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Analysis Options for Testing Group Differences on Ordered
Categorical Variables:  An Empirical Investigation of

Type I Error Control and Statistical Power
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Type I error control and statistical power of four methods of testing group differences on an ordered categorical
response variable were evaluated in a Monte Carlo study.  Data were analyzed using the independent means t-test, the
chi-square test of homogeneity, the delta statistic, and a cumulative logit model.  The number of categories of the
response variable, sample size, population distribution shape, and effect size were examined. These experimental
conditions were crossed with each other providing a total of 192 conditions.  The independent means t-test provided
the best control of Type I error, but was rarely the most powerful.  For the 5-point response scale, the chi-square was
most often the most powerful.  Results varied for the 7-point response scale.  Small power differences (in many
instances) among these procedures suggest that researchers’ choices should be driven by the interpretations that are
appropriate for the research questions being addressed.

esponse variables that are measured as ordered
categories, such as Likert scale and other
rating scale items, present a variety of analysis

options for researchers. For example, in testing for
the equality of two groups on such a response
variable, the data are usually analyzed using either a
Pearsonian chi-square test of homogeneity or a test
for the equality of population means such as the
independent means t-test. Implicit in the former
analysis is the treatment of the response variable as
nominal-level measurement, while the latter analysis
implies an assumption of interval-level data. In
between these two extremes are analysis options that
are infrequently seen in applied educational research,
specifically, logistic regression models (Agresti,
1996; Agresti & Finlay, 1997) and ordinal indices of
association (Cliff, 1996a). Arguments about the
relationship between levels of measurement and
appropriate statistical analyses have been ongoing
since Stevens’ (1951) classic work, and, no doubt,
will continue in the future.

Although the present paper is not intended to
directly address the logical arguments related to
Stevens' levels of measurement issues, the influence
of his work is unavoidable. For example, recent
arguments on the level-of-measurement/appropriate-
statistics issue have been advanced by Davidson and
Sharma (1988) and by Velleman and Wilkinson
(1993). Rather than examining such analysis issues
in terms of “appropriate statistics,” the issues
surrounding the analysis of ordered categorical data
may be productively addressed in terms of Type I error
control and statistical power. For example, Cliff
(1996a) has argued that ordinal measures of
association such as Tau and delta are useful both

descriptively and inferentially because of their
robustness properties when compared to traditional
parametric tests such as the independent means t-test.
Similarly, Agresti (1989) suggested that researchers
may realize power advantages in the use of
cumulative logit models rather than Pearsonian
chi-square tests when testing hypotheses about ordered
categorical data. Unfortunately, neither Cliff nor
Agresti presented empirical evidence of the magnitude
of power differences or the extent of improvement in
robustness when these ordinal-level statistics are used.

It is important to recognize that different
statistical null hypotheses are tested with each of
these procedures. For example, the independent means
t-test provides a test of the null hypothesis of
equivalence of population means and the chi-square
test of homogeneity tests the equivalence of the
population proportions at each level of the response
variable. In contrast, the G2 statistic used in testing
the cumulative logit model provides a test of the null
hypothesis of equal cumulative log odds, while the
delta statistic is used to test equivalence of
probabilities of scores in each group being larger than
scores in the other (the property that Cliff (1993)
referred to as “dominance”). However, as Cliff (1993,
1996a) has pointed out, despite the differences in
statistical null hypotheses tested, each of these
procedures may be used to test the same, conceptual
research hypothesis (e.g., “the two groups respond
differently on the dependent variable”).

The purpose of the present study was to
empirically compare the Type I error control and
statistical power of four tests of group differences on
ordered categorical response data: a parametric test of
mean differences (independent means t-test), the
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Pearsonian chi-square test of homogeneity, the
cumulative logit model recommended by Agresti
(1989, 1996), and the delta statistic recommended by
Cliff (1993, 1996a). Such a comparison was made for
a variety of sample sizes and distribution shapes
likely to be encountered in educational research.
Although previous research has investigated the Type
I error control and statistical power of parametric and
nonparametric statistics (primarily comparisons of the
t-test and the Wilcoxon-Mann-Whitney U test), such
comparisons have typically been conducted using
continuous outcome variables (see, for example, Blair
& Higgins, 1980, 1985). A notable exception is the
recent work of Nanna and Sawilowsky (1998),
comparing the t-test with the Wilcoxon rank-sum test
based on resampling from actual data obtained on
ordered categorical variables.

Test Statistics Examined
Four test statistics were examined in this study.

