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Research has suggested that important research questions can be addressed with meaningful intetpretations using 
hierarchical linear modeling. The proper inteipretation of results, however, is invariably linked to the choice of 
centering for the Level-I predictor variables which produce the outcome measures for the Level-2 regression analysis. 
In this study, three centering methods (uncentered, group mean, and grand mean) were compared using Read93 and 
Lunch Status as Level- I predictor variables of ITBS94 reading test scores. The reliability estimates, or how 
accurately the sample estimate represents the population value, differed among the three centering methods. It was 
found that the group mean centering method provided the better reliability estimate. When using outcome measures 
based upon these three centering methods in a Level-2 analysis using two predictors, Gradrate and Percent Advdip, 
the group mean centering method indicated a more reliable estimate, but the grand mean centering method explained 
more between school variance. In fact, the gamma regression coefficients were markedly different, and the amount of 
variance explained was no longer consistent across the centering methods. These findings indicate that the choice of 
centering method for Level-I predictor variables can affect empirical findings in HLM. 

I n quantitative research, it is essential that the 
variables under study are meaningful and 
intetprctable so that statistical results can be 
related to theoretical concerns (Arnold, 1992). 

This principle is especially meaningful in multi-level 
analyses of variables such as in hierarchical linear 
modeling (HLM). In hierarchical linear modeling, the 
Level-I variable s intercepts and slopes become 
outcome variables for Level-2 analyses. Because of 
potentially complex "nested" designs, it is important 
tJ1at each variables' value be clearly understood and 
specifically articulated (Bryk & Raudenbush, 1992). 

Hierarchical linear modeling can be used to 
investigate many of the research questions in 
education that involve at least two levels of variables. 
Samples of such questions include: Do schools with 
a high percentage of students with limited English 
proficiency also have high achievement scores? Is 
the relationship between student SES and 
achievement invariant across schools? In fact, several 
studies investigating teacher effectiveness, school 
effectiveness, and student change and growth have 
been conducted using HLM (Bryk & Raudenbush, 
1987 & 1988, Raudenbush, 1988, Lee & Bryk, 1989, 
Mendro et al. 1994, Webster et al, 1994). These 
studies recognize the nested design structure of 
students within classrooms, classrooms within 
schools, and schools within districts which produce 
different variance components for variables at each 
level. 

In multi-level analyses, variables measured 
at the different levels provide different variance 

estimates (Bock, 1989), and depending on how the 
data are treated, opposing conclusions can be reached 
(Kreft, 1995; Kreft, de Leeuw, Aiken, 1995). For 
example, school level variables do not vary for 
students in a particular school. These school-level 
variables instead help to explain between-school 
variance rather than within-school variance. 
Likewise, students in the same classroom or school 
tend to be more alike than in other classrooms or 
schools; hence, the variance between students is not 
constant. Similarly, interpretations of outcomes can 
vary at the school-level, often leading to conflicting 
results. Student level data, however, measures the 
within-school variance, conditioned by school-level 
effects. In other words, the scores of students in each 
school building arc adjusted using school-level 
variables, such as the crowded condition of that 
campus, to better reflect the nature and inteipretation 
of the scores. A typical research question for an HLM 
analysis would be the investigation of the effect of a 
school s graduation rate and percent of students in 
advanced diploma plans on the mean reading test 
scores of 9th graders. In HLM terminology, this is a 
"means as outcomes" approach which involves an 
examination and use of the intercept values as 
outcomes (dependent variable) for Level-2 variable 
analysis. The ability to statistically analyze these 
characteristics within each school, until recently, has 
been overlooked. Most data analyses have been done 
using multiple regression single-level variable 
models. 

