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Calculating Missing Student Data in Hierarchical Linear
Modeling:  Uses and Their Effects on School Rankings

Timothy H. Orsak     Robert L. Mendro     Dash Weerasinghe
Dallas Public Schools

In the age of student accountability, public school systems must find procedures for identifying effective schools,
classrooms and teachers that help students continue to excel academically.  As a result, researchers have been
modeling schools to calculate achievement indicators that will withstand not only statistical review but political
criticism.  One of the numerous issues encountered in modeling is the management of missing student data.  This
paper addresses three techniques that elucidate the effects of absent data and highlight consequences on school
achievement indicators.  The outcomes of each technique are estimated data and School Effectiveness Indices (SEIs).
A set of criteria is established from an original data set to determine a baseline to which the analyses will be
compared in determining the most appropriate approach in estimating missing data..

ompleteness of any data base should be
considered a rarity when managing educational
data.  Numerous factors, not limited to student

lack of attendance, data misinterpretation, and
mistakes in data entry, all affect the accuracy of any
educational database.  While incorrect data scores are
difficult, if not impossible, to detect, missing scores
are readily identifiable.  Effective schools within the
Dallas Public Schools have been identified by
statistical methodologies for several years.  Many
years of analyses have deduced the accuracy of
statistical methods’ rankings of schools within the
district.  Yet these analyses utilized only student data
that was complete for both post-test and pre-test
years.  On average, between 8% and 12% of student
data cannot be included in yearly calculations due to at
least one year of missing test scores.  However,
attempts to use all available data while not
introducing extraneous trends could more accurately
help identify effective schools.  In this paper, the
question of best estimation of absent post-test data is
addressed.

The current problem faced in the
computation of school effectiveness rankings relates
to missing student test data.  How could we
effectively rank the school of interest without
complete data for its constituents?  Several
publications have addressed treatment of missing
scores in data sets through the use of inference,
replacement of missing values with probable values,
etc.  One example is Sanders, et.al. (1993), which
implemented a sparse matrix mixed modeling
program to predict missing student values.  Yet with
the typical school district not having the resources to
implement such a program, what would be the most
effective and efficient method for school analysis?
Dallas Public Schools has addressed the missing data

issue by not including it in any analysis, thus
eliminating possible influences.

The analysis comprised of 5197 6th grade
students who had complete raw data scores for the
Iowa Test of Basic Skills mathematics and reading
tests for years 1995 and 1996 and student
characteristics of ethnicity, English proficiency
status, census poverty data, census college data, and
gender.  To analyze the effects of missing data,
specific percentages of the post-test scores from the
original data set were randomly deleted which
produced reduced data sets.  The percentages of data
deleted in this study were 1%, 2%, 5%, 10%, and
20%.  The reduced data sets were then evaluated by
Scientific Software’s    HLM2L    hierarchical linear
modeling software and by MicroSofts’ Excel’s
Ordinary Least Squares software program to produce
regression coefficients for each school.  The deleted
post-test scores were then estimated by HLM, by
OLS and by the average post-test score per school.
The three new data sets composed of HLM estimates
of missing data, OLS estimates of missing data, and
average post-test data per school and the original data
set (non-deleted scores), were then reprocessed by
HLM and school effectiveness indices (SEIs)
generated.  The SEIs were calculated from HLM as
the estimated Bayesian (EB) residuals for the school
level intercept rescaled to a mean of 50 and standard
deviation of 10.  The EB residual reflects the overall
achievement of the students within a school.  The
SEIs from the new data sets were compared to the
original data set’s SEI scores whereas the estimated
post-test scores were compared to the actual scores
that were deleted.  This process was carried out for
three models of varying complexity.

C
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Investigation and Procedure

This study expands previous studies of HLM to
investigate the effects of missing data through the use
of HLM models in ranking 118 elementary schools
from the Dallas Public Schools at the sixth grade
(Webster, et. al., 1994, 1995; Mendro, et. al., 1994,
1995; Orsak, et. al., 1996).  Ten school
characteristics variables were available for each
school.  To eliminate undue influences from varying
school sizes, the original 5197 student data set was

randomly reduced such that exactly 30 students were
included per school.  This created a new, reduced data
file which contained 2610 students within 87 schools.
Initial analyses for this reduced data set explored OLS
and HLM estimates from three models, each more
complex than the previous.  Then all 5197 students
were used in a fourth analysis.  The initial
exploratory analysis involved simple data analysis for
the reduced data set.     ****

Table 1.  Student Characteristic Correlations

GEN LUN BLK HIS LEP INC POV COL R-95 M-95 M-96
GEN 1.000
LUN -.0122 1.000
BLK .0138 .1112 1.000
HIS -.0278 .0827 -.6043 1.000
LEP .0193 .1390 -.3049 -.1806 1.000
INC -.0090 .3407 .2046 .0418 .0215 1.000
POV -.0253 .2903 .1530 .0236 .0634 .5804 1.000
COL -.0172 .3461 -.0143 .2433 .1412 .6135 .3453 1.000
R-95 .0951 .2282 .1992 -.0997 .1086 .1863 .1369 .2061 1.000
M-95 .0169 .1747 .1451 -.0750 .0907 .1682 .1220 .1761 .6112 1.000
M-96 .0354 .1763 .1303 -.0522 .0966 .1566 .1131 .1901 .5605 .7857 1.000

** GEN is Gender, LUN is Free Lunch Status, BLK represents Black, HIS represents Hispanic, LEP is Limited
English Proficient, INC is average block income, POV is percent block poverty, COL is percent block college, R-
95 is ITBS Reading for 1995, M-95 is ITBS Mathematics for 1995, M-96 is ITBS Mathematics for 1996.

