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article (pp. 3-12), the authors search for an

acceptable methodology for estimating missing
student post-test scores within a school effectiveness
analysis. It appears that the current methodology
involves Listwise Deletion of data which has notable
problems, especialy when data are missing on a
systematic basis. Thus, the authors attempt to
answer, “How could we effectively rank the school of
interest without complete data for its constituents?’
(p. 3). More succinctly, this question could be posed
as, “Can we find a method better than Listwise
Deletion for calculating School Effectiveness Indices
(SEl9)?" Thus, it would seem that Listwise Deletion
should have been included as a method for handling
missing data. Listwise Deletion is noted for simply
reducing statistical power when data are missing
randomly (Hartley & Hocking, 1971). In this case,
however, the statistical power of atest statistic is not
of interest. Rather, the accuracy of predicted values
used to replace missing values is the central issue.
Thus, although the properties of Listwise Deletion
could be examined in terms of SEl accuracy, these
properties could not be investigated at the data level.
With multiple variables, Listwise Deletion may lead
to a severe loss of complete-case data. Thus, one
may assume that any unbiased estimate would be
better than nothing at al (Frane, 1976). When daa
are missing systematically, however, serious biases
may occur (Little & Rubin, 1987). Therefore, one
response to this article is another question: “What if
missing data is corrdated with the index of SEI?
For example, “Do low performing schools have more
missing data?” Or, “Is missing data corrdated to
other factors such as SES?’

Another important issue involves whether more
complex imputation models provide better estimates
when higher percentages of data are missing. The
authors conclude that the more complex modeds
(especially HLM) provide more accurate estimation of
the original data for greater percentages of missing
data (see p. 11). Intuitively this seems reasonable;
however, despite these claims, this increased accuracy
does not manifest itself to an overwhelming extent in
the results. Perhaps the similarities among these
regression-based approaches can potentially be
attributed to the replaced data being initially missing
on a random basis. Furthermore, concerning the SEI
correlations, it must be consdered that the replaced
(missing) values are entered into a second linear
composite to compute SEIs. In general, quantitative
estimates based on sums should be unbiased if daa
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are missing randomly. Therefore, based on the
Central Limit Theorem, SEls should be normally
distributed and unbiased asymptotically when data are
missing randomly. This may also help explain the
similarity of OLS and HLM when the correlation of
their respective SElsis examined.

Another point of contention is that a clear
distinction between statistical models and estimation
procedures is necessary. Although not frequently
elaborated at the MLR: GLM SIG (except by Randy
Schumacker), HLM can be peformed using GLM
interaction terms and Ordinary Least Squares (OLS)
solutions. Dayton’s (1970) excellent chapter on
nested designs elaborates this approach. Therefore,
the distinction between a HLM and OLS regression
solution is, in many cases, the difference in what
algorithm is used to estimate parameters. The
confusion arises because the most noted HLM
software uses Empirical Bayes (EB) estimation,
whereas most linear regression modules in other
statistical softwares provide an OLS estimation of
parameters. The authors should consider this issue
when claiming that the “three models indicate that
HLM is more suitable for estimating missing daa
than OLS or the average school score.  This
advantage must be gained by HLM’s adjustments for
school trends in comparison to overall trends for
student score” (p. 11).

First of al, regression procedures that include
interaction terms can make adjustments for school
(Level 2 or Outer Level) trends. Furthermore, the
results for Models 1 (HLM) and 1A (OLS) are only
dightly different which can be attributed to the HLM
and OLS models being identical random effects
models.  Although fixed effects linear regression
models make no assumptions about the form of the
predictor variables, when predictor variables are treated
as random effects, as in this case, normality is
assumed and the distributional shape of the predictor
is critical in terms of the accuracy and efficiency of
the regression model. Importantly, the predictor
variablein Models 1 and 1A (MATHO95) is probably
close to being normally distributed. Therefore, the
distinction between the EB and OL S estimators would
not be expected to be great.

By contrast, the authors report that the “which is
best” decision leaned more clearly to HLM for the
Model 2 analysis. However, this may not be
attributable to the HLM approach. Rather it may be
due to EB estimation procedure. That is, Models 2
and 2A do not have “nested” or hierarchical structures.
Thus, the difference in the results for these random
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effects models may be due to the superiority of the
EB estimators over OLS for the added predictor
variables (i.e., Percent block poverty (POV) ad
Percent block college (COL)), both of which ae
likely to be skewed. Thus, only the Model 3 results
are convincing in demonstrating a definite advantage
of the HLM approach with EB estimation. The
possibility remains, however, that this advantage
could potentially dissipate if interaction terms ae
cregted so that the OLS regression could model the
hierarchical structure of the data. Therefore, OLS
regression should still be consdered as a viable
method for estimating missing data. Fortunately,
both Mundrom and Whitcomb (pp. 13-19) as well as
Brockmeier et a. (pp. 20-39) also investigate the
properties of regression-based imputation procedures.