These test statistics will be presented in reference to
the set of data presented in Table 1. These data,
consisting of responses to a 5-point Likert item, were
obtained from six members of an experimental group
and ten members of a control group. The research
question to be addressed is whether the two
populations from which the samples were obtained
differ in their response to this item.

Table 1. Sample of Two Groups’ Responses to a
5-Point Likert Item

   Control Group     Experimental Group     
1 1
1 2
2 3
2 4
2 4
3 5
3
3
4
5 

Independent Means t-test. The independent means
t-test is used to test the null hypothesis of equivalent

population means (HO: µ1 = µ2). The test statistic is
given by

t = (X1 - X2)

[(n1 - 1) + (n2 - 1)]Spl

where (X1 - X2)is the difference in sample means, n1

and n2 are the sample sizes, Spl is a pooled estimate of
the population standard deviation given by

Spl = (SS1 + SS2)

(n1  + n2 - 2)

and SS1 and SS2 are the sums of squares computed in
each of the samples.  The obtained value of this test
statistic is compared to the sampling distribution of t
with degrees of freedom equal to n1 + n2 - 2.

For the sample of data presented in Table 1, the
means for the experimental and control groups are
3.167 and 2.600, respectively, and the pooled variance
estimate is 1.802. The obtained value of t for these
data is -0.817, and the probability associated with this
value under the null hypothesis is 0.427. The t-test,
thus, fails to reject the null hypothesis of equal
population means.

Chi-Square Test of Homogeneity. In contrast to
the t-test which compares sample means, the
Pearsonian chi-square test of homogeneity tests the
null hypothesis of equivalent population proportions

in each response category (H0: π1j = π2j, for all j).
For computation of the chi-square statistic, the data
may be arranged in a contingency table as illustrated
in Table 2. The sample value of this test statistic is
given by

χ2 = 

(Oij - Eij)
2∑

j
∑

i

Eij

where Oij is the observed frequency in cell ij of the
contingency table, Eij is the expected frequency in the
cell under the null hypothesis of homogeneity, and
the summation is over all of the cells in the table.

The obtained value of  χ2 is compared to the

sampling distribution of  χ2  with degrees of freedom

equal to (nrows - 1)(ncols - 1).

Table 2.  Contingency Table for the Sample Data
                                                                                    
                                    Response Category                    
      Group             1              2              3              4              5           

1  2 3 3 1 1
              2                  1              1              1              2              1            

For the sample of data presented in Table 1, the
obtained value of chi-square is 1.778. In comparison
to a four degree of freedom chi-square sampling
distribution, this value has a probability of 0.777
under the null hypothesis. Thus, like the t-test, the
chi-square test fails to reject the null hypothesis of
equal population proportions for each level of the
response variable.

Delta Statistic. Cliff (1993, 1996a) has proposed
the use of the delta statistic for testing null
hypotheses about group differences on ordinal level
measurements. The population parameter for which
such tests are intended is the probability that a
randomly selected member of one population has a
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higher response than a randomly selected member of
the second population, minus the reverse probability.
That is,

delta = Pr(xi1 > xj2) - Pr(xi1 < xj2) ,
where xi1 is a member of population one and xj2 is a
member of population two.

A sample estimate of this parameter can be
obtained by enumerating the number of occurrences of
a sample one member having a higher response value
than a sample two member, and the number of
occurrences of the reverse. This gives the sample
statistic

d = 
#(xi1 > xj2) - #(xi1 < xj2)

n1  n2
This statistic, and inferential methods associated

with it, are readily addressed by considering the data in
an arrangement called a dominance matrix. This n1 by
n2 matrix has elements taking the value of 1 if the
row response is larger than the column response, -1 if
the row response is less than the column response,
and 0 if the two responses are identical. The sample
value of d is simply the average value of the elements
in the dominance matrix. The dominance matrix for
the Table 1 data is presented in Table 3. The row and
column marginals of this table provide mean values
of the elements in the respective rows and columns of
the matrix. These marginals are used in the inferential
statistics associated with d. The null hypothesis tested
in such inferential statistics (representing no
relationship between the grouping variable and the
response variable) is that delta is equal to zero.

Table 3. Dominance Matrix for the Sample Data
                                                                                 
                 1           2           3           4           4           5                    di    .       