Table 2.  Student Characteristic Summary
N MEAN SD MIN MAX

GEN 2610 1.54 .50 1 2
LUN 2610 1.28 .45 1 2
BLK 2610 1.50 .5 1 2
HIS 2610 1.74 .44 1 2
LEP 2610 1.92 .28 1 2
INC 2610 28139.44 14488.61 1290 185017.00
POV 2610 74.73 20.88 0 100
COL 2610 9.15 13.12 0 100
R-95 2610 11.91 4.42 1 22
M-95 2610 34.95 8.66 11 54
M-96 2610 37.83 9.23 9 59

**  See Table 1 Legend

The models used for the prediction of deleted post-test
data are as follows.  Analyses began with a basic
model for prediction and increased in complexity.

The models with no student level variables and no
school level variables:

Model 1A (HLM):
Level 1:

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1
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********

1. It must be value-added.

2. It must include multiple outcome variables.

3. Schools must only be held accountable for
students who have been exposed to their
instructional program (continuously enrolled
students).

4. It must be fair.  Schools must derive no
particular advantage by starting with high-
scoring or low-scoring students, minority or
white students, high or low socioeconomic
level students, or limited English proficient or
non-limited English proficient students.  In
addition such factors as student mobility,
school overcrowding, and staffing patterns over
which the schools have no control must be
taken into consideration.

5. It must be based on cohorts of students, not
cross-sectional data.

Within the five aforementioned parameters, a
number of statistical models are possible.  The two
most widely cited approaches in the literature involve
various uses of basic ordinary least squares regression
techniques (OLS regression) (Aiken and West, 1991;
Bano, 1985; Felter and Carlson, 1985; Kirst, 1986;
Klitgard and Hall, 1973; McKenzie, 1983; Millman,
1981; Saka, 1984) or the use of a variety of
hierarchical linear models (HLM) (Bryk, et.al., 1988;
Bryk and Raudenbush, 1992; Bryk and Thum, 1996;
Dempster, Rubin and Tsutakawa, 1981; Elston and
Grizzle, 1962; Goldstein, 1987; Henderson, 1984;
Laird and Ware, 1982; Mason, Wong, and Entwistle,
1984; Rosenberg, 1973).

This study is the sixth in a series of studies
conducted in the Dallas Independent School District
over a period of eight years.  All models addressed in
these studies have been designed to isolate the effect
of a given school’s or teacher’s practices on important
student outcomes.  The school effect is conceptualized
as the difference between a given student’s
performance in a particular school and the
performance that would have been expected if that
student had attended a school with similar context but
with practice of average effectiveness.  The teacher
effect is conceptualized similarly at the teacher level.
The results of previous studies have suggested:

• Utilizing basic OLS regression models
with individual student growth curves and
no demographic variables produced results

that were uncorrelated with student level
demographic variables and slightly
correlated with school level demographic
variables but not with pretest levels
(Webster and Olson, 1988).

• Utilizing basic OLS regression models
with school level variables produced
results that were unreliable and that were
correlated with student level demographic
variables and student level pretest scores.
Too much important information is lost
in this process (Mendro and Webster,
1993).

• Utilizing two stage OLS regression
models, the first stage removing the
effects of student demographic variables
from both the pretest and posttest
measures, produced results that were
uncorrelated with student pretest scores and
student level demographic variables and
only minimally correlated with school
level demographic variables (Webster,
Mendro, and Almaguer, 1994).  These
models are discussed later in this paper.

• Utilizing student based two-stage OLS
regression models that accounted for first
and second order interactions among basic
demographic variables produced results at
the school level that were very reliable,
that correlated very highly with those
produced by two-stage, two level-HLM
(≥.97), and that were uncorrelated with
student and school level demographic
variables and pretest scores.  It was noted,
however, that adding school level variables
as conditioning variables in HLM drove
the correlations with school level variables
to absolute zero (Webster, Mendro,
Bembry, and Orsak, 1995).

• Utilizing basic unadjusted gain scores to
rank schools produced results that were not
highly correlated with results produced by
either OLS student-level regression models
or two-level HLM (<.75).  Further, gain
models produced results that were
correlated with some student and school
level demographic variables and with
pretest score.  Using straight NCE scores
to rank schools produced results that
correlated poorly with the results obtained
from the OLS and HLM models (<.55)
and were highly correlated with both
student level and school level demographic
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variables as well as pretest score (Webster,
Mendro, Bembry, and Orsak, 1995).

• Utilizing student based two-stage OLS
regression models that accounted for first
and second order interactions among basic
demographic variables produced results
that were very close to those produced by
two-stage, two-level HLM at the school
level and, when adjusted for shrinkage,
produced results at the teacher level that
correlated very highly with the results of
two-level and three-level HLM models
(≥.90).  Most models accounted for more
than seventy percent of the variance in
student achievement in reading and
mathematics and produced extremely
consistent results.  Correlations of results
with important school, teacher, and
student level contextual variables and with
pre-score characteristics were negligible for
all models (Webster, Mendro, Orsak, and
Weerasinghe, 1996).

In a recent thought-provoking critique of the Dallas
models, Thum and Bryk (1997) raised some questions
that were responded to in a response to Thum and
Bryk that will be published in an upcoming book on
teacher evaluation that is edited by Jason Millman
(1997).  This study further addresses the points raised
by Thum and Bryk as well as consolidates previous
research by using only the best models from OLS
regression and HLM for comparison purposes.  The
major objective of this study is to determine the most
reliable and efficient methodology for identifying
effective schools and teachers.

Except for the original Webster and Olson (1988)
study, all other Dallas studies have used only
elementary grades as their samples.  There are a large
number of elementary schools in the Dallas Public
Schools (≥125, depending on the grade studied).  This
study utilizes sixth and eighth grades in an effort to
ensure that the number of schools does not
significantly effect the results.  (There are 127
schools with sixth grades and only 26 with eighth
grades.)  In order to keep the study simple, the only
outcome variable used is 1996 Iowa Tests of Basic
Skills Reading (ITBS) and the only cognitive
measures predictor variables are ITBS Reading and
ITBS Mathematics tests.  The actual system for
which these equations are used includes multiple
outcome and predictor variables and is described in
detail in a companion paper by Webster, Mendro,
Bembry, and Bearden (1997).