Mundrom and Whitcomb (pp. 13-19) note
that physicians often use empiricaly deived
classification functions to make important decision
concerning the treatment or transport of the patient.
Unfortunately patient data is often missing. In
situations where a classification function or prediction
equation is being estimated, missing data may lead to
less statistical power or biased estimates. By
contrast, in the medical decison scenario, the
classification function has dready been derived.
Therefore, missing data preempts the decision. To
use the classification function for making a decision
about a patient’s status, the missing data MUST be
replaced. Thisdiffers from the Orsak et al. article in
that SEls could be estimated if missing data were
deleted. Thus, Mundrom and Whitcomb examine
efficient ways to estimate a replacement value for a
classification function when a patient has missing
data.

Because of the practical nature of this problem,
parsimony isan issue. That is, a physician who uses
the classification function wants the best prediction
with the least effort or complexity. To examine the
problem, Mundfrom and Whitcomb systematically
deleted each value of an existent data set (N = 99) then
replaced each deleted value with one of three values
(Mean Substitution, Hot-Deck imputation, Multiple
Regression imputation). Next, the data were
submitted to two different classification functions in
order to examine which missing data approach was
better in terms of making the “ correct” decision. This
procedure was completed for each variable in the
classification function. (see p. 15) This problem in
missing value analysis, the methodology, and the
results lead to many speculations and comments.

In general, Mean Substitution is considered one
of the worst things to do when data are missing.
This distrust is based on the use of Mean
Substitution in developing statistical models not its
use as a decison making tool. Typicaly, Mean
Substitution is criticized because it gives no leverage
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to the replaced values (Frane, 1976). When there is a
substantial number of missing values, mean
substitution reduces the average leverage (i.e.,
Pearson correlation). Mean Substitution also reduces
the average squared deviation (i.e., variance) which
may create a restriction of range issue. The Mean
Substitution method in this application, however, is
aceteris paribus approach. That is, al things being
equal, what is the decison? This is because each
coefficient is partialled and the predicted value of any
score at the mean of avariable does not raise or lower
the predicted value (i.e., regression surfaces aways
intersect the centroid). Thus, the approach implies,
“If we do not know the information, let's substitute
the mean because it will not influence the decision or
predicted value.”

In practice, the Hot-Deck imputation procedure
involves randomly selecting a data value from the
existent distribution of the variable for replacement.
Therefore as the authors note, the results vary from
one selection to another. This is the danger of using
the Hot-Deck procedure especially with variables with
large dispersion. In terms of this study, one would
never know whether in practice a physician would
select the same value (in one replication) as did the
simulation researcher. To address this issue, the
authors aggregated the results of the Hot-Deck
imputation over 1,000 replications. However, the
average of 1,000 replication makes the results of the
Hot-Deck procedure identical to Mean Substitution
asymptotically. That is, with 99 values and 1,000
replications, the average Hot-Deck imputed vaue
should be the expected value of the variable which IS
the Mean Substitution procedure. Therefore,
investigating the properties of Hot-Deck imputation
is problematic given the authors simulation
methodology. This issue could be addressed by
randomly generating multiple (e.g., 1,000) samples
of 99, rather than using one sample of 99 repestedly.
Furthermore, because Hot-Deck imputation involves
replacing the missing datum with a randomly sdected
value from the existent data set, it tends to rely on the
shape of the distribution. If the variable is normally
distributed the randomly selected value is likely to be
near the mean and Hot-Deck imputation should
perform similarly to Mean Substitution. When the
Hot-Deck results were aggregated over 1,000
replications the results tended to be similar to Mean
Substitution regardless of distributional shape because
of the Centra Limit Theorem. The Multiple
Regression approach performed surprisingly poorly
relative to the other two procedures. This truly
makes it unattractive given that it is the most
complicated of the three procedures.