One critical aspect to conducting HLM 
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analyses is centering Level-I predictor variables that 
produce the outcomes that are used as dependent 
variables in Level-2 analyses. The interpretation of 
these outcomes is critical to the meaningfulness of 
results since centering changes, not only the 
coefficient s value, but also the research questions 
being answered by the statistical analysis (Burton, 
1993). Theoty should drive the decision to center any 
Level-I variable as indicated by the research questions 
included in the investigation. This policy is in 
keeping with appropriate multiple linear regression 
procedures. With the introduction of HLM, however, 
the effect of one level of variables on another 
introduces several areas for further investigation (see 
conclusion section). The focus of this paper is on 
one such area, namely, centering effects of Level-I 
variables. 

Four possibilities exist for centering Level-I 
predictor variables in HLM: X metric, grand mean, 
group mean, and user defined location, such as a cut­
off score (Bryk & Raudenbush 1992). This study 
included the first three centering methods to determine 
whether the Level-I centering decision affects the 
reliability estimates in the HLM analysis. This 
investigation further examined how centering 
decisions made for Level l variables affect the amount 
of between-school variance explained by Level-2 
variables. 

METHOD 
Data Set 

Research questions posed for this study were 
investigated using data from ninth grade students (n • 
5638) continuously enrolled in 26 high schools 
within a large urban school district. The Level-I 
variables in th.is study were defined as student level 
variables. The student level variables selected for this 
study included individual reading test scores from the 
Iowa Test of Basic Skills (ITBS94) for I 994 as the 
dependent variable. The 1993 individual reading 
scores (Read93) and an individual student socio• 
economic indicator identifying free-lunch status 
(Lunch Status) were the two independent predictor 
variables. The reading test scores were interval level 
data with a potential range from 0 to 26. Lunch 
Status was a dichotomous variable indicating whether 
or not a student was in the free lunch program. 

Level-2 variables were defined as school­
level variables. School level variables from the 
twenty-six high schools selected were the graduation 
rate for each high school (Gradrate) and the percent of 
the students in advanced diploma plans within each 
school (%Advdip). No Level-2 variables used in the 
study were aggregates of any individual Level-I 
variables. Only the effects of the centering options 
on the "means as outcomes" or the intercept was 
investigated in this study. 

- . 
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Research Questions 

Prior research has indicated that both an 
interpretation of intercept outcome values and a 
change in the research question occurs based upon a 
choice of centering method. Our concern, therefore, 
was not with theoretical issues which should be 
answered as an aspect of the research design, but with 
the empirical issues surrounding the reliability 
estimates. Thee reliability estimates represent how 
well the sample mean reflects the population mean 
and whether the amount of between-school variance 
predicted at Level-2 would be the same. 

Analyses 
Several analyses specifying different models 

were undertaken to answer the research questions. An 
initial analysis established a "fully unconditional" 
model, or a model without any Level I or Level 2 
predictors (Btyk & Raudenbush, 1992). Two separate 
models with only a single Level I predictor variable 
we~e then specified. This was followed by a two 
predictor model with both variables included. A final 
analysis included a model with both Level-I 
predictors (READ93, LUNCH) and two Level-2 
predictors (AdvDip, Gradrate). Three analyses were 
run on each of these models. The analyses involved 
either an uncentered predictor, a predictor centered on 
the grand mean, or a predictor centered on the group 
mean. The Level-two predictors were not centered. 
The models arc specified next. 

Fully Unconditional Model 
Student level (Level I) Yij • J}0j + rij 

wl~rc 
Yij • ITBS 94 reading score for student 

I in school j 
J10j "" mean reading score in school j 
r .. = Levcl•l error N(0 a2 )· a2 = 
lJ ' ' ' 

student level variance 

School level (Level 2) 

where 
Poj = mean reading score in school j 
y 0

0 
= grand mean of the district (N=26 

schools) 
u

0
j = random effect school j, 

N(0, 1"
00

); 't
00 

= school level 
variance 

Level 1 Predictor Models 

READ93 model 
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Yij = Poj + P1j<READ93) + rij 

