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The present study investigates parameter estimation under the simple linear regression model for situations in which
the underlying assumptions of ordinary least squares (OLS) estimation are untenable.  Classical nonparametric
estimation methods are directly compared against some robust estimation methods for conditions in which varying
degrees of outliers are present in the observed data.  Additionally, estimator performance is considered under
conditions in which the normality assumption regarding error distributions is violated.  The study addresses the
problem via computer simulation methods.  The study design includes three sample sizes (n = 10, 30, 50) crossed
with five types of error distributions (unit normal, 10% contaminated normal, 30% contaminated normal, lognormal,
t-5df).  Variance, bias, mean square error, and relative mean square error are used to evaluate estimator performance.
Recommendations to applied researchers and direction for further study are considered.

pplied statistics in the social sciences has
focused heavily on modeling data via a linear
model (Pedhazur, 1997).  Under this

framework, a model is posited in which it is assumed
that a linear combination of predictors is useful in
explaining or predicting some random outcome
variable of interest.  The most basic form of this
model, simple linear regression, is the situation in
which a single predictor is included in the explanatory
model.

The simple linear regression model, in terms of
the observed data, may be expressed by the equation:
yi = α  + βxi + ε i, in which yi is the score for the
response measure for the ith individual; xi is the value
of the explanatory variable for the ith individual; α  is
the Y-intercept, the mean of the population when the
value of X  is zero; β is the regression coefficient in
the population, the slope of the line; εi is a random
disturbance, or error, for individual i and is computed
as the discrepancy between the observed value of Y
for a given individual and the predicted value of Y  for
that subject).  Under this model, it is posited that the
score for an individual is partitioned into a structural

component, yi = (α  + β Xi), which is common to
all subjects at the same level of X , and a random
component (εi) which is unique to each individual.

In the simple linear regression model, the
population parameters α  and β are unknown
quantities which are estimated from the sample data.
The most widely employed method for estimating
these parameters is the method of ordinary least
squares (OLS).  Under OLS, sample estimates of α
and β (denoted α  and β , respectively) are chosen to
minimize the sum of the squared errors of prediction,

Σ ei
 2, where ei = yi - (α  + β Xi) is the sample

estimate of ε i.  OLS regression yields estimates for
the parameters that have the desirable property of
being minimum variance unbiased estimators
(Pedhazur, 1997).

Ordinary least squares estimation places certain
restrictive assumptions on the random component in
the model, the errors of prediction.  OLS estimation
assumes, among others, that the errors of prediction
are normally distributed, with a common error
variance at all levels of X  [ε ~ N(0,σ2)].  The
normality assumption is frequently untenable in
practice.  Violation of this assumption is often
manifested by the presence of outliers in the observed
data.  Thus data containing outlying values may
reflect nonnormal error distributions with heavy tails
or normal error distributions containing observations
atypical of the usual normal distribution with larger
variance than the assumed σ2 (Draper & Smith, 1981;
Hamilton, 1992).  It is well demonstrated that
outliers in the sample data heavily influence estimates
using OLS regression, sometimes even in the
presence of one outlier (e.g., Rousseeuw & Leroy,
1987).

It is also recognized that in the presence of
normally distributed errors and homoscedasticity,
OLS estimation is the method of choice.  For
situations in which the underlying assumptions of
OLS estimation are not tenable, the choice of method
for parameter estimation is not clearly defined.  Thus,
the choice of estimation method under non-ideal
conditions has been a long-standing problem for
methodological researchers.  The history of this
problem is lengthy with many alternative estimation
methods having been proposed and investigated
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(Birkes & Dodge, 1993; Dietz, 1987; Iman &
Conover, 1979; Tam, 1996; Theil, 1950; Yale &
Forsythe, 1976).

Robust Regression
Alternatives to OLS regression may be regarded

as falling into broad classes based upon the approach
to the problem of parameter estimation and the
assumptions placed upon the model.  Robust
regression is a general term that encompasses a wide
array of estimation methods.  In general, robust
estimation methods are considered to perform
reasonably well if the errors of prediction have a
distribution that is not necessarily normal but “close”
to normal (Birkes & Dodge, 1993).  Thus, these
methods have been developed for situations in which
symmetric error distributions have heavy tails due to
outliers in the observed data (Hamilton, 1992).  A
common element to these methods is the definition of
a loss function on the residuals, which is subject to
minimization via differentiation with respect to the
slope and Y-intercept parameters (Draper & Smith,
1981).  Examples of this type of robust estimation
are Huber M-estimation, the method of Least Median
of Squares, and the method of Least Absolute
Deviations (LAD).

The robust LAD estimator is investigated in the
present study and so a brief description of the method
is mentioned here.  LAD was developed by Roger
Joseph Boscovich in 1757, nearly 50 years before
OLS estimation (see Birkes & Dodge, 1993 for a
review and historical citations).  In contrast to OLS
estimation which defines the loss function on the
residuals as Σei

 2, LAD finds the slope and Y-

intercept that minimize the sum of the absolute
values of the residuals, Σ|ei |. In concept, the LAD

estimator is no more complex than the OLS
estimator.  Some have considered LAD to be simpler
than OLS because |ei | is a more straightforward
measure of the size of a residual as compared to ei

 2.
Unfortunately, computing LAD estimates is more
difficult than computing OLS estimates; there are no
exact formulas for LAD estimates and thus
algorithmic methods must be employed to calculate
them.

Other forms of robust regression involve iterative
modification of the sample data, often based upon the
residuals from OLS estimation.  Examples of this
type of robust estimation are Winsorized Regression
(Yale & Forsythe, 1976) and regression using data
trimming methods (Hamilton, 1992).  These methods
maintain the assumptions of OLS estimation and
employ smoothing techniques to resolve the influence
of Y-outliers on the estimates of slope and Y-
intercept. The trimmed least squares estimator (TLS)
is computationally similar to a trimmed mean
(Hamilton, 1992).  Estimates for TLS are computed
by deleting cases corresponding to a specified

percentage of the largest positive and the largest
negative residuals under an initial OLS estimation.
After case deletion, OLS estimation is performed on
the remaining data to compute the TLS estimates of
slope and Y-intercept.

Winsorized regression, which can take on several
different forms, is used as a method to reduce the
effect of Y-outliers in the sample by smoothing the
observed Y-data rather than simply deleting outlying
cases (as in TLS).  Fundamental to the method is the
formulation of an observed response measure as  
yi = yi + ei.  If an observed response measure is far
from the majority of the other Y-values (i.e., an
outlier), then the residual for that case will tend to be
large in absolute value.  Winsorization methods
modify extreme Y-values, in an iterative fashion, by
replacing the observed residual for an extreme Y-value
with the next closest (and smaller) residual in the data
set, and then computing new Y-values using the
formulation for an observed score as presented above.
These new Y-values are used to compute new slope
and intercept estimates for the regression line, and
then a new set of residuals is obtained.  The process
of estimation, obtaining residuals, and data
modification is continued for a specified number of
iterations.

