.50)
10, 10 .0446 .0400 .0396 0312 .0370  .0416 .0412
13, 13 .0408 0444 0312 0368 0296 0454 .0372
20, 20 ,0428 .0482 0414 0444 0412 .0498 0430
10, 20 0442 0404 .0404 .0670* 0592 0416 .0406
13,20 0422 0474 0424 0522 0460 0490 0442
20, 10 0424 0394 .0354 0454 0424 0410  .0380
20, 13 0370 .0442 0310 0402 0338 0454 0356

6. LEP3 (y, = 3.00)
10, 10 J048% 0478 0500 0374 0440 0496 0510
13,13 J060* 0460 0442 0370 0404 0494 0464
20, 20 J1188* 0536 .0562% 0488 0542 L0598*  ,0572%
10, 20 0960*  ,0586* 0470 0292 0366 0602* 0492
13, 20 J1018%  .0564* 0454 0340 0364 0584* 0482
20, 10 JA194% 0434 0614* .0990*  .0926* .0474 0624*
20, 13 Jd184% 0524 .0638* .0730* ,0746* .0568* .0640*

7. XLEP (y, = 3.75)
10, 10 JO076% 0422 0494 0326 0458 0446 0500
13, 13 A174% 0480 0474 0406 0452 0524 0510
20, 20 1228* 0564 0658* 0526 0648*  .0660* 0650
10, 20 J056*  ,0584* 0468 0280  .0336 0614* 0484
13, 20 Jd166* 0554 0510 0344 0384~ .0606* .0524
20, 10 A272% 0 .0496 .0680*  [1040* .0996* .0550 0686*
20, 13 A376% 0548 0676*  ,0802* 0814* 0594* .0672*

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of o = .05
test.
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" Table 8. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central
. location and Group One is leptokurtic y, = 1.00.

- Group 2
Pop. ng,n, Fmax OB BF WOB WBF OBRF BFop

2. PLAT (1, = -1.00)

10, 10 0406 0524 0434 0436 0410 0530  .0492
13, 13 0444 0622* 0460  .0566* 0436  .0632* .0546
20, 20 0448 0684* .0616* .0656* .0606% 0696* .0656*
10, 20 0538 .0730% .0720% .1134* .0980* 0756* .0740*
13, 20 0478 0752% .0744% 0954% 0826* .0768* .0756*
20, 10 0268 0520 .0362  .0400  .0336  .0520  .0438
20, 13 0350 0548 0352  .0402 0322  .0550  .0446
3, SPLT (y, = -0.50)
10, 10 0602% 0436 0412 0350 0368 0448 0442
13, 13 0548 0472 0350 0394 0316 .0474  .0404
20, 20 0528 0510 0464 0460 0458 0534  .0480
10, 20 0622* 0484 0556  .0922% .0798* 0498  .0576*
13, 20 0586* 0468  .0494  .0630% .0562% 0492  .0502
20, 10 0458 0546 0380 0386 .0410 0558  .0404
20, 13 0436 0452 0358 0354 0288  .0474  .039%
4. NORM (y, = 0.00)
10, 10 0702% 0322 0378 0242 0348 0336  .0396
13, 13 0702* 0370 0302  .0302 0272 0382  .0342
20, 20 0772% 0470 0460 ' .0424 0444 0516  .0492
10, 20 0734% 0444 0444  0714* .0616* 0466 0452
13, 20 0700% 0400 0432 0514 0496  .0428 0444
20, 10 0628* 0436 0378 0402  .0420 0464 0402
20, 13 0670* 0400 0342 0346 0306  .0422  .0360
6. LEP3 (y, = 3.00)
10, 10 0858* - 0326 0370 0264 0328 0336  .0380
13, 13 0812* 0366 0354 .0316  .0320 0384  .0382
20, 20 0982% 0472 0472 0426 0460 0512  .0480
10, 20 0858* 0462 0392 0350  .0408  .0496  .0402
13, 20 0936* 0434 0390 0304 0342  .0480  .0404
20, 10 A134% 0384 0476 0682% .0722% 0424 0478
20, 13 1248% 0380 0448 0522 0540 0428  .0456
7. XLEP (y, = 3.75)
10, 10 J1012% 0352 0382  .0254  .0338 0380  .039
13, 13 1078* - 0374 0360 0296 0326  .0400  .0360
20, 20 1200% 0402 0492 0360 0472 0500  .0494
10, 20 0996% 0492 0382 0282  .0342  .0530  .0040
13, 20 1110 0464 0438 0350 0338 0526  .0444
20, 10 1264% 0408 0514  .0704* .0734* 0452 0534
20, 13 1210% 0382 0496  .0568% .0584* 0432  .0502

Note. * indicates the Type I error rate exceed .0562 and is 2 standard errors above the nominal alpha of o = .05 test.
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Table 9. Empirical Power Estimates for seven procedures in Quasi-Experiments with no differences in central
location and Group One is normally distributed y, = 0.00.

