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   Because public schools do not randomly assign students and teachers across schools (methodological utopia),
multilevel evaluation models which account for student and school contextual and practice variables in their natural
settings provide the most rigorous means for empirically showing what is actually happening in school classrooms.
Still, no statistical methodology can make up for faulty design or bad data.  This article presents some important
practical issues regarding data handling for multilevel analysis methodology.  Also presented are important  modeling
design issues that need to be considered when applying hierarchical linear models (HLM) to the measurement of
schools and for determining which factors impact the value schools add to students’ achievement.

he statistical method chosen for an analysis is
usually a function of two things: the question
being asked and the nature of the recorded data.

In the case of measuring school effects, HLM is a
multivariate regression-like analysis technique that
was developed specifically for use in school effects
research.  HLM allows the examination of
associations among multi-level, nested data such as
students within schools by estimating simultaneous
linear equations at the student level within schools
and the school level between schools.  HLM models
explain student and school variation in achievement
scores, using both student- and school-level variables
as explanatory variables, while accounting for the
variance at each level.  In the Prince George’s County
Public School district, the HLM model has been used
to rank schools on their contribution to student
achievement beyond those associated with student
poverty, student mobility and school poverty (i.e.,
Value-added Index), and HLM was also used to
evaluate which factors contribute to the value added
by schools (Adcock, 1995; Adcock, 1997).

   Despite the tremendous potential for HLM to show
how schools are doing and what can be done to make
them better, the types of evaluation-quality data
necessary to support the different levels of analysis --
student, teacher, classroom, school, district — are not
supported by the data handling practices of most
public school districts.  The fact that HLM is a non-
experimental design involving the analysis of
relationships among variables at multiple levels in
the educational system makes the integrity of the data
support system critical.  Analysis of multilevel data

must begin with an understanding of relationships
among the lowest level variables, how unbiased
higher level variables are constructed from lower level
variables, and the relationships among the lower level
and higher level variables (Cooley, Lloyd, and Mao,
1981).  

   After the multilevel evaluation design has been
determined (e.g., HLM), the availability of specified
student, classroom, school and district level
evaluation-quality data is a real-life issue to the
practical application to school effectiveness studies.
The first section of this paper will address the issue of
school district data support for multilevel evaluation
designs and the second section will address modeling
issues important to the successful application of the
HLM model.

Section One
   Data handling and data analysis are not distinctly
different.  Due to the increasing popularity of causal
analysis and structural equation models (e.g.,
LISREL, AMOS, HLM) in school effects studies, the
problems inherent in the multilevel nature of
educational data are becoming more widely recognized
(Bentler and Chou, 1988).  School district data
management systems and school district evaluation
offices need to get in sync with the research,
evaluation and accountability needs fulfilled by
multilevel analysis models.  

The formulation of explicit multilevel models with
hypotheses about effects occurring at each level and
across levels places important structural features and

T
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demands on data.  Expressing relationships among
variables within a given level, and specifying how
variables at one level influence relations occurring at
another require a data processing system purposefully
designed to support such innovative analysis
methods.  Because multilevel model analysis
requirements of school district data are statistical in
nature, it is the responsibility of school district
evaluation offices to develop a relational database that
can provide hierarchically structured and linked data —
students, classrooms, schools, and district — for
analysis by these powerful and important multilevel
evaluation methods.  From the perspective of a
school district staff member responsible for fulfilling
the data requirements of two large scale HLM school
effects studies, the following data handling issues are
identified among those which are important to the
application of HLM analysis, reporting the nature of
the analysis to colleagues, and supporting continued
multilevel analysis studies:

1. taking control of variable definitions and
parameters in determining the unit of
analysis;

2. variable selection and measurement standards
for evaluation-quality data vs. colleagues’
“wish list” for inclusion of “crucial
variables” in the analysis model; and

3. harvesting raw data from school district
legacy system sources.