Variations on Winsorization methods for linear
regression are described by Yale and Forsythe (1976)
and incorporate techniques for both computing the
residuals and for modifying the observed Y-data.
They note the most common method for obtaining
the residuals is to compute the OLS estimates of
slope and intercept and form the residuals in the usual

manner as ei = yi - (α  + β Xi).  The most
straightforward method for smoothing the data is a
process in which a specified percentage of the Y-data,
at each extreme of the ordered residuals, is modified
iteratively. Iterations involve computing OLS
estimates, obtaining residuals, and then replacing
extreme Y-values with modified Y-values as described
above.

Nonparametric Regression
The robust regression methods described above

assume normally distributed error terms in the
regression model. In distinction, classical
nonparametric approaches to linear regression
typically employ parameter estimation methods that
are regarded as distribution free.  Since nonparametric
regression procedures are developed without relying
on the assumption of normality of error distributions,
the only presupposition behind such procedures is
that the errors of prediction are independently and
identically distributed (i.i.d.) (Dietz, 1989). The
assumption that the data are i.i.d. is a considerably
weaker assumption as compared to the normality
assumption underlying OLS regression and robust
regression procedures. Hence nonparametric regression
methods are expected to perform well without regard
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to the nature of the distribution of errors. Several
classical nonparametric approaches to linear
regression are reviewed by Tam (1996) and are briefly
described here.

Many nonparametric procedures are based on
using the ranks of the observed data rather than the
observed data themselves.  An application of rank
transformation in the linear regression model was
developed by Iman and Conover (1979) and is known
as monotonic regression.  This technique has been
proposed for estimating slope and Y-intercept when
the data exhibit a nonlinear relationship (i.e., data that
exhibit a monotonic increasing or decreasing
relationship).  Monotonic regression uses the rank
ordering of the data as the values for criterion and
independent variables in the estimation of slope and
Y-intercept.  Iman and Conover (1979) compared the
performance of the rank regression method against
OLS, mean isotonic regression, and median isotonic
regression and found that for data exhibiting a strictly
monotonic increasing or decreasing relationship,
monotonic regression shows strong estimator
performance.  They also note that the procedure fits
the monotone non-linear trend in the sample data
while robust regression is forced to treat non-linearity
in the data as outliers.  Therefore, Iman and Conover
suggest using monotonic regression for situations of
non-linearity but not for cases in which the sample
data is contaminated by outliers.

In addition to methods based on ranks,
nonparametric procedures have been developed that
use the median as a robust measure (rather than
means, as in OLS).  Theil (1950) considered the
geometric formula for the slope of the line between
any two data points (say the ith and jth points) as

bij = 
yj - yi

xj - xi
,

where xi ≠ xj. He proposed a robust measure for the
slope of the regression line passing through all n
sample data points by taking the median of all
possible pairwise slopes.   Conceptually, this method
would yield an estimate of slope that is resistant to
outliers in the sample data.

Modifications to Thiel’s original method for
computing the slope of the regression line have been
proposed in which each of the pairwise slopes, bij, are
weighted using a weighting scheme.  The median of
these weighted pairwise slopes is then taken as the
slope of the regression line passing through all n
observations in the sample.  Jaeckel (1972) proposed
that each slope should be weighted by the X-distance
between the ith and jth observations (i.e., wij = xj - xi).
Sievers (1978) and Scholz (1978) suggested the use of
wij = (j - i) as the weighting scheme, which is the
number of steps between ith and jth observations.
Still another weighting method, as discussed by
Birkes and Dodge (1993), uses wij = |xj - xi |.

Using medians, several methods for computing
the Y-intercept have been proposed and investigated.
It can be shown that the intercept of the line joining
any two data points is given by

aij = 
xjyi - xiyj

xj - xi
, i < j, xi ≠ xj.

Under this formulation, several nonparametric
estimators for Y-intercept have been proposed.  The
most obvious one is to take the median of the aij

values.
A different approach that does not require the aij

terms explicitly is to make use of the various
nonparametric slope estimators previously mentioned.

For some estimator of slope, β , the term yi - β X i is
computed for each observation, and then the median
of these terms is taken for the Y-intercept of the
regression line passing through all n observations.
Theil (1950) originally proposed this estimator for
the Y-intercept of the line using his proposed median

of pairwise slopes as β .  A variant of this Y-
intercept may be formed substituting the modified

(weighted) Theil slope estimator as β .
Yet another approach to estimating the Y-

intercept is to compute it as the median of all

pairwise averages of the yi - β X i terms.  This Y-
intercept can also be computed using either the

original Theil median of pairwise slopes as β  or

using the modified Theil slope as β .  Finally,
Conover (1980) proposed estimating the Y-intercept
using α  = median(yi) - median(xi), using the Theil

median of pairwise slopes as β .  This Y-intercept
estimate is usually paired with the Theil median of

pairwise slopes estimator for β  in the regression
equation.

Tam (1996) reviews two important studies that
compare the performance of median based classical
nonparametric methods for estimating the slope and
Y-intercept in linear regression.  Hussain and Sprent
(1983) present a simulation study in which they
compared the OLS regression estimator against the
Theil pairwise median and weighted Theil estimators
in a study using 100 replications per condition.
Hussain and Sprent characterized the data modeled in
their study as typical data patterns that might result
from contamination due to outliers.  Contaminated
data sets were generated using a mixture model in
which each error term is either a random observation
from a unit normal distribution [N(0,1)] or an
observation from a normal distribution with a larger
variance [N(0,k2), k >1].

The investigators present results from simulated
data sets with the probability, p, of drawing data from
the N(0,1) distribution fixed between 0.85 and 0.95.
Sample sizes of 10 and 30 are presented for the
situation in which there are no outliers (p = 1.0) and
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for the condition in which the data contain
approximately 10% outliers (k = 9; p = 0.85 for n =
10, p = 0.90 for n = 30).  X-values in the Hussain
and Sprent study follow an equally spaced, sequential
additive series (xi = 1, 2,..., n).  Observed outcome
values are generated by the model: yi = 2 + xi + ei, in
which ei is a random deviate drawn from the
appropriate normal distribution.

Results from Hussain and Sprent (1983) indicate
that Theil’s method was appreciably better than OLS
in the presence of outliers, especially for small
sample sizes.  Such results pertain especially to the
estimation of the Y-intercept term in the linear
regression model.  Furthermore, their results showed
no real advantage of the weighted median estimator as
compared to the Theil estimator under their simulated
data conditions.