This study investigates a number of methodological
issues related to the use of various mathematical

models for estimating school and teacher effect.  The
Thum and Bryk (1997) concerns are addressed as well
as a number of other issues related to the effectiveness
of various models.  The major areas of investigation
include:

1. Is there any significant difference between results
produced by a two-stage model as opposed to
including all relevant demographic and cognitive
measures in a one-stage equation?  The authors
have always believed that there is no practical
difference.  Thum and Bryk suggested that the
two stage process may be less reliable because
residuals from a set of residuals are unreliable.

2. Is there a significant difference between results
produced by assuming random slopes versus fixed
slopes at the second and third levels in HLM?
This question is also related to the two-stage
questions since with complex data sets one
generally cannot solve many one-stage HLM
models assuming random slopes.  If one assumes
fixed slopes, the HLM algorithms generally will
solve the equations.

3. Does a three-level HLM that uses student gain
scores as the outcome variable with no school
level conditioning variables and limited student
level conditioning variables, similar to that
proposed by Bryk and Thum (1996), produce
results that are comparable to those produced by
similar status-based models?  Status-based
models are models that do not utilize gain scores
as the basic unit of analysis and include all other
models discussed in this paper.

4. How free from bias are the estimates relative to
important school, teacher, and student contextual
variables?

5. How free from bias are the estimates relative to
pretest scores?

6. Given the complexity of the three-level HLM
model in estimating teacher effect, particularly in
terms of data requirements, can the results
produced by a three-level HLM model be validly
approximated through the use of a two-level
HLM-model with a shrinkage adjustment?

7. Can a longitudinal student growth curve approach
to predicting school and teacher effect produce
bias free results without specifically addressing
student, teacher, and school contextual variables?

Method

Sample
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The samples used in this study consisted of all
students who were enrolled and tested in the Dallas
Public Schools in grade 5 in 1995 and grade 6 in
1996; in grade 7 in 1995 and grade 8 in 1996; and, in
the multi-year longitudinal studies, students who were
enrolled and tested in the Dallas Public Schools in
grade 2 in 1992, grade 3 in 1993, grade 4 in 1994,
grade 5 in 1995, and grade 6 in 1996; and in grade 4
in 1992, grade 5 in 1993, grade 6 in 1994, grade 7 in
1995, and grade 8 in 1996.  All samples represent
longitudinal cohorts of real students.

Instrumentation

The instrumentation used for the study was the
Iowa Test of Basic Skills Reading and Mathematics
subtests.  Raw scores were the unit of analysis.
Reading was the only criterion variable used.

School Effect

Fifteen different OLS regression and HLM models
were investigated to determine their reliability and
appropriateness for measuring school effect.  Figure 1
contains descriptions of these models.  The numbers
used to describe the models in this section are from
the numbers associated with each model in Figure 1.
Model 1, for example, is Basic OLS regression as
described in Figure 1.  Each model was investigated
in terms of its efficiency of prediction; the reliability
of school ranks produced; the amount of variance
accounted for; the amount of bias relative to
important school, classroom and students contextual
variables; and, the amount of bias relative to pretest
scores.  All comparisons are in terms of the
effectiveness indices produced by each of the models.
Correlations that appear in later comparisons in the
results section are correlations between the various
estimates of effect produced by the various models.

   Student level variables included in a number of the
OLS regression and HLM models were:

Yij = Outcome variable of interest for each student i
in school j.
X1ij= Black English Proficient Status (1 if black, 0
otherwise).
X2ij= Hispanic English Proficient Status (1 if
Hispanic, 0 otherwise).
X3ij= Limited English Proficient Status (1 if LEP, 0
otherwise).
X4ij= Gender (1 if male, 0 if female).
X5ij= Free or Reduced Lunch Status (1 if subsidized,
0 otherwise).

X6ij= Block Average Family Income.
X7ij= Block Average Family Education.
X8ij= Block Average Family Poverty Level.
Xkij= Indicates the variable k of i-th student in school
j for i = 1,2, ..., Ij and j = 1, 

2, ..., J.

Classroom level variables included in a number
of the HLM models were:

T1j= Classroom Mobility.
T2j= Classroom Overcrowdedness.
T3j= Classroom Average Family Education.
T4j= Classroom Average Family Education.
T5j= Classroom Average Family Poverty Index.
T6j = Classroom Percentage on Free or
Reduced Lunch.
T7j= Classroom Percentage Minority.
T8j= Classroom Percentage Black.
T9j= Classroom Percentage Hispanic.
T10j= Classroom Percentage Limited English
Proficient.

School level variables included in a number of
the HLM models were:

W1j= School Mobility.
W2j= School Overcrowdedness.
W3j= School Average Family Education.
W4j= School Average Family Education.
W5j= School Average Family Poverty Index.
W6j= School Percentage on Free or Reduced Lunch.
W7j= School Percentage Minority.
W8j= School Percentage Black.
W9j= School Percentage Hispanic.
W10j= School Percentage Limited English Proficient.

Predictor and Criterion variables included in various
models were:

   Criterion      Variables  

ITBS_RES_R_96ij =1996 ITBS Residual Reading score from
fairness stage calculated as an OLS
residual for student i in school j.

ITBS_R_96 ij    =1996 ITBS Reading Score.

ITBS_GAIN_R96_R95 ij = ITBS Gain Score

for 1995 to 1996.
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  Predictor      Variable  

ITBS_RES_R_95ij  = 1995 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_95ij  = 1995 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_RES_R_94ij  = 1994 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_94ij  = 1994 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_RES_R_93ij  = 1993 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_93ij  = 1993 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_RES_R_92ij  = 1992 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_92ij  = 1992 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_R_95ij            = 1995 ITBS Reading Score for
student i in school j.