1    0  -1  -1  -1  -1  -1  -0.833
1    0  -1  -1  -1  -1  -1  -0.833
2  +1   0  -1  -1  -1  -1  -0.500
2  +1   0  -1  -1  -1  -1  -0.500
2  +1   0  -1  -1  -1  -1  -0.500
3  +1 +1   0  -1  -1  -1  -0.167
3  +1 +1   0  -1  -1  -1  -0.167
3  +1 +1   0  -1  -1  -1  -0.167
4  +1 +1 +1   0   0  -1   0.333

     5              +1         +1         +1         +1         +1          0                0.833      
  d    .    j                0.    8         0.3      -0.3      -0.7      -0.7      -0.9         -0.250         

Cliff (1996b) presented three methods of inference
for d.  The first method uses an "unbiased" estimate
of the variance of d. This estimate is given by

Sd
2 = 

n2
2 (d i. - d)2∑

i

 + n1
2 (d .j - d)2∑

j

 + (d ij - d)2∑
j

∑
i

n1n2(n1 - 1)(n2 - 1)

where di. is the marginal value of row i, d.j is the
column marginal of column j, and dij is the value of
element ij in the matrix.

For the sample data in Table 1, the value of d is
-0.25 and the value of Sd

2 is 0.098. The square root of
this variance is used as the denominator of a z
statistic:  zunbiased = d / Sd

For the sample data, the value of z is -0.798,
yielding a probability under the null hypothesis of
0.425. The unbiased test fails to reject the null
hypothesis of delta = 0.

The second method of inference for d uses a
“consistent” estimate of the variance:

Sdc
2  = 

(n2 - 1)Sdi.
2  + (n1 - 1)Sd.j

2  + Sdij
2

n1 n2

where Sdi.
2 = Σ(di. - d)2/(n1-1), Sd.j

2 = Σ(dj. - d)2/(n2-1),

and Sdij
2 =  ΣΣ(dij - d)2 / [(n1 - 1)(n2 - 1)].

As with the "unbiased" estimate of variance, the
square root of this "consistent" estimate of the
variance of d can be used as the denominator of a z
statistic:  zconsistent = d / Sdc .  

For the Table 1 data, the value of Sdc
2 is 0.106,

yielding a value for zconsistent of -0.768, with a
probability under the null hypothesis of 0.443. The
conclusion with this sample is the same as that
reached with the unbiased test, that is, a failure to
reject the null hypothesis of delta = 0.

The final method of inference regarding d uses Sdc

to construct an asymmetric confidence interval around
the sample value of d. When such an interval does not
include the value of zero, the null hypothesis of delta
= 0 can be rejected. The limits of this asymmetric
confidence interval are given by

d - d3 ± Zα /2Sdc[(1 - d2)2 + Zα/2
2 Sdc

2 ]

1 - d2 + Zα/2
2 Sdc

2

where Zα/2 is the normal deviate corresponding to the
(1 - α/2)th percentile of the normal distribution.

For the Table 1 data, the lower limit of the 95%
confidence interval is -0.713, and the upper limit is
0.364. Because this interval contains the value of
zero, the null hypothesis is not rejected at the .05
level.

Cliff (1996a) has pointed out that the well-known
Mann-Whitney-Wilcoxon statistic can also provide a
test of delta = 0 (because d and U are related by
d = 2U/[n1n2 - 1]). However, the rank test is not
recommended by Cliff because it is actually testing
for the equivalence of the two groups’ distributions
rather than focusing on the parameter delta.

Cumulative Logit Models. Logistic regression is
a technique used to construct models of the
probabilities of values of categorical variables. In its
simple, binary form, a model relating the probability
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of response 1 as a function of an explanatory or
predictor variable X, can be thought of as:

π = 
exp(α  + βX)

1 + exp(α  + βX)

where π is the probability of response 1, exp is the
exponential function or the antilog function of the

natural logarithms, and α  and β are regression
parameter estimates.  This equation describes an S-
shaped curve called the logistic regression model.

However, the relationship between π and X  is often
expressed as logits, yielding the linear logit model:

logit(π) = log[π/(1 - π)] = α  + βX.
A relatively minor modification of this linear

logit model can be used with ordinal response
variables having more than two levels (Agresti, 1990;
McCullough & Nelder, 1989). With a response
variable having J ordered categories, the probability

associated with any category j can be denoted πj,

where Σπj = 1. The cumulative logit model is formed
from logits of cumulative probabilities. For example,
the probability of a response less than or equal to an
arbitrary category j is given by

logit[Pr(Y≤j)] = log[(π1 + ... + πj)/(π j+1 + ... + πJ)]

 = α j + βX

This model treats the response as binary by
forming the cumulative probability over the first j
categories, and the remaining (J - j) categories. This

model has J - 1 values of α j, one for each of the
adjacent category differences. The parameter of

primary interest in this model is β, which describes
the relationship of the X  variable to the cumulative

probabilities of response. When β is equal to zero,
the variable X is not related to the response variable.