In addition to the work of Hussain and Sprent,
findings in Dietz (1987) have contributed
substantially to the field of classical nonparametric
regression.  Dietz estimated and compared the mean
square errors (MSE) of the Theil slope and several
weighted median slope estimators under a variety of
simulated data conditions.  Additionally, Dietz
examined several nonparametric estimators of Y-
intercept.  Dietz simulated data according to two
sample sizes (20 and 40), three X-designs to generate
X-values, and nine error distributions (i.e. standard
normal, 6 contaminated normal distributions with
various degrees of flatness, heavy-tailed t-distribution
with 3 degrees of freedom, and an asymmetric
lognormal distribution).  Dietz generated 500 data
replications per condition.

Findings in Dietz (1987) demonstrated that for
normal error distributions, the OLS slope estimator
yielded the lowest MSE, while for nonnormal errors
the OLS slope estimator had the largest MSE.  The
weighted median slope estimators showed strong
performance under the moderately contaminated data
conditions while the Theil unweighted median slope
estimator yielded the lowest MSE under the heavily
contaminated data conditions.  Dietz also reported that
the Y-intercept estimator as proposed by Theil (1950)
yielded large MSE values and should be avoided in
practice.

Alternatives to OLS regression continue to
intrigue applied statisticians and methodological
researchers. The present study explores the behavior
of robust regression and nonparametric approaches to
simple linear regression under various situations with
respect to contaminated data and nonnormal error
distributions.  This study provides an extension to
previous research in some important areas.  As noted
by Tam (1996), very little research exists in which
classical nonparametric alternatives to linear
regression are directly compared against robust
regression methods.  Additionally, comparisons of
alternative regression methods are often presented

only within the framework of statistical theory or by
examining estimator performance on exemplary data
sets (e.g., Birkes & Dodge, 1993).  The present study
serves to begin addressing the issue of comparing
alternatives to OLS regression within the framework
of a simulation study.

Method
All programming for the simulation study was

developed using GAUSS (Aptech Systems, 1996).  In
the present study, three levels of sample size (n = 10,
30, 50) were crossed with five types of error
distributions (unit normal, contaminated unit normal
with 10% Y-outliers, contaminated unit normal with
30% Y-outliers, lognormal, t-5df).  For each of the
15 cells in the study, 1000 simulated bivariate data
sets were generated.  Algorithms for drawing random
deviates from contaminated unit normal, lognormal,
and t-5df distributions are found in Evans, Hastings,
and Peacock (1993).

Data generation methods are conformable to
those of Hussain and Sprent (1983).  Vectors of
random error variates were drawn from the appropriate
error distribution.  Error vectors for the contaminated
normal distributions were mixtures of deviates drawn
from a unit normal distribution and from a normal
N(0,k2) distribution with k = 9.  It has been
demonstrated that drawing deviates from this larger
variance normal distribution will result in some
(potentially) large Y-outliers (Hussain & Sprent,
1983).

Simulated bivariate data sets consisted of (X,Y)
vectors.  The vector of X-values was generated to
follow an equally spaced, sequential additive series
(xi = 1, 2,..., n).  The Y-vector was generated by the
model:  yi =  2 + xi + ei, in which ei is a random
deviate drawn from the appropriate error distribution.
Thus, the population parameters underlying the model
are α  = 2 and β = 1 for Y-intercept and slope,
respectively.

For each simulated data set, estimators of slope
and Y-intercept were computed.  The robust
regression estimators considered in this study are
LAD, 10% and 20% Winsorized least squares, and
10% TLS.  Algorithms for computing the LAD
estimator are found in Birkes and Dodge (1993).
Winsorization methods for computing residuals and
smoothing the Y-data were implemented via the
methods described previously, and used five iterations
of data smoothing.  We conducted pilot studies using
Winsorized regression, with results showing very
little change in the parameter estimates beyond five
iterations of data adjustment.  Estimates for the 10%
TLS were computed by deleting cases corresponding
to the 10% largest positive and the 10% largest
negative residuals under an initial OLS estimation.
After case deletion, OLS estimation was performed on
the remaining observations to compute the TLS
estimates.
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Table 1.  Summary Measures for Estimating Population Slope (β = 1.0).
                                                                                                                  

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              
OLS: 0.01115491   0.00707727 0.01120500         0
LAD: 0.01838679   0.00598824 0.01842265 -0.64414576
WIN10: 0.01223615   0.00756652 0.01229340 -0.09713513
WIN20: 0.01299585   0.00830138 0.01306476 -0.16597602
TLS: 0.01646757   0.00737854 0.01652201 -0.47452125
MON: 0.00096072 -0.04701818 0.00317143   0.71696304
Theil: 0.01266696   0.00790564 0.01272946 -0.13605202
    Wtd. Theil:       0.01235103            -0.00126754           0.01235263            -0.10242155         

                                 Error Distribution: N(0,1) -     1    0% contamination          
OLS: 0.11142026  0.01378250 0.11161021        0
LAD: 0.02767390  0.00432905 0.02769264 0.75188074
WIN10: 0.02192931  0.00375534 0.02194342 0.80339239
WIN20: 0.02942458  0.00682076 0.02947111 0.73594615
TLS: 0.01880606  0.00268830 0.01881329 0.83143757
MON: 0.02047459 -0.15438788 0.04431021 0.60299146
Theil: 0.02066901  0.00651707 0.02071149 0.81443018
    Wtd. Theil:       0.02018951            -0.00604903           0.02022610            0.81877913          

                                 Error Distribution: N(0,1) -     3    0% contamination          
OLS: 0.31264452 -0.00547711 0.31267452        0
LAD: 0.06165909 -0.00054303 0.06165939 0.80280009
WIN10: 0.14933177 -0.01329565 0.14950854 0.52183970
WIN20: 0.10990528 -0.00357852 0.10991809 0.64845845
TLS: 0.15258114 -0.01516154 0.15281101 0.51127769
MON: 0.04915750 -0.34893333 0.17091197 0.45338696
Theil: 0.06853707 -0.00716128 0.06858835 0.78063978
    Wtd. Theil:       0.09594470            -0.02908675           0.09679074            0.69044252          

                                            Error Distribution:     Lognormal                      
OLS: 0.05361053  0.00528236 0.05363843         0
LAD: 0.02574529 -0.00334989 0.02575651 0.51981235
WIN10: 0.02661642 -0.00448754 0.02663656 0.50340532
WIN20: 0.02639584  0.00045408 0.02639604 0.50788934
TLS: 0.03613776 -0.00986773 0.03623513 0.32445574
MON: 0.01326078 -0.10921212 0.02518806 0.53041014
Theil: 0.01489242 -0.00264993 0.01489945 0.72222444
    Wtd. Theil:       0.01521499            -0.01259078           0.01537352            0.71338612          