Unit of Analysis

Who is a student?  Who is a teacher?  What
constitutes participation behavior, class size and
student instructional cost?  What is a  program, a
treatment, a school?  Because one can not analyze
below the data level that you observe, record, store
and manage, it is vital that the unit of analysis
parameters for measured predictor variables are
established by statistical staff with a definitive vision
and understanding of analysis. Once a plausible causal
model has been defined, the structural equations
implied by that model determine the appropriateness
of a particular data analysis scheme.  If the causal
models are multilevel (e.g., HLM), then analysis will
occur at the different levels for a complete

understanding of the teaching and learning phenomena
under investigation.  In particular, the potential
contribution of multilevel analysis is a function of
recorded data on each individual’s singular
characteristics, experiences, behaviors, and
achievements.  Furthermore, since HLM analysis
procedures take both student and school information
into account simultaneously, it is important that data
representing the same variables between these levels
are consistent, linked and stable.

   Multilevel evaluation models which account for
student and school contextual and practice variables in
their natural settings (e.g., HLM) provide a viable
means of empirically showing what is actually
happening in school classrooms.  Students who are
highly mobile and schools with highly mobile
populations, for example, represent contextual
variables which can be represented at both the student
level (Student Mobility) and the school level (School
Mobility).  Likewise, teachers who have service years
in a particular school (School Vested) and total
service years in the district (System Vested) provide
teaching experience information which naturally vary
across schools.  Rigorous variable specifications
must rely upon an understanding of the school system
source data structure   and   multilevel analysis
requirements.  These specifications enable the
appropriate unit of analysis construction for
individual student and individual teacher variables
which can, in turn, be aggregated to higher
classroom, school and district levels yielding
consistent and stable estimates at each level.  

   Table 1 lists operational examples of how the
Prince George’s school district evaluation office
fulfilled the requirements for evaluation-quality
variables included in a recent HLM value-added study
of 120 elementary schools (Adcock, 1997).  This
research study had two foci: the effects of personal
characteristics and individual educational experiences
on student learning, and how these relations are in
turn influenced by classroom organization and the
specific behavior and characteristics of the teachers
within the school.  Correspondingly, the data have a
two-level hierarchical structure.  The Level-1 units are
the persons, who are nested within the Level-2 units
of schools.
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Table 1

School Year 1994-95 (SY95) HLM Value-Added Assessment Study
Partial List of Individual (Level 1) and Elementary School (Level 2) Variables

Variable Defini t ion Parameters
Student
(Level 1)

For the value-added study, student is a SY95
Maryland School Performance Assessment
Program (MSPAP)   eligible   examinee with at
least one scale score in the content areas of
reading, mathematics or science.

“Student” is a Research, Evaluation
and Assimilation Database (READ)
warehouse system data element
defined as a child who has an
assigned PGCPS enrollment date and
location, student number, race code
and gender code.

Teacher
(Level 1)

For the value-added study, elementary school
teacher is a “core teacher” who is responsible for
delivering the PGCPS curriculum in the six
MSPAP test content areas (i.e., mathematics,
science, social studies, reading, writing, and
language arts).

Core teacher is a READ data
element representing a school-based
certificated “classroom” teacher
employed on the last day of the
school year and who has the assigned
responsibility to provide students
instruction and assign course grades
in one or more of the   core academic
  subject areas   of language (reading,
English, etc.), mathematics, science
or social studies.

Class Size
(Level 2)

The total number of students enrolled on the last
day of the school year divided by the number of
core teachers employed on the last day of the
school year for each elementary school.

“Core Teacher” is a READ-defined
data element: See Level 1 definition
for “teacher” listed above.  “Class
Size” is a constructed class student-
teacher ratio similar to that used by
R. F. Ferguson (1991).

Teacher College
Training
(Level 2)

The average academic training index of the core
teachers in a school.  Seven point scale:
1=Bachelors, 2=Bachelors+30 course credit hours
(cch), 3=Masters/Equivalent, 4=Masters+15(cch),
5=Masters+30(cch), 6=Masters+60(cch),
7=Doctorate.