ITBS_M_95ij           = 1995 ITBS Mathematics Score for
student i in school j.

ITBS_R_94ij            = 1994 ITBS Reading Score for
student i in school j.ITBS_M_94ij           = 1994
ITBS Mathematics Score for student i in school j.

ITBS_R_93ij            = 1993 ITBS Reading Score for
student i in school j.

ITBS_M_93ij           = 1993 ITBS Mathematics Score for
student i in school j.

ITBS_R_92ij            = 1992 ITBS Reading Score for
student i in school j.

ITBS_M_92ij           = 1992 ITBS Mathematics Score for
student i in school j.

The comparisons of results produced by
Models 1 and 2 address whether or not there are

differences between the effectiveness statistics
produced by basic OLS Regression and basic two-
level HLM.  The HLM Model assumes fixed slopes
at the conditioning level since the HLM algorithms
could not solve these equations if random slopes were
assumed.  Appropriate equations for Model 1 and 2
follow:

   Model     1  

ITBS_R_96ij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij +
Λ4X4ij + Λ5X5ij + Λ6X6ij + Λ7X7ij +
Λ8X8ij + Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +
Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
Λ19ITBS_R_95ij + Λ20ITBS_M_95ij + εij

SEIj  =  

ε ij
i

N

j

j

N
=
∑

1

   Model 2

Level 1:

ITBS_R_96ij = β0j + β1jX1ij + β2jX2ij + β3jX3ij +
β4jX4ij + β5jX5ij + β6jX6ij + β7jX7ij +
β8jX8ij + β9j(X1ijX4ij) + β10j(X2ijX4ij) +
β11j(X3ijX4ij) + β12j(X1ijX5ij) +
β13j(X2ijX5ij) + β14j(X3ijX5ij) +
β15j(X4ijX5ij) + β16j(X1ijX4ijX5ij) +
β17j(X2ijX4ijX5ij) + β18j(X3ijX4ijX5ij) +
β19jITBS_R_95ij + β20jITBS_M_95ij +
δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + u0j
βkj = γk0for k = 1, 2, ..., 20

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*
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Models 3, 4, and 5 address a number of issues.
First, the comparison of the results obtained from
Models 1 and 3, as well as Models 2 and 4, will
begin to address the one-stage versus two-stage issue.
(This issue will be further addressed when the indices
produced by Models 7 and 8 as well as Models 11 and
12 are compared.)  The comparison of the results
produced by Models 4 and 5 will address the fixed
versus random slopes issue.  Appropriate equations
for Models 3, 4, and 5 are as follows:

   Model 3

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij +
Λ4X4ij + Λ5X5ij + Λ6X6ij + Λ7X7ij +
Λ8X8ij + Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +
Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
rij

where Yij is ITBS_R_96ij, ITBS_R_95ij, and
ITBS_M_95ij.  These will produce
ITBS_RES_R_96ij, ITBS_RES_R_95ij, and
ITBS_RES_M_95ij, respectively.

STAGE 2:

ITBS_RES_R_96ij = β0 +
β1ITBS_RES_R_95ij +
β2ITBS_RES_M_95ij + εij

SEIj  =  

ε ij
i

N

j

j

N
=
∑

1

   Model 4  

STAGE 1:

Yij =Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij +
Λ4X4ij + Λ5X5ij + Λ6X6ij + Λ7X7ij +
Λ8X8ij + Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +

Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

βkj = γk0 + ukj for k = 0, 1, 2,

where E[ukj] = 0, Var-Cov[ukj] = T, and ukj ⊥  δij.

SEIj
*

  =  u0j
*

   Model 5  

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +
Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

Level 2:

β0j = γ00 + u0j
βkj = γk0 for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*
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Models 6, 7, and 8 move the comparisons to a
higher level of sophistication.  Utilizing full models
proven in previous studies, the Model 6 versus Model
7 comparison again addresses the fixed versus random
slopes issue.  The choice of fixed versus random
slopes depends on the investigators’ beliefs about the
sources of variation in the slopes.  The slopes are
modeled using a number of school parameters at the
second level.  In the full model these include the
school level variables listed under the conditioning
variables column in Figure 1.  To the extent that
slopes vary as a result of these factors, their use
adjusts the differences.  Under these circumstances, a
random model would control for the effects of
possible interactions of concomitant variables in
specific school settings.  If there was evidence of an
interaction of school effect with the conditioning
variables, the fixed model would be preferable since
the use of a random model would mask these effects.
The Model 8 comparison with the results of Model 7
addresses the one versus two-stage issue.  Appropriate
equations for Models 6, 7 and 8 are as follows:

   Model 6  

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

Level 2:

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j
+ ukj

for k = 0, 1, 2.

E[ukj] = 0, Var-Cov[ukj] = T, and ukj ⊥  δij

SEIj
*

  =  u0j
*

   Model 7
STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij + β2jITBS_RES_M_95ij
+ δij

Level 2:

β0j γ00 + γ01W1j + γ02W2j + . . . + γ010W10j +
u0j

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j
for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

   Model 8

Level 1:

ITBS_R_96ij = β0j + β1jX1ij + β2jX2ij + β3jX3ij +
β4jX4ij + β5jX5ij + β6jX6ij + β7jX7ij +
β8jX8ij + β9j(X1ijX4ij) + β10j(X2ijX4ij) +
β11j(X3ijX4ij) + β12j(X1ijX5ij) +
β13j(X2ijX5ij) + β14j(X3ijX5ij) +
β15j(X4ijX5ij) + β16j(X1ijX4ijX5ij) +
β17j(X2ijX4ijX5ij) + β18j(X3ijX4ijX5ij) +
β19jITBS_R_95ij + β20jITBS_M_95ij + δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + γ01W1j + γ02W2j + . . . + γ010W10j
+ u0j

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j
for k = 1, 2, ..., 20.
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E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