From arealistic perspective, the relative costs of
making a Type | (sending the patient to a city
hospital) or Typell (keeping the patient in the rura
hospital) should aso be considered. It could be
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beneficia to replace the missing value with an
extremely low, but plausible value (i.e., best case
scenario) and then with an extremely high plausible
value (i.e.,, worst case scenario). Then the physician
could evaluate whether the decision changes based on
these extremities. Similarly, one might investigate
that given all the existent data, at what point does the
decision change and how plausibleisthat replacement
value? Of course this approach would be dependent
on the variability and predictive importance of the
variable. However, al three of the imputation
procedures are dependent on these two factors. For
example, the authors note that the Syncope variable
was least affected by any imputation method. Perhaps
this was because it was the strongest partial predictor
or because it had the least variance. Certainly, it
would seem that Mean Substitution and Hot-Deck
imputation may not work well with variables with a
great deal of dispersion. However, it would seem that
some data may be so crucid (strong partia
correlation) that avalid or accurate decision can NOT
be made without it. In such a case, classification
accuracy would be a function of the “importance” of
the predictor. The peformance of the imputation
procedures for missing data on these important or
crucial predictors should be investigated. Also, the
variability of predictor variables should be examined
because Mean Substitution may not perform as well
with highly disperse predictors. Thus in general one
must ask, “Would the imputation procedure perform
differently if the variables were of different importance
(had differing partial relationships)?” Aswas aso the
case with the Orsak et al. article, one must wonder
whether in redlity the data would be missing on a
random basis. For example, is the fact that the
patient has a missing Heart Sound Reading indicative
of some other factor (e.g., the type of insurance
coverage)? From a practical perspective, it would be
important to examine whether there are “proxy”
variablesthat are not in the final regression solution
(or classification function) but could be used to
impute missing values. Such variables do not
necessarily have to be relaed to the outcome (else
they would be in the regression solution), but they
should be related to the predictors so that they can
take their place and be used to impute missing values.
Aswas also the case with Orsak et a., the Mundfrom
and Whitcomb should certainly consider examining
how Mean Substitution and other imputation
procedures perfform when daa is missing
systematically.

Thus, before regression procedures can be applied
in practical decision-making situations, thereis a need
for studies like the one conducted by Brockmeier,
Kromrey, and Hines (pp. 20-39) that address the
issue of systematically missing data. However, the
issue of predictor variability and/or importance
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becomes a concern when interpreting their findings.
Asis often noted, if data are missing at random then
the reduced number of cases is simply a power issue
and most methods yield similar results (Little &
Rubin, 1987). This again leads to the questions that
have been asked about the two previously reviewed
articles: “How do researchers know when data is
missing?’ and “How can they be sure that the pattern
of missing datais random?’

Most substantive researchers agree that data is
rarely missing on a random basis. Despite this
consensus, however, the authors accurately eschew
the all too common avoidance of investigating the
extent and nature of missing data  Rather, many
researchers choose to simply deete missing daa
either purposely because it is convenient or
inadvertently because it is the default of most
statistical software.  As researchers and statistics
educators, we should reinforce that data screening is
not simply ritualistic behavior that we learned in
graduate school. Rather, carefully examining the data
for outliers and missing data patterns is paramount in
terms of researchers becoming familiar with their data
and investigating whether any missing data may
cregte a bias in the interpretation of their results.
Specifically, one can determine whether the data is
missing systematically by examining whether a
dummy-coded variable (e.g., 1 = nonmissing, 0 =
missing) is related to other collected variables. If itis
related to variables that will be potentially included in
the regression model then systematically missing data
may result in biased parameter estimates and
ultimately to a specification error. If the dummy-code
is related to variables not in the modd (e.g., SES),
externa validity may be limited. In either case, the
interpretation of the results is compromised.

After concluding that the missing data pattern is
systematic, one of many missing data approaches
may be sdected. Thus, the authors examine the
properties of several of these procedures. As is the
case with most newer advances in dtatistical
methodology, however, multiple imputation ad
maximum likelihood approach are not utilized
frequently due to lack of accessble software.
Likewise, stochastic imputation is not frequently used
either which may also be due to a lack of software
accessibility. Thus, it is important that the authors
included their algorithms in the Appendix (pp. 38-
39). Possibly, the trend to ignore missing data will
reverse with new statistical modules such as SPSS
8.0 Missing Vaue Analysis. Based on my
experience, however, such a convenient module is
alarming because of the potential for misuse.