                                            Error Distribution:         t    - 5    df                                  
OLS: 0.01764455 -0.00219277 0.01764936           0
LAD: 0.02363482  0.00078222 0.02363543 -0.33916683
WIN10: 0.01707596 -0.00241412 0.01708179  0.03215808
WIN20: 0.01734658 -0.00224915 0.01735164  0.01686858
TLS: 0.02184069 -0.00112768 0.02184196 -0.23755002
MON: 0.00321083 -0.07123636 0.00828545  0.53055218
Theil: 0.01810661 -0.00002527 0.01810661 -0.02590776
    Wtd. Theil:       0.01704933            -0.01184856           0.01718971             0.02604293         

Note:  Tabled results are for the   n  =10 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression;  TLS: trimmed least squares; MON: monotonic regression;
Theil: median of pairwise slopes; Wtd. Theil: weighted median of pairwise slopes.
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The classical nonparametric estimators for
population slope included in this study are monotonic
regression, the Theil median based estimator, and the
modified (weighted) Theil estimator.  Since our
design employs X-values such that each xi value
equals its index number (i.e. xi = i, for all i), all the
previously described methods for weighting pairwise
slopes are equivalent and hence are simply referred to
as the weighted Theil slope estimator. The non-
parametric Y-intercept estimators described previously
and investigated by Dietz (1987) were also
investigated in the present study.

Summary measures for each estimator were
obtained for the set of 1000 replications in each of the
15 cells in the study.  Summary measures of minima
and maxima, mean, and median were collected.  To
measure the quality of parameter estimation,
estimator variance, bias, mean square error (MSE),
and relative mean square error (RMSE) were computed
for the estimators under each condition.  MSE can be
a useful measure of the quality of parameter
estimation (Stone, 1996), and is computed as
MSE = Var(θ´) + bias(θ´)2, in which θ´ is an estimate
of the population parameter θ.

Relative mean square error has also been used as
a measure of the quality of parameter estimation (e.g.,
Yale & Forsythe, 1976). We computed RMSE as
(MSEOLS - MSEθ')/MSEOLS. We believe this form-
ulation is useful for comparing estimator performance
within a given condition, and is interpreted as a
proportionate (or percent) change from baseline, using
the OLS estimator MSE within a given data
condition as a baseline value.  Positive values of
RMSE refer to the proportional reduction in the MSE
of a given estimator with respect to OLS estimation.
Hence, RMSE is interpreted as a relative measure of
performance above and beyond that of the OLS
estimator.

Results
Effects of sample size

Across sample sizes, estimator variances (and, to
some lesser degree estimator bias) decreased with
increasing sample size.  For example, the variances
for the OLS slope estimator under the uncontaminated
unit normal distribution are 0.011, 0.00043, and
0.000098 for sample sizes n = 10, 30, and 50
respectively.  This pattern of decreasing variance and
bias holds for all estimators under all error
distributions. The patterns seen in the variances are
also exhibited in the estimator MSE values.  Because
the results for the n = 30 sample size are intermediate
to those for the n = 10 and n = 50 sample sizes, they
are not reported here.

Slope estimator performance
Tables 1 and 2 present summary results for the

estimation of population slope under the unit normal,

contaminated normal, and nonnormal error
distributions for sample sizes n = 10 and n = 50,
respectively.  For the OLS slope estimator, note the
increase in MSE as the degree of contamination in the
data increases.  OLS slope estimator MSE values for
the lognormal and t-5df error distributions also show
increases as compared to the unit normal error
distribution.

Under most conditions, the results for monotonic
regression in Tables 1 and 2 show small variances for
this slope estimator accompanied by large (in
absolute value) bias values. For example, in Table 1,
the variance for monotonic regression under the
uncontaminated unit normal condition is 0.00096 as
compared to the variance for the OLS slope estimator
of 0.01115.  While monotonic regression yields
reduced variances, bias values for this slope estimator
can be quite large.  Bias values in Table 1 for
monotonic regression are often several orders of
magnitude higher than the corresponding bias values
for the other slope estimators.  Note that bias values
for monotonic regression are not only large in
absolute magnitude, but also negative.  These
negative bias values indicate the monotonic
regression slope estimator consistently under
estimated the population slope value of β = 1.0.

Under ideal conditions (unit normal error
distribution, no contamination), MSE values in
Tables 1 and 2 indicate inflation in MSE for all
robust and nonparametric estimators (with the
exception of monotonic regression) as compared to
OLS.  MSE for these slope estimators are larger than
for OLS for this condition and thus corresponding
RMSE values are negative. LAD and TLS slope
estimators exhibit the largest inflation in MSE as
compared to OLS with corresponding reductions in
relative estimator performance of approximately 64%
for the LAD estimator and 47% (n = 10) and 37% (n
= 50) for the TLS estimator.

For the 10% data contamination condition, all
robust and nonparametric slope estimators (with the
exception of monotonic regression) show strong
performance gains with 75-84% decreases in MSE as
compared to OLS under this moderate level of data
contamination.  Comparing estimator performance
across the two sample sizes, one sees that
performance gains are generally lower for the n = 10
sample size with the exception of the TLS slope
estimator.  The TLS slope estimator yields an 83.1%
reduction in MSE under the n = 10 sample size and a
74.5% reduction in MSE under the larger sample size
condition.

Under the 30% contamination condition, the
LAD slope estimator shows superior performance for
both the small and large sample sizes.  RMSE values
in the two tables indicate reductions in MSE of
80.3% and 88.8% for the n = 10 and n = 50 sample
sizes respectively.  In this extreme contamination



Nevitt & Tam

Multiple Linear Regression Viewpoints, 1998, Vol. 2560

Table 2.  Summary Measures for Estimating Population Slope (β = 1.0).
                                                                                                                  

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              
OLS: 0.00009810  0.00027520 0.00009818        0
LAD: 0.00016128  0.00031704 0.00016138 -0.64382254
WIN10: 0.00010321  0.00022429 0.00010326 -0.05175852
WIN20: 0.00010363  0.00022180 0.00010367 -0.05600182
TLS: 0.00013426  0.00001423 0.00013426 -0.36749649
MON: 0.00000043 -0.00214771 0.00000504  0.94866569
Theil: 0.00010445  0.00024160 0.00010451 -0.06451524
    Wtd. Theil:       0.00010419             0.00015729           0.00010421            -0.06148768         

                           Error Distribution: N(0,1) -     1    0% contamination                
OLS: 0.00088268  0.00146208 0.00088482        0
LAD: 0.00017786  0.00016588 0.00017789 0.79895156
WIN10: 0.00015842  0.00036745 0.00015855 0.82081015
WIN20: 0.00019381  0.00049379 0.00019406 0.78068165
TLS: 0.00022498  0.00053138 0.00022527 0.74541118
MON: 0.00010839 -0.01713325 0.00040194 0.54574057
Theil: 0.00014566 0.00026384 0.00014573 0.83529971
    Wtd. Theil:       0.00014591            0.00017933            0.00014594            0.83506178          