Models 9, 10, 11, and 12 utilize three years of data
to predict a fourth.  They were designed to compare
the results of these analyses with the results of
Models 1 through 8 that use only one year of
prediction in conjunction with a wealth of contextual
variables.  Models 9 and 10 do not utilize any
contextual variables but rather depend on individual
student growth histories to account for the variance
normally associated with contextual variables.
Models 11 and 12 add contextual variables to the
equations, Model 11 at the conditioning level and
Model 12 at both the student and conditioning levels.
Appropriate equations for Models 9 through 12
follow:

   Model 9

ITBS_R_96ij = Λ0 + Λ1ITBS_R_95ij +
Λ2ITBS_M_95ij +
Λ3ITBS_R_94ij +
Λ4ITBS_M_94ij +
Λ5ITBS_R_93ij +
Λ6ITBS_M_93ij + εij

SEIj = 

ε ij
i

N

j

j

N
=
∑

1

   Model 10  

Level 1:

ITBS_R_96ij = β0 + β1ITBS_R_95ij +
β2ITBS_M_95ij +
β3ITBS_R_94ij +
β4ITBS_M_94ij +
β5ITBS_R_93ij +
β6ITBS_M_93ij + δij

Level 2:

β0j = γ00 + u0j
βkj = γk0

for k = 1, 2, ..., 6.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

   Model 11  

Level 1:

ITBS_R_96ij = β0j + β1jX1ij + β2jX2ij +
β3jX3ij + β4jX4ij + β5jX5ij +
β6jX6ij + β7jX7ij + β8jX8ij +
β9j(X1ijX4ij) +
β10j(X2ijX4ij) +
β11j(X3ijX4ij) +
β12j(X1ijX5ij) +
β13j(X2ijX5ij) +
β14j(X3ijX5ij) +
β15j(X4ijX5ij) +
β16j(X1ijX4ijX5ij) +
β17j(X2ijX4ijX5ij) +
β18j(X3ijX4ijX5ij) +
β19jITBS_R_95ij +
β20jITBS_M_95ij +
β21ITBS_R_94ij +
β22ITBS_M_94ij +
β23ITBS_R_93ij +
β24ITBS_M_93ij + δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + γ01W1j + γ02W2j + .
. . + γ010W10j + u0j

βkj = γk0 + γk1W1j + γk2W2j + .
. . + γk10W10j

for k = 1, 2, ..., 24.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

   Model 12  

STAGE 1:
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Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

where Yij is ITBS_R_96ij, ITBS_R_95ij,
ITBS_M_95ij, ITBS_R_94ij, ITBS_M_94ij,
ITBS_R_93ij, ITBS_M_93ij, ITBS_R_92ij, and
ITBS_M_92ij.  These will produce
ITBS_RES_R_96ij, ITBS_RES_R_95ij,
ITBS_RES_M_95ij, ITBS_RES_R_94ij,
ITBS_RES_M_94ij, ITBS_RES_R_93ij and
ITBS_RES_M_93ij, respectively.

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij + β2jITBS_RES_M_95ij
+ β3jITBS_RES_R_94ij +
β4jITBS_RES_M_94ij + β5jITBS_RES_R_93ij
+ β6jITBS_RES_M_93ij +δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + γ01W1j + γ02W2j + . . . + γ010W10j
+ u0j

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j

for k = 1, 2, ..., 6.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

Model 13 is a three level HLM gain model
similar to the model proposed by Bryk and Thum
(1996).  It is compared to Models 14 and 15, models
that are comparable to Model 13 except that they are
status models, not gain score models.  (A status
model is a model that uses actual test scores or
residuals of actual test scores rather than gain scores
as the basic unit of analysis.  All Models in this
paper except Model 13 are status models.)
Appropriate equations for Models 13, 14, and 15
follows:

   Model 13  

Level 1:

ITBS_GAIN_R95_R96ijk = π0jk +
π1jkITBS_R_95ijk + π2jkITBS_M_95ijk +
π3jkITBS_R_94ijk + π4jkITBS_M_94ijk +
π5jkITBS_R_93ijk + π6jkITBS_M_93ijk+ εijk

where εijk ~
iid

 N(0, 1) and i, j both refer to the same
student in school k.

Level 2:

πpjk = βp0k + βp1kBLACKjk + βp2kHISPANICjk
+ βp3kGENDERjk + rpjk

where rpjk ~
iid

 N(0,T) and rpjk ⊥  εijk.

Level 3:

βp0k = γ00k + up0k
βpqk = γp0k for q = 1, 2, 3

E[up0k] = 0, Var[up0k] = ∆2
, up0k ⊥  rpjk and up0k

⊥  εijk.

SEIk
*

  =  u00k
*

   Model 14  

STAGE 1:

Yij = Λ0 + Λ1BLACKij + Λ2HISPANICij +
Λ3GEND Rij + εij

where Yij is ITBS_R_96ij, ITBS_R_95ij,
ITBS_M_95ij, ITBS_R_94ij, ITBS_M_94ij,
ITBS_R_93ij and ITBS_M_93ij..

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1j
ITBS_RES_R_95ij + β2jITBS_RES_M_95ij +
β3jITBS_R S_R_94ij + β4jITBS_RES_M_94ij
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+ β5jITBS_RES_R_93ij +
β6jITBS_RES_M_93ij +δij

Level 2:
β0j = γ00 + u0j
βkj = γk0 for k = 1, 2, ..., 6.

where E[uij] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIk
*

  =  u00k
*

   Model 15  

Level 1:

ITBS_R_96ij = β0j + β1jBLACKij +
β2jHISPANICij + β3jGENDERij +
β4jITBS_R_95ij + β5jITBS_M_95ij +
β6jITBS_R_94ij + β7jITBS_M_94ij +
β8jITBS_R_93ij + β9jITBS_M_93ij + δij

where

δij ~
iid

 N(0, σ2
).