Two methods for testing the null hypothesis that

β = 0 are available. The first method uses the standard

error of the sample estimate of β to form a z test (or
an equivalent chi-square test), called the Wald test.

The standard error of β is obtained from the inverse of
the information matrix, the matrix of second partial
derivatives of the log likelihood function. For the

Table 1 data, the sample estimate of β is -0.834,
with a standard error of 0.936. The value of the Wald
z test is -0.891, with a probability of 0.373 under the
null hypothesis. As with the other tests examined
thus far, the Wald test fails to reject the null

hypothesis of β = 0.

The second method of testing the null hypothesis

that β = 0 is with a likelihood ratio test. This test is
based on the likelihood ratio statistic:

G2 = 2Σj Oj log(Oj/Ej),
where Oj and Ej are the observed and expected counts,
respectively, and log is the natural logarithm.

The likelihood ratio test of β = 0 is obtained as
the difference in the values of G2 for the model that
includes X, and the model that does not (i.e., a model
with intercepts only). This difference in G2 values is
distributed as a chi-square with a single degree of
freedom. For the sample data, the value of G2 for the
model that includes X  is 49.808, while that for the
intercept only model is 50.586. The difference in
these G2 values is 0.737, which has a probability of
0.391 under the null hypothesis. Thus, consistent
with the other tests conducted on these data, the
likelihood ratio tests does not reject the null

hypothesis that β = 0.
Method

This research was a Monte Carlo study designed to
provide an empirical comparison of the Type I error
control and statistical power of the four methods of
testing group differences on an ordered categorical
response variable. Two of these tests are frequently
used with ordered categorical data: the independent
means t-test and Pearsonian chi-square test of
homogeneity. The other two methods, the cumulative
logit model and the delta statistic, have been
recommended for the analysis of ordinal level data
because of increased power (relative to the chi-square
test) or increased robustness (relative to tests of mean
differences). Although four methods for testing group
differences were examined in this study, a total of
seven statistical tests were compared (i.e., three tests
associated with the d statistic and two tests associated
with the logistic regression method).

All of the conditions simulated provided tests of
differences between two groups on an ordered
categorical dependent variable. Four factors were
investigated in the Monte Carlo study: number of
categories of the response variable, sample size,
population distribution shape, and effect size. The
number of categories of the response variable was
examined at two levels (5-category and 7-category
responses). Six sample sizes were examined (equal
sizes of 10:10, 30:30, and 100:100; and unequal sizes
of 10:30, 10:100, and 30:100). Four population
distribution shapes were investigated (a uniform
response distribution, a moderately skewed
distribution, a highly skewed distribution, and a
unimodal symmetric distribution). Finally, small,
medium and large population effect sizes (Cohen,
1988) were examined as well as a null condition.
These experimental conditions were crossed with each
other providing a total of 192 conditions examined.
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Table 4. Type I Error Rate Estimates for 5 Point Response Scale at nominal α  = .05
                                                                                                                                                                                             
Marginal Sample  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution           Size                   Square               t    -    test             Unbiased        Consistent              CI                    Wald                    LR         

1:1:1:1:1  10, 10 0.033 0.055 0.081 0.073 0.043 0.057 0.068
 10, 30 0.042 0.048 0.071 0.067 0.049 0.052 0.057
 10,100 0.045 0.054 0.084 0.082 0.067 0.055 0.059
 30, 30 0.046 0.050 0.057 0.056 0.046 0.053 0.054
 30,100 0.051 0.050 0.056 0.055 0.049 0.051 0.052

                          100,100              0.055               0.051               0.054               0.054               0.050               0.052               0.053       
6:1:1:1:1  10, 10 0.015 0.050 0.073 0.066 0.046 0.039 0.067

 10, 30 0.046 0.049 0.078 0.076 0.060 0.038 0.061
 10,100 0.053 0.048 0.086 0.085 0.075 0.031 0.059
 30, 30 0.043 0.054 0.060 0.059 0.051 0.053 0.057
 30,100 0.048 0.050 0.056 0.056 0.050 0.047 0.051

                          100,100              0.050               0.046               0.048               0.048               0.046               0.046               0.047       
16:1:1:1:1  10, 10 0.004 0.033 0.084 0.038 0.035 0.004 0.083