Group Two
PLAT ¥, =-1.00 =1.0 0'% =20
Pop. n,n, Fmax OB BF WOB WBF OBRF BFop
10, 10 .1540 1724 .1550 .1496 .1462 1748 .1682
13, 13 1868 2386  .1862 2234 1784 2418 2046
20, 20 2956 3974 3526 3888 3488 4032 3672
Pos. 10,20 .1684 2120% 2358 — —— —-- .2380*
Pos. 13,20 2064 2746*% 2758 —-- 3274 2812% 2842
Neg. 20, 10 2104 2906 2048 1242 .1248 2940 2198
Neg. 20,13 2276 3222 2246 2038 1542 3256 .2456
2 2
Group Two PLAT y,=-1.00 01 =20 0, =10
10, 10 1292 0710 0722 0540  .0652  .0722  .0760
13, 13 810 1150 0856  .0964 0806  .1154  .0960
20, 20 2998 2264 1748 2086 1706 2268  .1978
Neg. 10,20 2406 2520% 1386 e . - 1762
Neg. 13,20 2686 ,2396* 1340 — 0718 .2402% 1700
Pos. 20, 10 J268 0474 0930 2142 1762 0512 0908
Pos. 20, 10 1890 0976 1232 2182 1770 0992 1262
2 2
Group Two LEP1  y,=1.00 ;=10 Gy =20
10, 10 - 0640 0798 0458 0722 .0670  .0814
13, 13 nee 0940 0890 0772 0798  .0968  .0924
20, 20 nme A690 1690 1556 1640 1844  .1736
Pos. 10,20 e 0404 0878 1816 1820 .0486  .0882
Pos. 13,20 - 0692 1130  .1618 1670  .0794  .1130
Neg. 20,10 anee 1852 1238 e — 1884 1314
Neg. 20,13 amae 1676 1224 0608 0682  .1732  .1306
2 2
Group Two LEP1  y,=1.00 g1 =20 Gy =10
10, 10 e 1038 1148 0826 1054 .1088 1178
13,13 o= 1460 1420 1218 1346 1514 1472
20, 20 nen 2526 2646 2386 2598 2690  .2658
Neg. 10,20 . 2320 1758 0608  .0818 2352  .1822
Neg. 13,20 -—- 2348 1920 1058 1118 2404 .1984
Pos. 20,10 ——- 0880 1654 —— ———- .0990 .1622
Pos. 20,13 - 1412 1998 2518 2632 1574 2010

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and shou}d be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06. Pos. indicatesa
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship.
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“Table 10. Empirical Power Estimates for seven procedures in Quasi Experiments with no differences in central
" Jocation and Group One has positive kurtosis y, = 1.00.

Group Two SPLT  y,=-0.50 021 =1.0 o‘% =20
Pop. n,n, Fmax OB BF WOB WBF OBBr BFgpp
10, 10 - 390 1362 0 1102 1272 1442 1418
13, 13 2428 1954 1782 1722 1682 2012  .1854
20, 20 3410 3082 3042 2960 3006 3218 3084
Pos. 10, 20 - 1278 1866 e - 1382 .1864*
Pos. 13,20 .2652* 1878  .2338 — 2974* 1994 2330
Neg. 20,10 2680 2582 2040 0844 1114 2622 2086
Neg. 20,13 2858 2706 2174 1454 1462 2778 2244
‘ 2 2
Group Two SPLT vy,=-0.50 0y =20 G, =10
10, 10 —— 0588  ,0674 0452 0602 .0610  .0700
13,13 740 0796 0748 0638 0674  .0814 0782
20, 20 2730 1408 1286  .1298 1244 1486  .1362
Neg. 10,20 2242 1832 1098 0350  .0424  .1854  .1218
Neg. 13,20 2552 1682 1150 .0614 0574 1718  .1258
Pos. 20,10 - 0318 0698 e e 0364  .0690*
Pos. 20,13 2058 0694 1032 - JA1510% 0768 1044
2 2
Group Two LEP3 vy, =3.00 o, =10 Oy =20
10, 10 - 0460 0630 0344 0530  .0496  .0650
13,13 —— 0690 0782 0558 0704 .0768  .0812
20, 20 - J048 1238 0978 1196 1278 1236
Pos. 10, 20 - 0272 0722 1450 1654 0362 0716
Pos. 13,20 - 0444 0832 1174 1386 0576  .0836
Neg. 20, 10 —— 1388 1052 - - 1460 1086
Neg. 20,13 —— 272 1062 0436 0530  .1386  .1096
2 2
Group Two LEP3 vy, =3.00 G} =20 G5 =10
10, 10 - 0932 1174 0712 1002 .0982  .1200
13,13 - 112 1354 0920 1234 1232 1374
20, 20 - 1898 2402 1770 2346 2288 2412
Pos. 20, 10 - 0732 1490 2386  .2654  .0876  .1476
Pos. 20,13 - 1020 1812 2104 2450 1272 1796
Neg. 10,20 —— 1962 1716 —— ~- 2102 1746
Neg. 13,20 - 2010 1876 0796  .1112 2150  .1902

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06. Pos. indicatesa
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship.
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Table 11. Recommendations based on Variance Ratios and whether the sample sizes are equal, positively
correlated, or negatively correlated with the variances for both True and Quasi-Experiments.

Smaller Larger Variance

Variance PLAT SPLT NORM LEPT
PLAT

Equal ' OB OB, Fmax Fmax Fmax
Positive WwOB WOB WwOB Fmax
Negative OB OB Fmax Fmax
SPLT

Equal OB, Fmax OB, Fmax Fmax, OB OB, BF
Positive wOB wOB WOB BF
Negative OB OB, Fmax Fmax, OB OB
NORM

Equal OB Fmax, OB Fmax BF, OB
Positive BF wOB WOB WBF, WOB
Negative OB Fmax, OB Fmax OB
LEPT

Equal Fmax OB, BF BF, OB BF
Positive Fmax BF BF, WBF WBF
Negative Fmax oB oB OB

Note. Entries on the diagonal represent recommendations
for True Experiments, while off-diagonal entries are for
Quasi-Experiments, PLAT = platykurtic, SPLT = slightly
platykurtic; NORM = Normal, LEPT = leptokurtic; OB = O’Bricn
BF = Brown-Forsythe, W refers to performing Welch procedure