                            Error Distribution: N(0,1) -     3    0% contamination               
OLS: 0.00255733  0.00110911 0.00255856         0
LAD: 0.00028630  0.00049167 0.00028655  0.88800458
WIN10: 0.00086501  0.00036565 0.00086514  0.66186374
WIN20: 0.00084013  0.00011337 0.00084015  0.67163290
TLS: 0.00047307  0.00037883 0.00047321  0.81504716
MON: 0.00032382 -0.04740485 0.00257104 -0.00487937
Theil: 0.00034353  0.00008385 0.00034354  0.86573035
    Wtd. Theil:       0.00034969             0.00000300           0.00034969             0.86332687         

                                           Error Distribution:     Lognormal                       
OLS: 0.00041453 -0.00022877 0.00041458         0
LAD: 0.00015974  0.00023784 0.00015979 0.61456832
WIN10: 0.00016734 -0.00003671 0.00016734 0.59635229
WIN20: 0.00016585 -0.00005373 0.00016586 0.59994409
TLS: 0.00025751  0.00016274 0.00025753 0.37881494
MON: 0.00008034 -0.00906487 0.00016251 0.60800790
Theil: 0.00006711 -0.00000821 0.00006711 0.83811642
    Wtd. Theil:       0.00006952            -0.00015675           0.00006954            0.83225400          

                                            Error Distribution:     t    - 5    df                                  
OLS: 0.00015653  0.00035306 0.00015665     0
LAD: 0.00016443  0.00007171 0.00016443 -0.04966430
WIN10: 0.00013112  0.00026626 0.00013119  0.16251913
WIN20: 0.00013395  0.00026166 0.00013402  0.14449768
TLS: 0.00015108 -0.00001635 0.00015108  0.03555771
MON: 0.00000383 -0.00367558 0.00001734  0.88929977
Theil: 0.00013153  0.00029653 0.00013162  0.15980954
    Wtd. Theil:       0.00013104             0.00015973           0.00013106             0.16336140         

Note:  Tabled results are for the   n  =50 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression; TLS: trimmed least squares; MON: monotonic regression;
Theil: median of pairwise slopes; Wtd. Theil: weighted median of pairwise slopes.
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Figure 1.  Mean square error in estimation of population slope under varying levels of
data contamination.  Results charted are for the n = 50 sample size.

Figure 2.  Mean square error in estimation of population slope for normal and nonnormal
error distributions.  Results charted are for the n = 50 sample size.
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Table 3.  Summary Measures for Estimating Population Y-Intercept (α = 2.0)
                                                                                                                  

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              
OLS: 0.46623625 -0.04029911 0.46786027         0
LAD: 0.69815192 -0.03000075 0.69905197 -0.49414688
WIN10: 0.49958621 -0.04058599 0.50123343 -0.07133146
WIN20: 0.53987082 -0.04371208 0.54178157 -0.15799866
TLS: 0.63496493 -0.04029981 0.63658900 -0.36063915
MON: 0.02906177 -1.74140000 3.06153573 -5.54369673
med (aij): 0.60101301 -0.04286027 0.60285001 -0.28852576
Conover: 0.75428972 -0.05273348 0.75707054 -0.61815522
Median-1: 0.55398222 -0.03755454 0.55539257 -0.18709068
Median-2: 0.51962863 -0.04548496 0.52169752 -0.11507120
Wtd. Mdn-1: 0.54440377  0.01445567 0.54461273 -0.16404996
    Wtd. Mdn-2:     0.50696225             0.00284416           0.50697034            -0.08359348         

                           Error Distribution: N(0,1) -     1    0% contamination                
OLS: 4.26531434 -0.10433764 4.27620068         0
LAD: 0.97412322 -0.01615455 0.97438419 0.77213787
WIN10: 0.82937738 -0.02296355 0.82990470 0.80592475
WIN20: 1.03965787 -0.03238871 1.04070690 0.75662814
TLS: 0.69793756 -0.01368506 0.69812484 0.83674180
MON: 0.61935638 -1.15086667 1.94385047 0.54542581
med (aij): 0.79369545 -0.02981975 0.79458466 0.81418443
Conover: 1.21925681 -0.06955337 1.22409448 0.71374251
Median-1: 0.76404907 -0.02949380 0.76491895 0.82112183
Median-2: 0.77021114 -0.03544536 0.77146751 0.81959043
Wtd. Mdn-1: 0.75465027  0.03493991 0.75587107 0.82323770
    Wtd.       Mdn-2:     0.75285108                 0.03346361           0.75397089            0.82368206          

condition, the Theil and weighted Theil estimators
also show strong slope estimator performance.  For
the n = 50 sample size, slope estimator MSE values
for the uncontaminated and contaminated data
conditions are plotted in Figure 1.  

For the lognormal error distribution, the
nonparametric Theil and weighted Theil methods
exhibit the strongest performance in both the small
and large sample sizes.  For the n = 10 sample size,
Table 1 reports relative reductions in MSE of 71-72%
for these nonparametric estimators.  For the large
sample size, RMSE values in Table 2 show even
higher performance gains with relative reductions in
MSE of 83-84%.  Close to one another, but running
a distant second, are the robust LAD and Winsorized
least squares estimators with relative reductions in
MSE of about 51% for the small sample size and
60% for the large sample size. Under the t-5df error
distribution, the Winsorized least squares estimators
and the nonparametric Theil and weighted median
estimators yield only small reductions in MSE
relative to the OLS MSE under this condition.  Table
2 shows reductions in MSE of about 16% for these
estimators under the large sample size while for the
small sample size, RMSE values in Table 1 show
reductions in MSE of only 2-3%.  Figure 2 displays

the estimator MSE results from the unit normal,
lognormal, and t-5df error distributions for the n = 50
sample size.  Note that the MSE values for the
N(0,1) condition in Figure 2 represent the same
summary measures as the 0% contaminated data in
Figure 1.