Computed from the sum of teacher
college training index divided by the
number of core teachers employed on
the last day of the school year for
each elementary school.

Teacher Cost Per
Student
(Level 2)

The average salary of the core teachers   employed  
at end-of-year (EOY) multiplied by the number of
classroom teachers assigned ( = the budgeted1

number or the actual number of core teachers
observed, whichever greater) divided by the total
number of students enrolled in school at EOY for
each elementary school.

Permanent teachers who are replaced
by long-term  substitute teachers at
EOY required the following
correction for computing the school’s
teacher salary (numerator): The
average salary of the   observed  
permanent core teaching staff is
multiplied by the   number of
  budgeted   core teachers in each school.

                                                
1      Pupil Accounting and School Boundary “     Class Size Report: 1994-95.  "
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Enrollment
Mobility: School
(Level 2)

The average total number of days that SY95
Maryland School Performance Assessment
Program (MSPAP) examinees were NOT enrolled
in the school in which they began taking the
SY95 MSPAP test for the past 3 years (SY93-
SY95) based upon their most recent occurrence of
continuous enrollment in that school.

Only the last continuous enrollment
period is considered.  No school
transfers after the start of MSPAP
administration date are considered.
Continuous school enrollment (i.e.,
0 Mobility)  for 3 years is 540 days
(i.e., 180 * 3 years) for the MSPAP
school.

Enrollment
Mobility: System
(Level 2)

The average total number of days that SY95
MSPAP examinees were NOT enrolled in the
PGCPS system for the past 3 years (SY93-SY95)
dating back from the start of MSPAP
administration date.

Note: continuous system enrollment
(i.e., 0 Mobility)  for 3 years is 540
days (i.e., 180 * 3 years) for any
combination of schools in the
system.

Teacher Service
Years at MSPAP
School
(Level 2)

The average total number of years that core
teachers employed at SY95 MSPAP schools
“belonged” to that school based upon their most
recent occurrence of continuous employment in
that school.

Only the last continuous “belonging”
period is considered.

Teacher Service
Years in PG System
(Level 2)

The average total number of years that core
teachers have been employed as certified teachers
in the PGCPS system based upon their most
recent occurrence of continuous employment in
the system.

Only the last continuous “belonging”
period is considered.

% of MSPAP
Examinees African-
American (Minority)
(Level 2)

The proportion of the total SY95 MSPAP
examinee population who are African-American
for each elementary school.

School aggregate means of Minority
= 1 and Other = 0 are  actually
proportion values of study students
who are African-Americans.

% Poverty Among
MSPAP Examinees
(Level 2)

The proportion of the SY95 MSPAP examinee
population who are receiving a free or reduced
lunch.

School aggregate means of Poverty =
1 and Non-Poverty = 0 are  actually
proportion values of study students
who are eligible for Free/Reduced
meal program.

% of MSPAP
Examinees TAG
(Level 2)

The proportion of the total SY95 MSPAP
examinee population who are identified as
“talented and gifted” by the TAG Office.

Teacher Days
Absent in SY95
(Level 2)

The proportion of days the core teachers employed
at end-of-year (EOY) were absent during SY95 for
each elementary school.

Computed from sum of  teacher days
absent divided by sum of days
“belonging” to school for all end-of -
year (EOY) core teachers.

Teacher Salary
(Level 2)

The average core teacher salary in a school. Computed from the sum of the
teacher salary, divided by the number
of core teachers at EOY in a school.
SY95 “A” Scale Tables used for
salaries.

Achievement Test
Scale Score in
Reading,
Mathematics and
Science
(Level 2)

The school’s average unweighted third and fifth
grade student performance for SY95 MSPAP
reading, mathematics and science content areas.