 10, 30 0.038 0.036 0.115 0.114 0.108 0.026 0.070
 10,100 0.083 0.046 0.132 0.132 0.126 0.036 0.101
 30, 30 0.018 0.048 0.054 0.053 0.050 0.034 0.055
 30,100 0.050 0.046 0.062 0.062 0.059 0.035 0.053

                          100,100              0.049               0.048               0.051               0.051               0.049               0.047               0.052       
1:2:4:2:1  10, 10 0.030 0.049 0.077 0.071 0.042 0.047 0.063

 10, 30 0.048 0.049 0.074 0.071 0.055 0.052 0.057
 10,100 0.049 0.051 0.079 0.078 0.063 0.053 0.054
 30, 30 0.046 0.050 0.058 0.056 0.048 0.050 0.053
 30,100 0.047 0.050 0.057 0.056 0.051 0.051 0.052

                         100,100             0.053             0.050              0.053              0.052              0.050              0.051              0.052      

Programming for the Monte Carlo Study.  The
program for the Monte Carlo study was written in
SAS/IML version 6.12.  The data were generated
using uniform random numbers on the zero to one
interval (the SAS RANUNI function). A separate seed
value was used for each execution of the simulation
and the accuracy of the program code was verified
using benchmark data sets. To simulate samples, a
separate series of random numbers was generated for
each of the two groups. The observations were then
assigned to values of the ordered categorical response
variable based upon the value of the random number.

For example, with a 5-point response scale with
equal marginals and an effect size of zero, two series
of random numbers were generated. Observations with
random numbers between zero and .20 were assigned
to the first category of the response variable, those
with random numbers between .20 and .40 were
assigned to the second category, etc.  This procedure
yields tables in which the expected proportion in each
cell is equal, providing a uniform response across the
five categories and the two groups.

The marginal skewness of the response variable
was controlled by assigning larger or smaller ranges
of the uniform random numbers to each of the ordered
categories. For example, to simulate a
60:10:10:10:10 marginal distribution, 60% of the

observations were assigned to the first value of the
response variable, and 10% to each of the other
values. Four marginal distributions were examined in
this study. The equal marginal condition provided
equal proportions at each level of the response
variable. A slightly skewed marginal distribution was
produced by generating data in which 60% of the
observations were in the first category of the response
variable, and the remaining 40% were evenly
dispersed over the other values. Similarly, a more
highly skewed marginal was produced by generating
data in which 80% of the observations were at the
first value and the remaining 20% were evenly
distributed over the remaining values. Finally, a
unimodal symmetric distribution was generated with
the mode at the middle of scale and descending
proportions of observation for scale values towards
the scale endpoints.

Non-null effects were generated by assigning
observations to response categories in proportions
that differed from the products of the row and column
marginal proportions. By varying the extent of
discrepancy between the products of the marginals and
the actual proportions of observations, effect sizes
corresponding to w values of 0.10, 0.30, and 0.50
(Cohen, 1988) were produced.   
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Table 5.  Type I Error Rate Estimates for 7 Point Response Scale at nominal α  = .05
                                                                                                                                                                                             
Marginal Sample  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution              Size                   Square               t    -    test             Unbiased        Consistent              CI                    Wald                    LR         

1:1:1:1:1:1:1  10, 10 0.020 0.053 0.077 0.068 0.041 0.058 0.066
 10, 30 0.038 0.049 0.070 0.066 0.048 0.055 0.057
 10,100 0.044 0.050 0.084 0.082 0.067 0.054 0.055
 30, 30 0.047 0.052 0.061 0.059 0.048 0.055 0.057
 30,100 0.050 0.051 0.060 0.058 0.052 0.051 0.053

                             100,10    0              0.050               0.048               0.050               0.049               0.047               0.049               0.049       
9:1:1:1:1:1:1  10, 10 0.006 0.049 0.072 0.064 0.044 0.037 0.065

 10, 30 0.043 0.048 0.077 0.074 0.061 0.037 0.060
 10,100 0.061 0.044 0.088 0.086 0.076 0.031 0.058
 30, 30 0.032 0.052 0.058 0.057 0.048 0.051 0.055
 30,100 0.048 0.050 0.058 0.058 0.054 0.049 0.054

                             100,10    0              0.045               0.049               0.048               0.048               0.046               0.047               0.048       
24:1:1:1:1:1:1  10, 10 0.001 0.028 0.083 0.038 0.034 0.004 0.082