Y-Intercept estimator performance
Tables 3 and 4 present summary results for the

estimation of population Y-intercept under the unit
normal, contaminated normal, and nonnormal error
distributions for the small and large sample sizes,
respectively.  Similar to the slope estimator, notice
(for both the large and small sample sizes) the OLS
Y-intercept estimator yields increases in MSE as the
contamination in the data increases.  Increased MSE
values (as compared to the unit normal error dis-
tribution) for OLS are also reported for the non-
normal error distributions.  For the small sample
size, Table 3 reports the largest MSE for the OLS Y-
intercept under the 30% data contamination condition
with a value of 12.17.  Unlike the small sample size,
inspection of MSE values for the OLS Y-intercept in
Table 4 reveals the largest MSE value falls under the
lognormal error distribution with a reported value of
3.10.   
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Table 3 (continued).  Summary Measures for Estimating Population Y-Intercept (α = 2.0)
                                                                                                                  

Estimation                                 Error Distribution:     Lognormal                         
    Method                 Variance                     Bias                      MSE                              RMSE              

OLS: 1.97547147  1.61204928 4.57417434         0
LAD: 1.00661028  1.17225486 2.38079173 0.47951443
WIN10: 1.11938148  1.46240345 3.25800534 0.28773914
WIN20: 1.08117248  1.31667353 2.81480166 0.38463175
TLS: 1.38701960  1.39707222 3.33883039 0.27006928
MON: 0.40113847 -1.39933333 2.35927225 0.48421899
med (aij): 0.76859984  1.07407962 1.92224688 0.57976091
Conover: 1.17645633  1.53385117 3.52915574 0.22846060
Median-1: 0.69420592  1.14652836 2.00873319 0.56085338
Median-2: 0.74321559  1.31729607 2.47848453 0.45815696
Wtd. Mdn-1: 0.72207252  1.20571787 2.17582810 0.52432331
    Wtd. Mdn-2:     0.76095906             1.37362165           2.64779550            0.42114242          

                                            Error Distribution:          t    - 5    df                                 
OLS: 0.66246365  0.01522071 0.66269532           0
LAD: 0.89415823  0.00021390 0.89415828 -0.34927507
WIN10: 0.63214117  0.01585090 0.63239242  0.04572674
WIN20: 0.64452998  0.01393173 0.64472407  0.02711842
TLS: 0.77244571  0.00765923 0.77250437 -0.16570065
MON: 0.09712767 -1.60820000 2.68343491 -3.04927396
med (aij): 0.75091053  0.00304771 0.75091982 -0.13312981
Conover: 1.00145486 -0.02732700 1.00220163 -0.51231131
Median-1: 0.71263706  0.00291803 0.71264557 -0.07537438
Median-2: 0.67747509  0.00604977 0.67751169 -0.02235773
Wtd. Mdn-1: 0.67256536  0.06871781 0.67728750 -0.02201944
    Wtd. Mdn-2:     0.63839635             0.06975511           0.64326212             0.02932449         

Note: Tabled results are for the   n  =10 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression; TLS: trimmed least squares; MON: monotonic regression;
med (aij): median of pairwise intercepts; Conover: Conover Y-intercept; Median-1:

median of (yi  - β  Xi), Theil slope; Median-2: pairwise average of (yi  - β  Xi),

Theil slope; Wtd. Mdn-1: median of (yi  - β  Xi), weighted Theil slope;

Wtd. Mdn-2: pairwise average of (yi  - β  Xi), weighted Theil slope.

Results for the monotonic regression Y-intercept
estimator show extremely poor estimator performance
under both the large and small sample sizes.  Notice
in both Tables 3 and 4, bias values in the Y-intercept
for this estimator (under all conditions) are large and
negative.  These negative bias values indicate that the
monotonic regression Y-intercept estimator
consistently underestimates the population value of
α  = 2.0.  For the large sample size, and looking
across error distributions, MSE values for the
monotonic regression Y-intercept estimator are
generally larger than the OLS Y-intercept estimator
under similar conditions.  Thus, most RMSE values
in Table 4 for monotonic regression are negative,
indicative of a loss in estimator performance as
compared to OLS. Similar to the monotonic
regression Y-intercept estimator, the Conover Y-
intercept (Conover, 1980) did not perform well.  For
the small sample size, the Conover Y-intercept shows

reductions in MSE as compared to the OLS MSE
baseline, but these reductions are not evidenced in
Table 4 for the n = 50 sample size.  For the large
sample size, the Conover Y-intercept yields MSE
values that are larger than the corresponding OLS
MSE values.  Thus, RMSE values in Table 4 for the
Conover Y-intercept are negative.

Under the uncontaminated, unit normal error
distribution, all robust and nonparametric Y-intercept
estimators yield inflation in MSE as compared to
OLS.  These inflated MSE values are seen for both
sample sizes in the two tables.  After the monotonic
regression and Conover Y-intercept estimators, the
LAD and TLS estimators exhibit the most substantial
loss in estimator performance.

Under the 10% data contamination all non-
parametric and robust Y-intercept estimators show
strong performance relative to OLS.  Discounting the
monotonic regression and Conover intercepts, all   
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Tabl  e 4    .       Summary Measures for Estimating Population      Y     -Intercept (     α      = 2.0)                

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              

OLS: 0.08306252 -0.01121545 0.08318831         0
LAD: 0.13422339 -0.01715318 0.13451762  -0.61702554
WIN10: 0.08685171 -0.01015017 0.08695474  -0.04527592
WIN20: 0.08794651 -0.00868562 0.08802195  -0.05810480
TLS: 0.10876400 -0.00432918 0.10878275  -0.30766868
MON: 0.00027777 -1.94523347 3.78421102      -44.48969748
med (aij): 0.10683096 -0.01485406 0.10705160  -0.28685873
Conover: 0.43071144 -0.00363965 0.43072469  -4.17770702
Median-1: 0.09617646 -0.01358010 0.09636088  -0.15834637
Median-2: 0.08781186 -0.01081533 0.08792884  -0.05698550
Wtd. Mdn-1: 0.09576219 -0.01185850 0.09590282  -0.15284007
    Wtd. Mdn-2:     0.08751654            -0.00873591           0.08759285             -0.05294667        

                           Error Distribution: N(0,1) -     1    0% contamination                
OLS: 0.72959431 -0.03815976 0.73105048          0
LAD: 0.14628716 -0.00046989 0.14628738  0.79989428
WIN10: 0.13127624 -0.00755356 0.13133329  0.82034990
WIN20: 0.15145369 -0.01096891 0.15157401  0.79266273
TLS: 0.17187647 -0.01173481 0.17201417  0.76470275
MON: 0.07048059 -1.56310204 2.51376858 -2.43857044
med (aij): 0.13115023 -0.00677069 0.13119607  0.82053760
Conover: 0.97688948  0.00936086 0.97697710 -0.33640170
Median-1: 0.12444677 -0.00521617 0.12447398  0.82973272
Median-2: 0.12000176 -0.00529341 0.12002979  0.83581191
Wtd. Mdn-1: 0.12399224 -0.00303475 0.12400145  0.83037909
    Wtd. Mdn-2:     0.11985011            -0.00315264           0.11986005             0.83604409         