A few elementary or “combination”
schools did not have both third and
fifth grade levels.  Cases deleted from
content area school aggregation if
missing test scale score.
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   As can be seen from the list of variable in Table 1,
selection of variables for this HLM research study
was not limited to “available and easy” but included
factors cited in school effects literature and by school
policy members as important contributors to teaching
and learning.  Table 1 lists Level 1 variable
definitions for student and teacher, and several Level 2
school aggregate variables used in a recent HLM
study.  The variable definitions and parameter
specifications are also shown.  Since Level 1
variables for individual characteristics, behaviors and
achievements (e.g., Student SES, Student Mobility,
and Teacher Training) are used to build Level 2
aggregate variable values, the Level 1 variables
beyond “student” and “teacher” used in the study were
omitted from the list because the reader can easily
deduce the concomitant Level 1 definitions and
specifications from those listed for Level 2.

Evaluation Variables vs. “Wish List”
   You cannot analyze what you do not measure.  It is
around the conference table where evaluation study
results are being presented that evaluation staff often
learn from colleagues of the plethora of programs and
initiatives which “explain everything!” but are
missing from the causal evaluation model.  For
example, where are the: students’ beginning
achievement levels, gain scores, teacher inservice,
Saturday Academies, parent participation, computer
labs, dimension of learning instructional practices,
content certified teachers, extra resource
teachers,...,etc. in the multilevel model analysis?
After all, schools are implementing one great thing
after another great thing, and there is no measurement
of these great things in the analysis model!  
Actually, there is no   evaluation-quality   measurement
of these great practices at all, otherwise they    would   be
in the analysis model.  Statisticians have not been
known to shy away from any available evaluation-
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quality data that may correlate with student
achievement.

   As presented in the previous section, quality
standards for evaluation analysis data must meet
rigorous specifications.  The evaluation-quality
measurement standards include unit of analysis issues
for case selection, assessment, scaling and recording.
Often these evaluation-quality measurement standards
are very difficult to achieve for many of the
innovative practices, activities, experiences, and
resources implemented by program staff and put forth
as correlates of observed student achievement.  In fact,
when the measurement specifications are delineated
for the inclusion of these practices (e.g., teacher
inservice), program staff often find them too
confining, burdensome, and in some cases menacing.
Still, it is the responsibility of the school district
evaluation office to provide guidance to staff
interested in carrying out evaluation-quality
measurement of their program’s contribution to the
value-added effects of schools.

Harvesting Data From Legacy Sources
“   We do so much testing and surveys, plus filling
out tons of data forms; how come we don’t have any
data for evaluating this program, that initiative or
these schools?”    With respect to research, the choice
of data to analyze, debugging and preparation
methods, management and storage procedures, and
data layout is an act of theoretical preference
(Davidson, 1996).  A scientifically rigorous approach
for research, evaluation and accountability has
inherent data handling standards which sometimes
render locally developed and administered data
gathering information inadequate for evaluation
purposes.  Still, a database support system which can
transform much of a school district’s operational
system data (e.g., course schedules, grades, tests,
attendance, teacher service years, etc.) into a database
system which meets the structural and statistical
evaluation data standards for multilevel school and
program evaluation studies is an indispensable tool
for school district evaluation.  In response to this
vital need for pro-actively prepared evaluation-quality
extant data on students, teachers, program/school
participation measures, and resources the Research,
Evaluation and Accountability staff of the PGCPS
system has developed the Research and Evaluation
Assimilation Database (READ) warehouse support
system (Adcock, Haseltine, & Winkler, 1997).  This
comprehensive relational school district data
warehouse model, READ, provides detailed
achievement data together with contextual and process

information at the various levels of students,
classroom, teacher and schools.  READ is well-suited
for supporting scientifically rigorous multilevel HLM
evaluation studies of student and school correlates
with student achievement.  

   The READ data collection scheme focuses on
collecting data for the following five core
database entities: student, teacher, school,
program and instructional finance.  The READ
warehouse sequential data processing procedures
require data “scrubbing” for all incoming data.
Scrubbing is a data warehouse term that includes the
integration of legacy data from multiple sources and
reformatting as necessary to ensure completeness,
consistency, and accuracy.  In addition, scrubbing data
to evaluation requirement specifications often
involves enhancement or derivation processing,
partitioning and summarization of newly acquired
legacy data.  Transforming legacy data into
evaluation-quality data is given such importance that
the READ data warehousing pipeline has dedicated
substantial resources to data verification,
documentation, scrubbing and enhancement activities.