where 
Yij = ITBS 94 reading score for student 

I in school j 
Poj = mean for school j 
P lj = slope for school j 

rij = Level-I error 

Poj = Yoo + Uoj 

where 
oo = intercept mean of the district 

(n=26 schools) 
u0j = random effect for schoolj 

P1j = Y10 + U1j 

where 
Y10 = slope mean of the district (n=26 

schools) 
ulj = random effect for schoolj 

Lunch model 

Yu - Poj + Plj(LUNCH) + rij 

where 
Yij • ITBS 94 reading score for student 

I in school j 
iioj • mean for school j 
P lj • slope for school j 

rij • Level-I error 

Jioj • Yoo + uoj 

where 
Yoo • intercept mean of the district 

(n==26 schools) 
u0j = random effect for schoolj 

P1j = Yto + u1j 

where 
Yto = slope mean of the district (n=26 

schools) 
u ~ = random effect for school j 

Read93 an Lunch model 

where 
Yij = ITBS 94 reading score for student 

I in schoolj 
Poj = intercept for school j 
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P lj = slope of READ93 for school j 
P2j = slope of LUNCH for school j 

r• • = Level- I error 
lJ 

Poj = Yoo + uoj 

where 
Yoo= slope mean of the district (n=26 

schools) 
Uoj = random effect for school j 

P1j = Yto + Ulj 

where 
Yto = READ93 mean slope in the 

district 
ulj = random effect for schoolj 

P2j = Y20 +u2j 

where 
Y20 = Lunch mean slope in the district 
u2j = random effect for school j 

Level 1 and Level 2 Predictor Models 

Yij • Po/ P Ij(READ93) + p2j(LUNCH) + rij 

where 
Yij • ITBS 94 reading score for student 

I in school j 
Jioj • mean for school j 
rij • Level-I error 

Poj • Yoo+ Yo 1 (AdvDip) + y02(Gradrate) + u0j 
where 
Yoo • intercept mean of the district 

(n=26 schools) 
u0j = random effect for schoolj 

P1j = Y10 + Y11(AdvDip) + y12(Gradrate) + u1j 

where 
Y 1 o = Read93 slope mean of the 

district 
u 1 · = random effect for school j 

P2j = Y20 ! y2 I (AdvDip) +y22(Gradrate) + u2j 

where 
y20 = Lunch slope mean of the district 
u2j = random effect for school j 
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The combined equation for the full model 
with both Level I and Level 2 predictor variables is 
then specified as: 

Yij =( r00+y 01 (AdvDip)+y02(Gradrate) +u0j) 
+( y10 + YJ 1(AdvDip) 
+y12(Gradrate) +u1j) (READ93) 
+( y20 + Yz I (AdvD1p) 
+ y2z<Gradrate) + u2j) (LUNCH)+ rij 

RESULTS 

Level 1 Variable Analyses 
The "fully unconditional" model, which 

only specified an intercept, resulted in a reliability 
estimate of . 98 (Table 1). This initial "fully 
unconditional" null model allows us to partition the 
total variance in reading scores into a between school 
variance component (24%). It also establishes an 
estimate for the grand mean ( Po ) , a confidence 
interval ( Po +/- SEp 0), and establishes the 

parameters for within-school variability ( 2 ) and 
between school variability ( 00 ). The reliability 
estimate indicates how well each school s sample 
average in reading achievement estimates their true 
mean (Bryk & Raudenbush, 1992). In this case, the 
reliability estimate was , 98, indicating that the school 
s sample means arc quite reliable as indicators of their 
true school means. The significant t-value indicates 
that the schools do not have the same mean ITBS 
1994 reading average. • 

In the single Level 1 predictor model for 
READ93, results indicated that the reliability 
estimates diff crcd between the three centering 
methods. The slope and reliability estimate, 
however, were the same as in the "fully 
unconditional" model. As expected, the amount of 
within school variance remained the same regardless 
of which centering method was used (45%). 