                            Error Distribution: N(0,1) -     3    0% contamination               
OLS: 2.22128658  0.00799708 2.22135053        0
LAD: 0.25062945 -0.01285950 0.25079481  0.88709805
WIN10: 1.01203716  0.02938913 1.01290088  0.54401574
WIN20: 0.72494948  0.02057523 0.72537282  0.67345414
TLS: 0.48621344  0.01482624 0.48643326  0.78101914
MON: 0.21056519 -0.79117633 0.83652517  0.62341596
med (aij): 0.25423256 -0.01322216 0.25440739  0.88547175
Conover: 2.36044148   0.01979859 2.36083347 -0.06279195
Median-1: 0.28495314 -0.00119235 0.28495456  0.87172013
Median-2: 0.30048783  0.00552801 0.30051839  0.86471366
Wtd. Mdn-1: 0.28922996 -0.00037240 0.28923010  0.86979538
    Wtd. Mdn-2:     0.30494324             0.00740885           0.30499813                 0.86269698         

        

Y-intercept estimators under both sample sizes yield
reductions in MSE of 75-83%.  The Y-intercept
nonparametric estimators show slight advantage over
the robust estimators.  Also, notice the TLS
estimator shows weaker performance in the large
sample size condition as compared to the n = 10
sample size cell for this moderately contaminated data
condition.

For the 30% contamination, the LAD Y-intercept
estimator and the Y-intercept estimator  based on the
median aij values yield the lowest MSE values with
the other nonparametric Y-intercepts all very close.
These results hold for both the small sample size
MSE values in Table 3 and for the n = 50 sample size
presented in Table 4.  

Under the lognormal error distribution, all
estimators of Y-intercept had difficulty in recovering
the population value of α = 2.0.  Note the large bias
values for the estimators under this condition,
suggesting large discrepancies between the means for
the estimators and the population value. The median
aij estimator showed the strongest relative
performance under both sample sizes. The
nonparametric techniques using the median of the   

(yi  - β  Xi) terms (using either the Theil slope or
weighted Theil slope) also yield relative strong
estimator performance with RMSE values of 0.64 for
the n = 50 sample size. For the large sample size, the
LAD Y-intercept estimator was also competitive.
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Table 4 (continued).  Summary Measures for Estimating Population Y-Intercept (α = 2.0)
                                                                                                                  

Estimation                                Error Distribution:     Lognormal                          
    Method                 Variance                     Bias                      MSE                              RMSE              

OLS: 0.38500603  1.64740505 3.09894942          0
LAD: 0.14386289  1.01840542 1.18101249  0.61889908
WIN10: 0.16699356  1.38154934 2.07567214  0.33020135
WIN20: 0.15463921  1.28493558 1.80569865  0.41731910
TLS: 0.21240544  1.25722778 1.79302712  0.42140807
MON: 0.05224150 -1.76884571 3.18105666 -0.02649519
med (aij): 0.09562958  0.90239609 0.90994829  0.70636878
Conover: 0.64892005  1.64056750 3.34038177 -0.07790781
Median-1: 0.07920296  1.01310474 1.10558416  0.64323904
Median-2: 0.08361419  1.22682737 1.58871960  0.48733607
Wtd. Mdn-1: 0.08168383  1.01704798 1.11607041  0.63985523
    Wtd. Mdn-2:     0.08588540             1.23072013           1.60055744             0.48351611         

                                            Error Distribution:          t    - 5    df                                 
OLS: 0.12955685 -0.00977434 0.12965239          0
LAD: 0.13381946 -0.00339975 0.13383102 -0.03222951
WIN10: 0.11127929 -0.00778139 0.11133984  0.14124342
WIN20: 0.11042154 -0.00831868 0.11049074  0.14779248
TLS: 0.12116747 -0.00114135 0.12116877  0.06543357
MON: 0.00249143 -1.90627265 3.63636686     -27.04704888
med (aij): 0.11836755 -0.00596709 0.11840316  0.08676456
Conover: 0.56742654 -0.02887466 0.56826029 -3.38295273
Median-1: 0.11431813 -0.00951134 0.11440859  0.11757436
Median-2: 0.10786731 -0.00879750 0.10794471  0.16742983
Wtd. Mdn-1: 0.11455410 -0.00583959 0.11458820  0.11618908
    Wtd. Mdn-2:     0.10789910            -0.00524933           0.10792666             0.16756907         

Note:  Tabled results are for the   n  =50 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression; TLS: trimmed least squares; MON: monotonic regression;
med (aij): median of pairwise intercepts; Conover: Conover Y-intercept; Median-1:

median of (yi  - β  Xi), Theil slope; Median-2: pairwise average of (yi  - β  Xi),

Theil slope; Wtd. Mdn-1: median of (yi  - β  Xi), weighted Theil slope; Wtd. Mdn-2:

pairwise average of (yi  - β  Xi), weighted Theil slope.

For the t-5df error distribution, Tables 3 and 4
report only modest reductions in MSE as compared to
the OLS MSE benchmark.  Table 3 shows increases
in MSE for the LAD estimator as well as for most of
the other Y-intercept estimators. For the large sample
size, the nonparametric pairwise methods demonstrate
slightly smaller MSE as compared to OLS, with the
Winsorized regression methods exhibiting good
performance. The LAD Y-intercept estimator
exhibited poor performance with a MSE value
slightly larger than that of the OLS Y-intercept
estimator.

Discussion
Findings in the present study have substantive

implications for educational researchers and research
methodologists.  The poor performance of OLS
estimation under the contaminated data conditions and
nonnormal error distributions serves to reaffirm both
the importance of assessing underlying assumptions

as part of any regression analysis and the need for
alternatives to OLS regression.  This study has also
replicated past findings that have suggested that when
the appropriate assumptions are met, OLS regression
is the method of choice.  Our results have shown,
under all sample sizes and for estimation of both
population slope and Y-intercept, the OLS estimator
yields the lowest MSE under ideal conditions.

Findings in the present study have demonstrated
the merits of alternatives to OLS regression under
non-ideal conditions. Our results indicate that
estimator performance is dependent upon the nature of
the error distribution.  Figure 1 shows that under mild
(10%) data contamination there is no real preference
for one alternative slope estimator over another.
When the degree of data contamination was increased
to 30%, the LAD slope estimator moderately
outperformed the other slope estimators by yielding
the smallest MSE.
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Figure 3.  Bias in estimation of population slope for normal and nonnormal error distributions.
Results charted are for the n = 50 sample size.