Level 2:

β0j = γ00 + u0j
βkj = γk0 for k = 1, 2, ..., 9.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

The results produced by the OLS regression models
(Models 1, 3, 9) were adjusted for shrinkage by the
following procedure:
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The shrinkage coefficient is,

λ σ

σ
σj

j

jN

=
+

2

2
2

then the shrinkage adjusted SEI is

SEI
*

  =  λjµj + (1-λj)µ

SEI’s produced by HLM are already adjusted for
shrinkage.

Teacher Effect

Seventeen different OLS regression and HLM
models were investigated to determine their reliability
and appropriateness for measuring teacher effect.
Figure 2 contains descriptions of these models.  The
first twelve models use the same equations to generate
the residuals that were used in the school level
models.  The results are then adjusted for shrinkage
through the use of the following formulas:

   CEIs  

   Models 1 - 12

CEImj = m
th

 classroom in school j.

CEImj is obtained by aggregating the student
residuals by classroom

The shrinkage adjustment is as follows:
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for the residuals εimj or δimj for i
th

 student in
classroom m in school j, calculated
with respect to the district
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Insert Figure 2 (cont.)
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The shrinkage coefficient is

λ τ
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Hence, the shrinkage adjusted CEIs for models 1 to
12 are

CEI*mj = λmjνmj + (1-λmj) ν

Models 13, 14, and 15 are two-level HLM models
with classroom as the conditioning level instead of
school.  These models produce empirical Bayes
estimates around the District mean and thus produce

systemwide teacher effectiveness indices.  The results
of these models can be directly compared to the
results of Models 1-12.  Model 13 is a one-stage,
two-level HLM while Models 14 and 15 are two-
stage, two-level models.  Model 14 assumes fixed
slopes while Model 15 assumes random slopes.

   Model 13  

Level 1:

ITBS_R_96ij = β0j + β1jITBS_R_95ij +
β2jITBS_M_95ij + δij

where δij ~
iid

 N(0,σ2
)

Level 2:

β0j = γ00 + γ01T1j + γ02T2j + . .
. + γ010T10j + u0j

βkj = γk0 + γk1T1j + γk2T2j + . .
. + γk10T10j
for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

CEIj
*

  =  u0j
*

   Model 14  

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

where δij ~
iid

 N(0,σ2
)

Level 2:

β0j = γ00 + γ01T1j + γ02T2j + . . . + γ010T10j +
u0j

βkj = γk0 + γk1T1j + γk2T2j + . . . + γk10T10j
for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

CEIj
*

  =  u0j
*
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   Model 15  

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij + β2jITBS_RES_M_95ij
+ δij

where δij ~
iid

 N(0,σ2
)

Level 2:

βkj = γk0 + γk1T1j + γk2T2j + . . . + γk10T10j +
ukj

for k = 0, 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

CEIj
*

  =  u0j
*

Model 16 is a three-level HLM model that produces
empirical Bayes estimates around the school mean for
each teacher.  The results produced by this model are
compared to Model 17.  Model 17 is identical to
Model 7 except that the teacher level residuals are
calculated about the school means rather than about
the district mean.  This should enable a direct
comparison with the results produced by Model 16.
Appropriate equations follow:

   Model 16  

Level 1:

ITBS_R_96ijk = π0jk + π1jkITBS_R_95ijk +
π2jkITBS_M_95ijk + εijk

where εijk ~
iid

 N(0,σ2
).

Level 2:

πpjk = βp0k + 
q=
∑

1

10

βpqkTqjk + δpjk

where δpjk ~
iid

 N(0,T) and δpjk ⊥  εijk.

Level 3:

β00k = γ000 + u00k
βpqk = γpq0 for all

other p and q.

CEI jk
*

  =  γ0jk
*

   Model 17  

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

Level 2:

β0j = γ00 + u0j
βkj = γk0  for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

The student residuals, δijs, are calculated with respect
to each school and shrinkage adjusted to obtain

CEIj
*

.

Results

School Effectiveness Indices

The most efficient way to discuss results is
to present all data and then discuss all results
simultaneously.  With that end in mind, the
following tables are presented:

Table 1  Correlations Between and Among The
School Effectiveness Indices Produced By
Each of the Models, Grade 6

Table 2  Correlations Between and Among The
School Effectiveness Indices Produced By
Each of the Models, Grade 8
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Table 3  Correlations of The School Effectivenss
Indices with Important Student Contextual
Variables, Grade 6

Table 4  Correlations of The School Effectivenss
Indices with Important Student Contextual
Variables, Grade 8

Table 5  Correlations of The School Effectivenss
Indices with Important School Contextual
Variables, Grade 6

Table 6  Correlations of the School Effectivenss
Indices with Important School Contextual
Variables, Grade 8

As mentioned previously the major difference
between the grade six and grade eight samples is that
the sixth grade represents 127 relatively homogeneous
schools while the eighth grade consists of only 26
relatively heterogeneous schools.  Put another way,
there is far more within school variance relative to
between school variance at the eighth grade level than
there is at the sixth grade level.  The eighth grade was
included in this study to insure that results were not
situation specific, i.e., did not only apply to
situations where there were large numbers of
relatively homogeneous schools.

The reader will recall that, at the school level, we
are investigating six questions.  First, is there any
practical difference between effectiveness indices
produced by two-stage versus one-stage models?
Second, is there any difference between effectiveness
indices produced by HLM models assuming fixed
versus random slopes?  Third, does a three-level HLM
model that uses student gain scores as the outcome
variable produce results that are similar to those
produced by status-based models?  Fourth, how free
from bias relative to important student and school
level contextual variables and pretest scores are the
various models?  Fifth, can a longitudinal student
growth curve approach to predicting school effect
produce bias free results?  Finally, although not
explicitly stated, is there a best model for estimating
school effect?