Table 3 indicates results from the three 
centering methods when using Lunch as a single 

Level-I predictor variable. The group mean 
centering method yielded results identical to the 
"fully unconditional" model, and the grand mean 
centering method more closely approximated 
this initial model than the uncentered approach. The 
amount of within school variance explained was 
small (3%), and as expected, the same regardless of 
choice of centering method. 
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Table 4 lists the results of the "fully 
unconditional" analysis and further indicates the effect 
of each centering method w n both Read93 and Lunch 
Status were used in a Level- I prediction equation for 
1994 ITBS reading outcomes. The results indicated 
that 45% of the between school variance was 
explained when using both predictors, which was the 
same amount indicated when using Re 93 alone, 
suggesting that the Lunch variable doesn't contribute 
any additional explained variance in the model. 
Moreover, the sample mean intercept value using the 
group mean centering method was the same as in the 
initial "fully unconditional" model, with only a slight 
improvement in the reliability estimate (.98 to .99). 
The reliability estimate for the grand mean centering 
method was more approximate to these values than 
the uncentered method, especially when using Read93 
as the only predictor. The group mean centering 
method was therefore the most stable of the three 
centering methods. 

From a practical research point of view, the 
choice of Level-I predictors will impact the ai~ount 
of within school variance explained. In our approach, 
preference would be given to using only Read93 as a 
Level-I predictor since Lunch did not add any 
additional significant variance explained. However, 
for our purposes, we continued to use both Level-I 
predictor variables in the Level-2 equation. 

Level 1 and Level 2 variable analysis 

Table 5 indicates each type of centering 
method and the associated summary statistics from 
the Level 2 complete model prediction equation. The 
amount .of between-school variance explained is no 
longer consistent across the centering methods. The 
amount of variance explained using uncentered Level­
l variables was 89%; with group mean centering it 
was 70 'Yo; and with grand mean centering it Was 
92%. The reliability estimates, or how well the 
sample estimates indicate the true population values, 
also differed. The group mean centering method 
yielded the highest reliability estimate (. 96), but 
indicated very different coefficients for the variables 
than the other two centering methods, and had the 
lowest percent variance explained (70%). This le~ds 
to conflicting results since the group mean centenng 
method was preferred in the Level I analyses, but the 
grand mean centering method explaine~ more 
between-school variance in the Level 2 analysis. 

Table I. Full Unconditional Model on 1994 ITBS reading scores (n=26 schools). 

Centering Method Po SE Po 

Null model 16.85 .67 .98 

- . 
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Note: No predictors were specified in Level 1 analysis; Intraclass correlation 
coefficient= -r001 ( -r00 + 2 ) = 11.60/ (11.60 + 36.08) = 24% of variance in 1994 
ITBS reading scores explained between schools; and regression coefficient is 
significant (critical t =25.15, p=.0001). 

Table 2. Level 1 predictor READ93 on 1994 ITBS reading scores (n=26 schools). 

Centering Methoda 

Uncentered 
Centered: Group Mean 
Centered: Grand Mean 

a 

Po SE Po 

13.85 .55 
16.85 .67 
16.74 .62 

.69 

.98 
.97 

P1 SE P1 rxx 

1.87 .33 .67 
1.82 .33 .67 
1.87 .33 .67 

Intraclass correlation the same for each centering method [cr2 (ANOVA). cr2 (READ93Y cr2 (ANOVA) • 36.08-20.00/36.08 m 

4S% 

Table 3. Level 1 predictor Lunch on 1994 !TBS reading scores (n=26 schools). 

Centering Methoda Po SEPo rxx P1 SE p1 rxx 

Uncentered 13.85 .ss .69 1.87 .33 .67 
Centered: Group Mean 16.85 .67 .98 1.82 .33 .67 
Centered: Grand Mean 16.74 .62 .97 1.87 .33 .67 

a 
Intraclass correlation the same for each centering method [cr2 (ANOVA). a 2 (LunchY a 2 (ANOVA) • 

36.08-35.0.S/36.08 • 3% 

Table 4. Both Level 1 predictor variables on 1994 ITBS reading scores (n•26 schools). 