In terms of their methodology, | must
sympathize with these researchers because there are so
many variables that can be manipulated when
simulating a regression model. For preliminary
work, | agree with the author’ s decision to investigate
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the dandardized regression model. If raw score
models were investigated then other variables such as
the variance of the predictors could be manipulated
thus increasing the number of simulation conditions
and in general making investigation and interpretation
more complicated. Also, in educational research,
standardized models are more common; however, the
authors should consider that many researchers would
be interested in how these approaches to handling
missing data would affect the Y-intercept. In any
case, the accuracy of estimating the sandardized
regression parameters of B,, B, ad Population R?
(i.e., p?) in a two-predictor model was investigated.
In terms of Monte Carlo studies, statistical
hypothesis testing, and therefore investigating
whether Type | error rates remain near an expected
nominal apha level, has been the bread-and-butter of
simulation researchers.  Furthermore, given that
statistical hypothesis testing is not going away any
time soon (see Robinson & Levin, 1997), | would
suggest that the authors consider simulating complete
and partial null structures and then investigating Type
| error rates for each parameter. However, given the
task at hand (i.e., estimation accuracy) perhaps
coverage probabilities for confidence intervals
constructed for each parameter could suffice. This
would alow an investigation of whether
systematically missing data biases the accuracy of
parameter estimates and the coverage probabilities of
their confidence intervals. To elaborate, if a 95%
confidence interval is congructed in  multiple
replications, the confidence interval should cover the
population parameter 95% of the time regardiess of
its value (i.e.,, whether it is a null or non-null
structure). By taking this approach, one could
examine the potential bias in: (@) coverage
probabilities (i.e., Does the confidence interval cover
the population parameter?); (b) power (i.e., Does the
confidence interval cover O with a non-null
structure?); and (c) Type | error rate (i.e,, Does the
confidence interval cover O with anull structure?).
Despite the absence of a null structure, the
authors do present two interesting regression
structures.  For the 6" grade data, there is a
“dominant” predictor (see Table 1, p. 21). By
contrast, both predictors are equaly related to Y in
both a zero-order and partia sense for the 9™ grade
data (see Table 2, p. 21). Thus, theissue of predictor
variability and/or importance becomes a concern in
the interpretation of the results. | have taken the
liberty of constructing a very simple summary table
of the results for estimating population R
Interestingly, Listwise Deletion tended to
underestimate p> when the predictors were equally
rdlated to Y. Having a large percentage of data that
are missing above the mean for the predictor variables
creeted a more serious underestimation, possibly
because these missing values have the most influence
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or leverage. Furthermore, this situation creates a
restriction of range problem.

When one predictor was “dominant,” one of the
predictors tended to “take over” in terms of estimating
p? as a summary measure. That is, there seems to
have been some compensatory process. Similarly, it
would seem that Pairwise Deletion would lead to a
compensation because the remaining X-Y coordinates
that are not affected by the missing data are still used.
The results, however, showed that Pairwise Deletion
typically underestimated p?.

Similar to many other studies, Mean
Substitution seemed to be the worst method for
estimating regression parameters. Both Deterministic
and Stochastic Mean Substitution procedures tended
to underestimate p® raising interpretative issues
similar to those concerning using Listwise Deletion.
As previously mentioned, replacing values with the
mean reduces the average leverage (i.e., correlation)
and the variance (i.e., average squared deviation) so
that less variance is available to be shared. These
problems worsen as the percentage of data missing
above the mean increases.

The results for the regression-based imputation
procedures creste an unusual sSituation. Both
Deterministic and Stochastic Simple Regression
imputation approaches typically resulted in the
underestimation of p?>. One may interpret this from
the perspective that since the relationship of Y to the
missing data was not included in estimating a
replacement value, not all relevant information was
included. By contrast, both Multiple Regression
approaches overestimated p2. One perspective on this
is that by including the Y relationship to the missing
data one increases the likelihood of capitalizing on
chance relationships.  Furthermore, Deterministic
Regression approaches have been reported to “overfit”
the data because missing scores are predicted without
eror (Allison, 1987; Little, 1992). Thus, it would
seem that Stochastic Multiple Regression would tend
to reduce the amount of overestimation. Although
this is not aways the case in these results, the
Stochastic Multiple Regression procedure performed
the best in terms of estimating p2

These “which is best” results carried over to the
estimation of standardized regression coefficients for
the most part. In general, increasing amopunts of
missing data on X; resulted in an increasing
underestimation of 3, for most methods. Also for the
gandardized regression coefficients, there seems to a
“compensatory” process for most of the missing data
approaches. That is, where 3, was underestimated 3,
tended to be overestimated and vice versa. This
compensatory process should be used for ading
interpretation. That is, one should consider the degree
of over and under estimation in context with which
variables have missing data and with what other
variables the missing datais correlated.
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Summary of Results for Estimating p?
from Brockmeier et al.

M ethod Estimation of p?

Listwise Underestimates with
Deletion equivaent predictors (Table 4).
With adominant predictor,
estimation is better (Table 5).

Pairwise Underestimates
Deletion
Deterministic Under estimates
Mean Substitution
Deterministic Under estimates
Simple Regression
Deterministic Overestimates
Multiple Regression
Stochastic Underestimates
Mean Substitution
Stochastic Underestimates
Simple Regression
Stochastic Overestimates

Multiple Regression

It is interesting that these researchers reported
that the relative effectiveness of the missing data
treatments in this study with systematically missing
data were similar to their results obtained with
randomly missing data (e.g., Brockmeier, Kromrey,
& Hines, 1995, 1996). Asthey aptly note, however,
these results may be due to the particular covariance
structures used in this investigation (p. 34). Thus,
deliberations over whether it is reasonable to assume
that data are missing a random may be
inconsequential in terms of estimating replacement
values. However, | suspect that the efficacy of
procedures to handle missing data is complex ad
depends on (&) the relationships among the criterion
variables and predictors, (b) the predictor
intercorrel ation/covariance matrix, and (c) whether any
relationships to data being missing are strong.
Furthermore, these issues will become more
complicated with more than two predictors.
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