In examining the School Effectiveness Indices one-
stage versus two-stage models, one generally finds
little difference between the two.  Correlations,
between the products of Models 1 and 3 (OLS
Regression) were .9595 at grade 6 and .9403 at grade
8; between Models 2 and 5 (HLM-no school level
variables) were .9545 and .9415, respectively; and
between Models 7 and 8 were .9153 and .5306.  The
relatively low correlations between Models 7 and 8
were primarily due to the fact that no three-way
interactions, no math predictor, and no census data
could be included in the one-stage eighth grade HLM
model.  In addition, the correlations of residuals
produced by the one-stage HLM models with student

level contextual variables suggest that HLM one-
stage models carry suppresser effects that are not
found in OLS regression models or two-stage HLM
models.  When this occurrence is coupled with the
inability to include important school level contextual
variable in the one-stage HLM models, resulting in
unsatisfactory correlations between the results
produced by the one-stage HLM full model and those
important school level contextual variables, it is
concluded that two-stage HLM models are more
appropriate for use in estimating school effect.  

In investigating the fixed versus random slopes
issues, School Effectiveness Indices produced by the
two types of models were highly correlated when
working with a large number of schools (grade 6
correlations between Models 4 and 5 and Models 6
and 7 were .9810 and .9867, respectively) and
moderately correlated when working with a smaller
number of schools at grade 8 (.9377 and .8126,
respectively).  These comparisons were all computed
with two-stage models, since one-stage HLM full
models assuming random slopes could not be solved.
These models produced low correlations with student
level variable and, when school level conditioning
variables were added, zero correlations with school
level variables.  The authors believe that the
differences at grade 8 occurred because the fixed
models do not account for the larger variation present
in the slopes of a small number of schools.  Given
these slight differences, the authors suggest the use of
random models in estimating school effect.

With regard to the issue of the gain score model
with limited conditioning variables producing results
similar to those produced by similar status-based
models, there are two answers.  An earlier paper by
Weerasinghe, et. al, (1997) arrived at the conclusion
that, if the same predictor variables are used in the
two models, the results are very similar.  This
conclusion is supported by the relatively high
correlations between the School Effectiveness Indices
produced by Model 13 and Model 14 (.9535).
However, Weerasinghe, et.al., (1997) found that two
level HLM status-models are far more convenient,
efficient, and less fragile than the three level gain
model.  In the two-level models, far more Level 1 and
Level 2 variables can be introduced to obtain complex
models without any biases to the conditioning
variables.  The three level model is also very
sensitive to multicolinearity and low variances in
conditioning variables.

Returning to this analysis, it is clear that the
School Effectiveness Indices produced by Models 13
and 14 are different from those produced by other
models utilized in this study.  Much, but not all of
this difference is due to the lack of conditioning
variables included in Models 13 and 14.  Correlations
of results produced by these models with important
school contextual variable are sufficiently high as to
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suggest a major bias in the indices produced.  This
finding demands that one either add additional school
level conditioning variable to these models, or failing
that, go to less complex models that will allow more
conditioning variables.  The remaining difference is
due to missing data deriving from the use of three
years of student score for prediction versus one year of
student score in concert with a rich array of contextual
information.  Since the authors are charged with the
responsibility of determining school effect over a one
year period, we believe that the one year approach
maximizes available information and is more
appropriate to the task.

Most of the measures produced by the various
models are free from significant bias at the student
level.  Bias enters in at the school level unless
important contextual variables are included as
conditioning variables in an HLM model.  None of
the indices produced by the various models correlate
significantly with pretest scores.

With regard to longitudinal models, it is clear that
longitudinal models produce results that are very
similar to one-year models with identical conditioning
variables (Models 8 vs. 11, .9626 grade 6, .9580
grade 8; Models 7 vs. 12, .9547 grade 6, .9162 grade
8).  These small differences can easily be attributed to
missing data that occurs in the longitudinal analyses.
It is also clear that without the inclusion of school
level conditioning variables, longitudinal models
produce results that carry severe biases against
schools serving minority and poor students.  These
biases are far more pronounced than even the OLS
regression models and HLM models that utilized one
year of prediction and did not control for school level
contextual variables (Models 1 through 5).  It is also
interesting to note that the correlation between
Models 10A and 10, one with three years of
prediction, the other with four is .9992.  Thus the
additional year provides no additional information  and
costs about 5% of the population.

Conclusions on SEI

Based on the analyses conducted through this study, the
authors believe that HLM two-stage, two-level, random
models with a full range of student and school level contextual
variables produce the most bias free estimates of school effect.
The model of choice is Model 6.

Teacher Effectiveness Indices

The following Tables present results relative to the
teacher effectiveness indices:

Table 7  Correlations Between and Among The
Teacher Effectiveness Indices Produced By
Each of the Models, Grade 6

Table 8  Correlations Between and Among The
Teacher Effectiveness Indices Produced By
Each of the Models, Grade 8

Table 9  Correlations of The Teacher Effectiveness
Indices with Important Teacher Contextual
Variables, Grade 6

Table 10 Correlations of The Teacher Effectiveness
Indices with Important Teacher Contextual
Variables, Grade 8

Table 11 Correlations of The Teacher Effectiveness
Indices with Important Student Contextual
Variables, Grade 6

Table 12 Correlations of The Teacher Effectiveness
Indices with Important Student Contextual
Variables, Grade 8

Note that results for Model 16 are not included in
any of the teacher tables.  Model 16 (three-level
HLM, random slopes at level 2, fixed slopes at level
3) was designed to allow the inclusion of classroom
level conditioning variables at level 2.  It was
calculated in the form specified by Model 16 and in
every other conceivable combination including two-
stage models.  These models would not run with a
full array of conditioning variables at the teacher and
school levels.  The best we could do was enter four
conditioning variables at each level.  The computed
effectiveness indices were dependent upon the
conditioning variables included in the equations.
Since all conditioning variables are included in the
equations for specific reasons, it is repugnant not to
use all available relevant information and thus three-
level models proved too fragile to run and had to be
abandoned.