   The design of the READ data warehouse follows
logical relational database design with subject areas
and their relationships.  Figure 1 shows the
Entity/Relationship Diagram (ERD) for the READ
System’s data warehouse.  

   In READ all input data is initially kept at the
individual student (or teacher) level, and then
aggregated at higher levels to meet complex
evaluation data needs of multilevel analysis.  Two-
level HLM analysis, for example, may require the
extraction of READ student level data for
achievement, socio-economic status, ethnicity, etc.,
and school level data on teacher academic training,
cost per student, mobility of student population, etc.
The READ warehouse method of collecting,
managing and extracting data permit this type of
evaluation of the real-life multi-level nature of school
district structure to be conducted.  The next section
describes some of the fundamental issues associated
with modeling HLM analysis.

SECTION 2
   This section is intended to provide researchers with
the basic understanding of several statistical
fundamentals of  hierarchical linear models (HLM).
We will introduce the HLM model, discuss centering,
the estimation of school effects, and the empirical
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Bayes estimation procedure. Along the way we will
provide some practical advice in several other areas.

Simple versions of the HLM  

   To facilitate understanding we will illustrate all
points with a simple 2-level HLM model with only
one independent variable at both the student and
school levels. We will also adopt the widely used
notation provided by Bryk and Raudenbush (1992). At
level I the dependent variable, Yij, will be math

achievement and the independent variable, Xij , will

be socio-economic status (SES). At level II the
independent variable will be the mean SES for school
j, Wj.  

Level I
         

Yij = ß0j + ß1j (Xij ) + rij,                     (1)

where                                  ( 1 ) 

           Yij = math achievement for student i in

school j,

           ß0j = expected math achievement. ß0j is an

adjusted mean for school j such that
                   ß0j = µy j - ß1j (Xij ),

           ß2j = expected change in math achievement a

unit change in X, and

           rij = residual for student i in school j.

Level II
                       

ß0j = γ00 + γ01 (Wj ) + µ0j,                   (2)

where  

           γ00 = predicted grand mean for math

achievement for all schools based on W,

           γ01 = change in expected school mean

achievement ( ß0j ) for a unit change in W,

           µoj = unique effect of school j on the

expected school achievement after controlling for W.              

ß1j = γ10 + γ11 (Wj ) + µ1j,                   (3)

where                                                  
           γ10 = SES slope for all schools.

           γ11 = change in SES slope (ß1j ) for a unit

change in W,
          

µ1j = unique effect of school j on the SES

slope after controlling for W.

At level I we make the assumptions that E(rij) = 0,

and Var(rij) = σ2. At level II we assume

E(µ0j) = E(µ1j) = 0, Var(µ0j) = τ00, Var(µ1j) = τ11,

Cov(µ0j,µ1j) = τ01, and Cov(µ1j, µ0j) = τ10.

   There are two important statistics that are based on
these variances and covariances. The first is the intra-
class correlation coefficient, p, (which indicates the
overall degree of clustering within schools)

p =  τ00/(τ00 + σ2), (4)

and the second is the reliability with which µ0j is

etimated by the ordinary least-squares estimate (OLS)
Y.j - ß1j (X.j) within each school

λj = τ00/(τ00 + σ2/nj). (5)

   The above first three equations can be expressed as
a single level I model
by substituting equations 2 and 3 into 1. This yields
the reduced form of the HLM model as follows

Yij = [γ00 + γ01 (Wj ) + µ0j ] + [γ10 + γ11 (Wj )

+ µ1j ] (Xij ) + rij.          ( 6 )