 10, 30 0.037 0.040 0.118 0.117 0.111 0.030 0.069
 10,100 0.096 0.041 0.125 0.125 0.121 0.031 0.093
 30, 30 0.008 0.046 0.056 0.056 0.050 0.035 0.057
 30,100 0.048 0.042 0.063 0.062 0.060 0.035 0.051

                             100,10    0              0.037               0.051               0.052               0.052               0.051               0.048               0.052       
1:2:3:8:3:2:1  10, 10 0.018 0.049 0.075 0.070 0.044 0.047 0.063

 10, 30 0.040 0.050 0.073 0.070 0.054 0.053 0.058
 10,100 0.052 0.050 0.078 0.077 0.063 0.054 0.054
 30, 30 0.034 0.054 0.064 0.061 0.051 0.056 0.060
 30,100 0.046 0.051 0.061 0.060 0.053 0.053 0.054

                            100,100             0.049              0.053              0.055              0.054              0.051              0.053              0.054      

     

For each of the 192 conditions, 10,000 samples
were generated using SAS IML, version 6.12 (SAS,
1992). The use of 10,000 samples provides an
adequate level of precision for this study, yielding
maximum 95% confidence intervals of ±.0098 around
the observed proportion of null hypotheses rejected
(Robey & Barcikowski, 1992). For each condition,
seven test statistics were computed: (a) the
independent means t-test, (b) Pearson's chi-square test
of homogeneity, (b) Cliff's Unbiased test of d, (c)
Cliff's Consistent test of d, (d) Cliff's asymmetric
confidence interval (CI) for d, (e) the Wald test
associated with the cumulative logit model, and (f)
the likelihood ratio (LR) test associated with the
cumulative logit model. Estimates of the Type I error
control and the statistical power of each test were
conducted at nominal alpha levels of .10, .05, and
.01.

Results and Discussion
Before turning to an examination of statistical

power, attention must first focus on a comparison of
the relative ability of the seven tests to control Type I
error.  Estimates of Type I error rate were calculated
for each of the seven procedures based on 10,000
randomly generated samples for each null condition
under examination. Bradley’s (1978) liberal criterion
of robustness (actual α  within α nominal ± 0.5α nominal)
was used to evaluate the capacity of each of the seven

procedures to control Type I error under the various
conditions. To save space, results are provided only
for nominal alpha equal to .05. Type I  error rates and
power estimates for alpha level equal to .10 and .01
are available from the first author.

Estimates of Type I Error Control
Five Point Response Scale. The estimates of

Type I error rates for the 5-point scales are provided in
Table 4. A broad overview of the robustness of all of
the seven tests across all conditions at alpha = .05 is
presented in a series of box and whisker plots in
Figure 1.  The two horizontal lines in this figure are
Bradley’s limits of robustness. Examination of these
plots revealed the t-test best able to control Type I
error, followed closely by the LR, the Wald test,
Cliff's confidence interval, and the chi-square test.
Considerably less control was exhibited by Cliff's
consistent and unbiased tests.  The t-test stood alone
in its ability to maintain the appropriate level across
all conditions.  The CI, Wald, LR, and Chi-Square
were able to maintain alpha within acceptable limits
for all but the most skewed conditions coupled with
small and unequal sample sizes.  Both the unbiased
and consistent tests failed to maintain acceptable
control in several instances when small and unequal
samples were involved.
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| Five Point Response Scale - α = .05
  0.14 +

|
| 0 0
| *

  0.12 +
| | 0
| | *
| |

  0.10 + | *
| |
| |
| | | * 0

  0.08 + +---- + |
| | | +---- + |
| | + | | | | |
| *---- * | + | | |

  0.06 + | | *---- * +---- + +- +- +
| +---- + +---- + | + | | 0 | *---- *
| | | *---- * +---- + *- +- * *---- * +---- +
| | +---- + *- +- * | | + | |

  0.04 + | | +---- + | |
| | | * +---- +
| | |
| |

  0.02 + 0
| 0
|
| * 0

0+                                                                                                                     
|               +               +               +               +               +               +               +     

TEST Unbiased  Consistent   CI  Chi-Square t-test Wald  LR

Figure 1.  Distribution of Type I Error Rate Estimates for Seven Tests across Experimental Conditions.