In examining the other models, note first that the
correlations between the various combinations of
models (Tables 7 and 8) show little difference among
the first eight models.  One-stage OLS regression
(Model 1) and one-stage HLM (Model 8) are the only
models that differ slightly and systematically from the
others with correlations ranging from .9363 to .9919
at grade 6 and .8543 to .9680 at grade 8.  The
remaining model intercorrelations range from .9506
to .9999 at grade 6 and .9317 to .9999 at grade 8.  In
particular, the two stage HLM models, 4 through 7,
have intercorrelations at or above .9997.  (The last is
not particularly surprising since the models are
computed from extremely closely related sets of
student residuals.)

The longitudinal models, 9 and 12, show mostly
moderate intercorrelations with the other longitudinal
models and themselves at grade 6 (.8709 to .9396)
and grade 8 (.8421 to .9132) while the longitudinal
one-stage HLM models show higher intercorrelations
at both  grades (.9929 to .9993 at grade 6 and .9427
to .9853 at grade 8).  In general, the correlations of
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the longitudinal models with the other models are
lower at both grades (generally about .8800 at grade 6
and .8300 at grade 8 with several exceptions that are
somewhat higher.)  The two-level student-teacher
HLM models, Models 13, 14 and 15, show high
intercorrelations at both grade 6 and 8 (>.90).
Nothing correlates very highly with Model 17.

The discussion of the intercorrelations of the
teacher indices models is intentionally terse, because
the important information about these models comes
from the examination of their relationship to the
classroom level conditioning variables in Tables 9
and 10.  All of the models, with the exception of
Models 13, 14, and 15, show unacceptably high
correlations with SES variables at the classroom level
(free lunch and the census variables).  Correlations
with free lunch at grade 6 range from -.1073 to -.3153
and correlations with census income at grade 8 range
from .1710 to .4314.  In plain words, with the
exception of Models 13, 14, 15, all of the models are
biased against classrooms with higher percentages of
low SES students.  Where the classroom level
conditioning variables are included in the second stage
of a two level HLM model, all intercorrelations
disappear.

The degree of bias in the other models varies.  The
one-stage OLS model (Model 1) is the least biased at
grade 6 while the one stage fixed slopes HLM model
and the longitudinal two-level HLM with fixed slopes
(Models 8, 10 and 10A) are the most biased at grade
6.  At grade 8, longitudinal Model 12 is the least
biased and Models 8, 10 and 10A are the most biased.
Of the least biased models, the OLS model at grade 6
comes close to being acceptable as a usable model
without the addition of classroom variables.

Conclusions on TEI

Now, considering the questions posed at the
beginning of the paper, the responses are immediate.
All models estimating classroom effects are biased
unless classroom level variables are included as
conditioning variables.  Thus questions of OLS
versus HLM, one-stage versus two-stage, fixed versus
random, and one-year versus longitudinal all are
insignificant without the elimination of bias in
classroom level SES-related variables.  Models 13,
14, and 15, all two-level student-teacher HLM
models, produce acceptable results.  However, because
one-stage HLM models often carry suppressor effects
and fixed models do not account for large variations in
teacher slopes, it is recommended that a two-stage,
two-level random model be employed with a full
range of student and classroom level contextual
variables.  Thus, the model of choice is Model 15.

Discussion

The information in these investigations has
brought several issues into sharp focus for the
authors.  The original foray into identifying effective
schools conducted in Dallas in the 1980s (Webster
and Olson, 1988) resulted in a method that was fair at
the student level, but less so at the school level.  The
current set of research studies begun in the early
1990s (Mendro and Webster, 1993; Webster, Mendro,
and Almaguer, 1994) solved the problems identified at
the school level first through an OLS model that
included interactions among the student level
variables and then refined the model with the HLM
model including school variables explicitly at the
second level.

In designing this study, the authors had the naive
expectation that they would be able to complete a set
of analyses that would give us a set of answers to
guide future analyses and efforts in our own attempts
to determine effective schools and teachers and that
extensive future research of this type would not be
necessary.  We were wrong.  The results at 8th grade
which show unexpected problems with models
containing few level two data points (number of
schools)  and the results for the teacher indices which
showed the correlations with classroom variables
indicate that further research on both fronts will have
to continue for the foreseeable future.

Also, the authors had once speculated, given the
similarities among our previous sets of results, that
any carefully thought out regression approach, OLS
or HLM would produce acceptable results (Webster et.
al. 1995).  The cumulative effect of our prior research
and these studies now indicates that our speculation
was premature and probably wrong as well.

It is becoming clear to us that no assertions about
models and their efficacy can be taken at face value
without extensive trials of the models and careful
comparisons of their output.  We suspect that there
may be ways to adapt OLS models to include second
level conditioning variables (for Teacher or School
Effectiveness Indices) that may produce more
acceptable results than a number of the models tested
here.  Further, for our own effectiveness programs in
our District, we need to carefully compare teacher
models that employ classroom-level conditioning
variables.  However, the critical point is that we are
no longer willing to make assumptions about models
without careful examinations of the practical results.

This does not say that our research has failed to
result in some general conclusions about models for
identifying effective teachers and schools.  Until we
arrive at a model with better characteristics, we note
that school models that are two-stage HLM models,
that eliminate student level characteristics at the first
stage and employ relevant conditioning variables at
the second stage with random effects present the best
choice for a school effects model.  The choice of one-
versus two-stage is clear because of suppresser effects.
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The school conditioning variables are necessary to
control these variables.  Finally, the choice of a
random model seems to offer the best method of
controlling variables which have not been explicitly
controlled in the model.

For teacher models, clearly this study has shown
the need to control classroom level conditioning
variables.  Future models will have to take that as a
given element or will have to show that they do so
intrinsically to be seriously considered as acceptable
models.  At this point, however, the authors intend to
apply a two-stage, two-level student-classroom HLM
model that eliminates student level characteristics at
the first stage and employs relevant conditioning
variables at the second stage with random effects to
estimate teacher effect.
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