   As a general rule the coefficients of the level I
model are treated as random while the level II  (or the
highest level in the model) are treated as fixed.
Treating a level I coefficient as random indicates that
the coefficient varies across schools (or level II units).
One good way to better understand the HLM is to
contrast it with other simpler models frequently used
by education researchers. A number of commonly
used simpler models can be obtained from equations
1-3 by fixing the level I parameters. For example, if
there are no level I or level II independent variables
then equation 1 becomes
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Yij = ß0j + rij, ( 7 )

and equation 2 becomes

ß0j = γ00 + µ0j. ( 8 )

Substituting equation 8 into 7 yields

Yij = γ00 + µ0j + rij, ( 9 )

which is the one way analysis of variance (ANOVA)
model. Another often used model can be derived from
equations 1-3 by assuming no level II independent
variable, and assuming that the ß0j  at level I are

fixed. When this is the case then equation 1 becomes

Yij = ß0j + ß1j (Xij - X..) + rij, (10)

equation 2 becomes

ß0j = γ00 + µ0j, (11)

and equation 3 becomes

ß1j = γ10, (12)

which is the pooled within-school regression
coefficient. Substituting equation 11 and 12 into 10
yields

Yij = [γ00] + [γ10 ](Xij - X..) + µ0j + rij. (13)

which is the analysis of covariance (ANCOVA)
model (except for the fact that µ0j is random instead

of fixed).

Centering

   Notice that in equation 8,  Xij was centered around

the grand mean. In fact it is important to spend some
time to be sure that the centering (especially at level
I) is done in such a way that the interpretations of ß0j
and γ00 are meaningful. There are essentially three

ways to center at level I (uncentering, grand mean
centering, and group mean centering) and two ways to
center at level II (uncentering and grand mean
centering). At level II, group mean centering and
grand mean centering are really the same thing.
Centering at level I determines the meaning of the
Level I intercept and centering at level II determines

the meaning of the level II intercept. In all cases the
interpretation of the intercept is that it is the value of
the dependent variable when the independent variable
equals zero. In the following section we will only
discuss centering at level I since the same
interpretations apply to level II.

Uncentering

   When Xij is uncentered it means we wish to use

the zero point in the original metric of Xij as the

defining point for ß0j. In many areas of science the

natural zero of Xij has a practical interpretation. For

example, if Xij is the Celsius scale and Yij is the

barometric pressure, then ß0j equals the barometric

pressure when water freezes. In most situations in the
social sciences there is not a natural zero point for
Xij. One notable exception to this is when dummy

variable coding is used. For example, if Xij = 1 for

minority students and Xij = 0 for non-minority

students, then, ß0j equals the mean of Yij for non-

minority students. If another dummy variable, Zij, is

added to the level I equation, such as gender (where
Zij = 1 for females and Zij = 0 for males), then ß0j
equals the mean of Yij for non-minority males.

Group Mean Centering

   In the social sciences the group mean of Xij is

often used as the zero point for Xij. In group mean

centering, ß0j equals the student’s math achievement

when (Xij - X.j) equals zero(which is at the group

mean of Xij). For example if Xij is the SES of

students, and Yij is the student’s math achievement,

then, ß0j equals the student’s math achievement at the

mean of SES. Another characteristic of group mean
centering is that ß0j is always equal to the mean of

Yij, or µYj. Therefore, group mean centering is often

used as the method of choice when the researcher is
primarily interested in studying the variation in
school means.

Grand Mean Centering

   In the social sciences it is also common practice to
center around the grand mean. An example of this was
used in the above ANCOVA equation 13. In grand
mean centering, ß0j equals the student’s math
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achievement when (Xij - X..) equals zero (which is at

the grand mean of Xij). ß0j has a different

interpretation in grand mean centering than it does in
centering within groups. In grand mean centering ß0j
is an adjusted mean such that  ß0j = µYj + ß1j (Xij -

X..). Grand mean centering is often used when the
researcher is interested in estimating school effects.