Seven Point Response Scale. The estimates of
Type I error rates for the 7-point scales are provided in
Table 5. The box and whisker plots presented in
Figure 2 provide a general overview of the robustness
of all seven procedures across all conditions when
alpha was set equal to .05. Again, the t-test
maintained Type I control across all conditions.
Generally, the seven procedures maintained alpha
within acceptable limits when large sample sizes were
examined. The most skewed condition presented
problems for several of the tests, as liberal estimates
were observed, on several occasions, for the LR, and
Cliff's Confidence Interval, Unbiased, and biased
tests. However, there were a few instances in which
the Chi-Square and Wald test became conservative.
For the unimodal, symmetric distribution, Cliff's
Unbiased and consistent tests were liberal only for the
unequal sample sizes of 10 and 100, while the
Chi-Square test was conservative with the smallest
samples.

Estimates of Statistical Power
Five Point Response Scale. Table 6 contains

power estimates for the seven procedures.  Statistical

power estimates are provided only for conditions in
which Type I error was controlled.  In addition, the
Wald test used with the cumulative logit model was
not calculable for most samples when the distribution
was highly skewed and a non-null condition was
simulated (conditions which typically yielded a
singular covariance matrix).  Estimates of power for
only those samples in which it was calculable would
be misleading, so these power estimates have also
been omitted.

An examination of statistical power at nominal
α  = .05 revealed the chi-square to be superior to all
other tests under the equal marginal and slightly
skewed marginal conditions.  Under the highly
skewed marginal conditions, the Chi-Square was the
most powerful only under the largest samples
examined. For smaller samples, or unequal samples,
other tests were more powerful. For example, Cliff's
Consistent test and CI produced the highest power
under a highly skewed, small sample condition with a
large effect size (power = .625 for both).  However, it
should be noted that in this instance only one other
test, the t-test, was able to control Type I error.
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|
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Figure 2.  Distribution of Type I Error Rate Estimates for Seven Tests across Experimental Conditions

The t-test produced the highest power under highly
skewed and unbalanced design conditions, but again,
it was one of only two tests that were able to control
Type I error under these conditions.  For the
unimodal, symmetric distribution, the chi-square test
was never the most powerful. Rather, for samples
drawn from this distribution shape, either the LR test
or Cliff's Unbiased or Consistent tests were the most
powerful.

Seven Point Response Scale. Table 7 contains
power estimates for the seven procedures for nominal
alpha level equal to .05.  Examination of these
results, revealed the Chi-Square to be the most
powerful test only under the equal marginal condition,
except with small sample sizes.  When small sample
sizes were examined, Cliff's Consistent test and the
LR produced more power than the other tests.  Under
the slightly skewed and highly skewed marginal
distributions, the power produced by several tests was
very similar.  For example, under the slightly skewed
condition with small samples, Cliff's delta tests and
the LR produced similar estimates.  With larger
samples under this condition, it was difficult to
choose a superior test from among Cliff's delta tests,
the Wald test, or the LR.  Similar circumstances

surrounded the highly skewed distribution with large
sample sizes.  For small sample sizes under this
condition, the consistent test and CI produced the
most power, but many of the tests were unable to
control Type I error.  For the unimodal, symmetric
distribution, the most powerful tests were typically
Cliff's Unbiased or Consistent tests. As with the
results obtained with the 5-point scales, neither the
Chi-Square nor the t-test were the most powerful in
any sample size condition with this distribution
shape.

The differences in the results
obtained between the 5-point and 7-point data
prompted a further examination of the populations
from which samples were generated. Recall that these
populations were constructed based on differences
between proportions at each scale point to produce
desired values of Cohen's w (the effect size for
differences in population proportions). These
populations were examined in terms of the effect size
for standardized mean difference (Cohen's d) and Cliff's
delta. Although the latter is not an effect size, per se,
it represents the proportional non-overlap of the two
populations from which samples were drawn. These
results are presented in Table 8.
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Table 6.  Statistical Power Estimates for 5 Point Response Scale at nominal α  = .05
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution        Size               Size             Square                t    -    test             Unbiased        Consistent              CI                    Wald                     LR          
1:1:1:1:1  10, 10 .10 0.040 0.061  -----  0.078 0.048 0.067 0.075