Figure 4.  Bias in estimation of population slope for normal and nonnormal error distributions
   – monotonic regression slope estimator removed.  Results charted are for the n = 50 sample size.
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For the case of nonnormal error distributions, our
results demonstrate that the symmetry of the error
distribution substantially impacts estimator
performance.  Figure 2 illustrates that when the error
distribution is nonnormal and symmetric (t-5df errors)
the robust LAD estimator, which demonstrated strong
performance under the contaminated normal
conditions, is not a desirable choice. Under this
condition, the Winsorized least squares and
nonparametric methods employing medians of
pairwise slopes (Theil and weighted Theil) exhibited
superior performance. Figure 2 also demonstrates that
when the error distribution is skewed, the
nonparametric Theil methods yield very strong
performance.

The monotonic regression and the TLS methods
investigated in this study were generally not
competitive. The poor results obtained for monotonic
regression are not entirely unexpected.  In their
proposal of this alternative method of regression,
Iman and Conover (1979) caution the use of this
method under situations in which there are outliers in
the observed data.  They recommend this method only
for situations in which observed data exhibits a
monotonically increasing or decreasing trend -
curvilinear data.  Additionally other investigators have
found the rank transformation procedure to be
problematic (McKean & Vidmar, 1994; Sawilowsky,
Blair & Higgins, 1989).  Our results have served to
substantiate these findings with empirical evidence of
the unacceptability of rank transformation in the form
of monotonic regression with respect to bias and
RMSE.  Large bias values in the summary tables
reflect monotonic regression’s inability to recover the
true population values under our data conditions.

The results for monotonic regression in this
study also provide valuable insight into the use of
MSE as a sole indicator of the quality of parameter
estimation.  A useful estimator is one in which both
bias and variance are minimized.  Figure 2 shows
monotonic regression as having very low MSE under
the N(0,1) and t-5df error distributions. The small
values for monotonic regression in this figure can be
misleading with respect to choice of estimator.  Table
2 reports bias values for monotonic regression that
are approximately 10 times larger than the bias values
for the other slope estimators under each condition.
We present Figure 3 which charts bias values for the
various estimators under the unit normal, t-5df, and
lognormal error distributions for the n = 50 sample
size.  When considering bias as a measure of the
quality of parameter estimation, this figure readily
demonstrates that monotonic regression is not an
optimal estimator under the conditions of our study.
For clarity of presentation, we also present Figure 4
which shows the same results as in Figure 3, with
the monotonic regression estimator removed.  With
respect to assessing the quality of parameter

estimation, our recommendation for methodological
researchers is to evaluate MSE with the caveat that
bias should also be simultaneously considered.

The TLS estimator was included in the study to
address the issue of case deletion, an approach
frequently adopted in applied scenarios in which there
are outliers in the observed data.  For the TLS
estimator, data points corresponding to the 10%
largest positive and the 10% largest negative residuals
from an initial OLS regression were deleted.  Under
the contaminated data conditions in this study, the
case deletion approach to estimation of population
slope did not generate unattractive results, although
comparison of the TLS slope estimator in Tables 1
and 2 suggests the performance of this estimator is
sample size dependent.  Under the small sample size,
the TLS slope estimator performed well under the
10% data contamination, but not under the 30%
contamination condition.  For the larger sample size,
Table 2 reports weaker performance under the
moderate contamination condition (with respect to the
other slope estimators) but stronger performance
under the more extreme 30% data contamination
condition.  While the performance of the TLS slope
estimator was not unreasonable, for both the 10% and
30% contamination conditions, robust and
nonparametric methods (discounting monotonic
regression) which utilize all the available data
outperformed TLS.  Additionally, for the conditions
in which the distribution of errors was nonnormal,
the TLS slope estimator was not competitive.  Figure
4 shows very low bias for this estimator, but the
variance for this slope estimator tends to be inflated.
Thus the MSE values for TLS shown in Figure 2
tend to be higher than some of the other slope
estimators.  Our results demonstrate that methods
which utilize all available data, but are resistant to
outlying values, provide more accurate long run
estimates of true population values.  This conclusion
is consistent with previous research in resistant
methods of regression (Birkes & Dodge, 1993;
Rousseeuw & Leroy, 1987).  

With respect to the estimators investigated in the
present study, our results have demonstrated that the
nonparametric approaches based on the Theil method
are very strong alternatives to OLS regression. This
conclusion holds for the small sample size
investigated here as well for the large sample size.
This study has demonstrated that this approach
provides accurate estimates of true population
parameters under both outlier contaminated data
conditions and under nonnormal error distributions.
While these median based nonparametric methods did
not outperform the LAD estimator under the heavily
contaminated conditions (30% outliers) they were
nearly as strong as the LAD regression method under
this condition.  Under the nonnormal error conditions,
no estimator outperformed the Theil methods.
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Additionally, under the lognormal error distribution,
the Theil based regression methods showed superior
performance. The Theil based estimation methods
were never the worst, sometimes nearly the best and
in some cases the best methods for parameter
estimation under the simple linear model.  

Median based nonparametric methods for
parameter estimation have found little attention in
social science research and deserve further
consideration by applied researchers.   This study has
demonstrated that the Theil based regression methods
provide strong parameter estimation under a variety of
non-ideal conditions. There is also literature available
that provides an extension of this method, using a
weighted form of the Theil method, to multiple
regression (Birkes & Dodges, 1993). Hypothesis
testing procedures have been developed for testing
both model adequacy and individual regression
coefficients (for reviews see Tam, 1996; Birkes &
Dodge, 1993).  Finally, the modified form of the
Theil regression method has been incorporated into at
least one of the commonly available applied statistics
packages (RANK REGRESSION in Minitab)
available for researchers. performs nonparametric
regression estimation based on the weighted Theil
method.

We recommend the following approach to
applications in educational research.  First, data
analyses should always involve checking for outliers
in the observed data and testing the underlying
assumptions under OLS estimation. Secondly,
researchers may be well advantaged to routinely
estimate regression parameters using both OLS and
alternative methods when conducting regression based
analyses.  Should the assumptions of normality and
homoscedasticity hold, researchers might adopt and
report OLS estimates in their findings.  Under applied
settings in which the OLS assumptions are not
tenable, researchers may turn to estimates of
population values using an outlier-resistant method.

The present study only considered estimators
under the simple linear regression situation. Further
study might compare the performance of
nonparametric median based estimators against robust
regression estimators under the multiple regression.
In addition, future studies might be warranted to
compare the nonparametric median based estimators
against robust regression methods such as M-
regression (Birkes & Dodge, 1993), iteratively
reweighted least squares (Holland & Welsch, 1977),
or least median squares regression (Rousseeuw &
Leroy, 1987).  These robust methods are known to be
resistant to more extreme forms of data contamination
such as leverage points.  Finally, additional research
investigating power and Type I error rates using
nonparametric median based methods would be useful
to more fully characterize the behavior of these
methods under hypothesis testing paradigms.

Correspondence should be directed to:
Jonathan Nevitt
1228 Benjamin Building
University of Maryland
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