Centering Mcthoda 

Unccntcred 
Centered: Group Mean 
Centered: Grand Mean 

a 

Uncondjtjonal Rcad93 ~ 
Po· SE flo rxx i1 1 SE i11 rxx p2 PSE 2 rxx 

6.46 .34 .47 
16,85 ,68 ,99 
16.77 .26 ,89 

.22 ,004 .30 
.22 .004 .37 
.22 .004 .29 

.69 .15 .25 
,69 .16 .28 
.69 .IS .26 

Intraclass correlation the same for each centering method [ cr2 (ANOVA). cr2(READ93 & Lunch)/ 

a2(ANOVA) • 36.08-19.88/36.08 • 4.5% 



Schumacker and Bembrey 6 MLRV, Volume 23, 1997 

Table 5. Complete model: Graduation Rate and Percent Advanced Diploma using 1994 ITBS READ93 and Lunch 
reading score intercepts (n = 26 schools). 

Centering Yoo SE 'Yo 1 SE 'Yo 2 SE rxx 
Method Yoo ro 1 ro 2 

Uncenterel 4.17 1.11 .003 ,02 ,04 .03 .43 
3.75 

Centered: 8.76 1.19 .030 .02 .13 ,03 ,96 
b 

Group Mean 
Centered: 14.1 ,68 .004 .01 .05 .02 ,84 

C 
Grand Mean 5 

a Intraclass correlation coefficient= -r00 (ANOVA) - -r00 (Gradrate & %Advdip)/ 
-roo(ANOVA) = 11.60 - 1.22/ l l.60 = 89%; t = 3.75, p > ,002. 

b Intraclass correlation coefficient= -r00 (ANOVA) - -r00 (Gradrate & %Advdip)/ -r00(ANOVA) = 11.60 - 3.46/ 
11.60 = 70%; t = 7.36, p > ,0001. 

c Intraclass correlation coefficient= 00 (ANOV A) - 00 (Gradrate & %Advdip)/ 
-roo(ANOVA) = 11.60 - ,97/ 11.60 = 92%; t = 20.87, p > ,00001. 

CONCLUSIONS AND DISCUSSION 
In practical applications, Level 1 predictor 

variables appear to become more stable when they are 
centered on either the group mean or grand mean. In 
our study, the initial sample estimate (intercept, Po) 
was close to the population value in the "fully 
unconditional" model, as indicated by the reliability 
estimate of .98. This finding is expected in any 
initial null model. The reliability estimates, 
however, differed between the three· centering methods 
when centering the Level I predictors Read93 and 
Lunch. For Read93, the reliability estimates were 
.76 uncentered), ,98 (group-mean centered), and ,90 
(grand-mean centered). For Lunch, the reliability 
estimates were ,69 (uncentered), .98 (group-mean 
centered), and .97 (grand-mean centered). The group­
mean centering method for both Level 1 predictor 
variables yielded the same intercept and reliability 
estimate as in the "fully unconditional model". The 
intercept and slope values differed in the grand mean 
centering and uncentered methods, although they 
were more approximate when using grand mean 
centering. As expected, the amount of within school 
variance explained remained the same regardless of 
which centering method was used (45%). When 
using outcome measures based upon these three 
centering methods in a Level 2 full model analysis 
with two predictors, Gradrate and Percent Advdip, the 
group mean centering method also indicated a more 
reliable estimate, but the grand mean centering 
method explained more between school variance. 
The gamma regression coefficients were markedly 
different and the amount of variance explained was no 

- . 

longer consistent across the centering methods. 
These findings indicate that the centering of Level 1 
variables empirically effects the variance estimation 
in Level 2 model analyses. 