Estimating School Effects

   One of the main uses of HLM is to provide an
index of school effectiveness. Once the school effects
have been estimated then the researcher can rank
schools on their effectiveness or use the effectiveness
index as a dependent variable to investigate school
factors that are related to effectiveness. A good
example of school effects can be derived from the
simple HLM model provided in equations 1-3. We
rewrite these equations under the assumption that we
use grand mean centering and for level I the intercept
is random but the slope is fixed (i.e., constant across
schools). Under these assumptions, equations 1-3
become

Yij = ß0j + ß1j (Xij ) + rij, (14)

ß0j = γ00 + γ01 (Wj ) + µ0j, (15)

ß1j = γ10. (16)

   Equations 14-16 are similar to the ANCOVA
model except we have added Wj at level II.

Substituting equations 15 and 16 into 14 yields the
following reduced form

Yij = [γ00 + γ01 (Wj ) + µ0j ]

        + [γ10 ](Xij - X..) + rij.

Rearranging terms provides

µ0j = Yij - [γ00 + γ01 (Wj ) + γ10 (Xij - X..)

          +  rij].

Averaging over student i within school j gives the
estimate of school effects

µ0j = Y.j - [γ00 + γ01 (Wj )+γ10 (X.j - X..)]. (17)

Empirical Bayes Estimation

   In HLM the level I coefficients are usually
estimated with an empirical Bayes procedure (Lindley
and Smith, 1972). This procedure is different from the
OLS used in most multiple regression procedures in
that the level I estimates are weighted by the
collateral estimates in level II. An example of this is
found by inspecting more closely equations 1 and 2.
We see that ß0j in equations 1 and 2 has two different

OLS estimates, ß*
0j

ß*
0j = Y.j - ß

*
1j (X.j) , and

ß*
0j = γ*

00 + γ*
01 (Wj ).

   The empirical Bayes estimate combines these two
OLS estimates by weighting them according to the

reliability,λj, of [Y.j - ß
*

1j (X.j)] as an estimate of

ß0j. The empirical Bayes estimate, ß**
0j, is found by

ß**
0j = λj[Y.j - ß

*
1j (X.j)] + (1-λj)[γ

*
00 + γ*

01
(Wj )]. (18)

   This approach was first introduced within the
context of psychometrics by Kelley (1927). The
weight λ j is found by equation 5, and understanding

this weight is key to appreciating the usefulness of
the empirical Bayes estimation in HLM. As the
reliability of the OLS estimate at level I approches
unity, the best estimate of the within-school is from
the data collected from within the school. However,
as the reliability approaches zero (as when the number
of students within the school is very low), then the
best estimate of the within-school regression
parameter is based on the regression parameters of
similar schools within the system. The logic of this
approach is identical to imputation in a survey
sampling context. When data elements are missing
for a school, a common practice is to substitute (or
impute) data elements from similar schools to replace
the missing value. Even treating the data as missing
is the same as assuming that the missing data
element is equal to the mean of the population.  
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   The empirical Bayes estimate is an optimal
estimate of ß0j  in the sense that it has the smallest

mean-squared error even though it is biased toward

γ*
00 + γ*

01 (Wj ). The amount of bias is inversely

related toλj. As a general rule the bias is negligible in

schools with large sample sizes.

   The empirical Bayes residual, µ**
0j, is usually

used by HLM researchers as the estimate of the
school effect. Like the empirical Bayes estimate,

µ**
0j, is particulary biased in small schools. The

relationship between the empirical Bayes residual and
the OLS residual is as follows

 µ**
0j = λj µ

*
0j. (19)

   As λj approaches zero,  µ**
0j also approaches

zero. Even though the empirical Bayes residual is
biased it is still considered by most educational
researchers to be a better estimate than the OLS
residual. This is because when the sample sizes are
small the OLS residual will be unstable resulting in

more chance occurences of extreme valus of µ*
0j.

Selecting out such extreme values of µ*
0j for praise

or blame will result in more false-positives and false-
negatives than the empirical Bayes  residual.

Authors' Note:
The discussion in this paper represents the views of
the authors and does not represent those of the U.S.
Department of Education.
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