We found that the meaningfulness of the 
intercept and slope values in a Level 1 (student level) 
model depends upon the centering of the Level 1 
predictor variables. In raw metric fom1, the equation 
Y ij • Poj + P 1xij + rij , yields intercept values, Poj• 
·which are interpretea as an outcome measure for a 
student attending school j who has a O (1.cro) on Xij. • 
Obviously this causes a problem in the interpretation 
of student achievement using these raw metric 
intercept values because the lowest score on the test 
will not be zero. When centering Level I predictor 
variables around the grand mean, they are detennined 
by: (X .. - X .. ). The intercept, PoJ·• can now be 

lj 
interpreted as an outcome measure for a student in 
school j whose value on Xij is referenced to the grand 
mean. This permits a useful interpretation of the 
intercept as an adjusted mean for school j: in this 
case, Poj = µYj + p 1j<X 'j - X .. ). This is similar to 

the adjusted means in an ANCOVA analysis. These 
intercept values can now represent a specific 
interpretation of the outcome measures for each 
school in the Level 2 model analysis. The intercept 
variance term reflects the variation in the adjusted 
means for the set of schools. If the Level I 
predictor variables are centered around the group 

mean, they are determined by (Xij • X.j)- Now the 
intercept, Po·, represents the unadjusted outcome 
measure for i student in school j. In this instance, 
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Poj = µYj . The intercept variance, Var ( Poj ), is 
now the variance around the Level 2 variable unit 
means, µyj . This permits an examination of the 
sampling distribution of the school means or slopes 
around a population mean value, i.e. district mean 
value. 

A researcher will typically center some or all 
Level I (student-level) predictors at either the grand 
mean or group mean to add stability to the estimation 
process and provide for intercepts that can be 
meaningfully interpreted. Centering, however, also 
has the effect of changing the coefficients that are 
estimated and altering the research question(s) being 
asked. Burton (1993), using a NELS88 data set 
(outcome =mathematics achievement test; student­
level variables =minority status, socio-economic 
status, and absenteeism; school-level variables 
=percent minority; location of school, and percent 
low SES), indicated that uncentered and grand mean 
centering indicated only significant Level I 
coefficients while group mean centering indicated 
significant Level 2 coefficients (school level). This 
implied two different interpretations of results: one at 
the. student level with individual status affecting 
achievement, and one at the school level with average 
school status affecting achievement. It is 
troublesome that a choice between these two 
centering methods could result in two different 
interpretations. Which is the correct interpretation of 
the results? 

Research has suggested that important 
research questions can be addressed with meaningful 
interpretations using hierarchical linear modeling 
(Raudenbush, Rowan, & Cheong, 1993 ). For 
practical applications, the unconditional model 
allows partitioning of variance into within-school and 
between-school components for the outcome measure. 
The choice of variables at Level-I impacts the 
amount of within~school variance (student-level) that 
can be explained, and the choice of variables at Level-
2 impacts the amount of between-school variance 
(school-level) that can be explained given• the 
outcome measures provided from the Level-I 
equation. The proper interpretation of results, 
however, is invariably linked to the choice of 
centering for the Level- I predictor variables which 
produces the dependent measures for Level-2 
regression analyses. Studies which examined 
organi:zational level, school effectiveness, and teacher 
effectiveness variables using hierarchical linear 
models have provided more appropriate variance 
estimates and means as outcomes than previous 
single level data analyses. The proper interpretation 
and accuracy of estimation, however, requires that a 
researcher pay special attention to the centering effects 
in Level-I student-level variables upon Level-2 
analyses when conducting hierarchical linear models. 

For many researchers, multiple regression 
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has become a valuable data analvtic tool because 
many of the issues related to· using multiple 
regressi~n have been investigated. For example, 
sample size and power, non-normality, heterogeneity, 
number of predictors, ratio of sample size to 
predictors, multi-collinearity, use of composite 
variables, outliers, and interaction effects. We believe 
that many of these concerns need to be restated in the 
context of hierarchical linear modeling. Once case in 
point is the effect of centering when including an 
interaction term. Aiken & West (1993) have 
indicated that centering variables in the presence of an 
interaction term in multiple regression changes the 
value of the regression coefficients. In HLM, this 
would follow as a dictum, especially in light of the 
findings by Burton (1993). Additional examination 
of other factors will determine what effect, if any, 
they have upon hierarchical linear analyses. 
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