 10, 10 .30 0.115 0.139  -----  0.161 0.104 0.147 0.162
 10, 10 .50 0.345 0.296  -----  0.310 0.226 0.321 0.339
 10, 30 .10 0.061 0.068 0.086 0.082 0.062 0.076 0.079
 10, 30 .30 0.220 0.211 0.206 0.200 0.158 0.242 0.234
 10, 30 .50 0.638 0.482 0.391 0.385 0.307 0.535 0.505
 10,100 .10 0.060 0.074  -----   -----   0.080 0.082 0.083
 10,100 .30 0.310 0.265  -----   -----   0.185 0.298 0.280
 10,100 .50 0.807 0.597  -----   -----   0.337 0.646 0.596
 30, 30 .10 0.080 0.079 0.087 0.084 0.071 0.080 0.083
 30, 30 .30 0.427 0.320 0.330 0.325 0.293 0.336 0.336
 30, 30 .50 0.924 0.710 0.689 0.685 0.651 0.729 0.723
 30,100 .10 0.103 0.108 0.111 0.109 0.099 0.115 0.114
 30,100 .30 0.649 0.482 0.410 0.407 0.383 0.513 0.489
 30,100 .50 0.994 0.888 0.769 0.768 0.743 0.900 0.875
100,100 .10 0.170 0.142 0.146 0.145 0.140 0.145 0.146
100,100 .30 0.950 0.777 0.768 0.766 0.759 0.779 0.778

                       100,100           .50              1.000            0.996               0.994               0.994               0.993               0.996               0.995       
6:1:1:1:1  10, 10 .10  ----- 0.058 0.078 0.071 0.048 0.039 0.071

 10, 10 .30  ----- 0.111 0.115 0.109 0.080 0.071 0.112
 10, 10 .50  ----- 0.225 0.192 0.186 0.143 0.138 0.191
 10, 30 .10 0.045 0.050  -----   ----- 0.080 0.031 0.065
 10, 30 .30 0.147 0.113  -----   ----- 0.150 0.056 0.119
 10, 30 .50 0.551 0.261  -----   ----- 0.284 0.127 0.237
 10,100 .10 0.063 0.047  -----   -----  0.100 0.022 0.063
 10,100 .30 0.243 0.117  -----   ----- 0.201 0.036 0.126
 10,100 .50 0.770 0.297  -----   ----- 0.370 0.111 0.268
 30, 30 .10 0.058 0.068 0.070 0.069 0.058 0.062 0.068
 30, 30 .30 0.394 0.218 0.192 0.189 0.171 0.185 0.194
 30, 30 .50 0.956 0.508 0.430 0.426 0.400 0.435 0.443
 30,100 .10 0.082 0.072 0.094 0.093 0.087 0.063 0.074
 30,100 .30 0.602 0.290 0.298 0.297 0.286 0.223 0.256
 30,100 .50 0.998 0.662 0.622 0.620 0.605 0.546 0.589
100,100 .10 0.165 0.109 0.097 0.096 0.093 0.095 0.097
100,100 .30 0.958 0.572 0.491 0.489 0.481 0.495 0.496

                     100,100          .50             1.000           0.952              0.898              0.897              0.893              0.907              0.906            

Note that, for the null condition, the populations
are identical regardless of how population
“differences” are represented. Further, when differences
are represented in terms of Cohen's w, the 5-point and
7-point populations have identical effect sizes.
However, when differences are represented by Cohen's
d, the effect sizes differ across the two sets, and the
difference is not consistent across the distribution
shapes. For example, with the "small effect"
populations under the slight skew condition, Cohen's
d was 0.10 for the 5-point data and 0.17 for the
7-point data. A similar difference was evident for the
high skew. However, for the unimodal, symmetric

distributions, the Cohen's d values were nearly
identical (0.17 vs. 0.19). Similar differences were
noted across the remaining non-null conditions
examined. Such discrepancies were also evident when
the population differences were measured as Cliff's
delta.  These observed deviations across effect sizes
reflect variations in the magnitude of population
differences that result from the design variables of
distribution shape and number of scale points.  These
design variables produced differential effects when
inequalities were measured as discrepancies in
population standardized mean difference or proportion
of non-overlap.
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Table 6 (continued).  Statistical Power Estimates for 5 Point Response Scale at nominal α  = .05
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution        Size               Size             Square                t    -    test             Unbiased        Consistent              CI                    Wald                     LR          
16:1:1:1:1  10, 10 .10  -----  0.032  ----- 0.038 0.033  -----  -----

 10, 10 .30  -----  0.068  ----- 0.058 0.056  -----  -----
 10, 10 .50  -----  0.542  ----- 0.625 0.625  -----  -----
 10, 30 .10 0.036 0.025  -----  ----    -----  0.015 0.076
 10, 30 .30 0.089 0.035  -----  ----    -----   ----- 0.116
 10, 30 .50 0.054 0.670  -----  ----    -----   ----- 0.981
 10,100 .10  -----  0.021  -----  ----    -----  0.018  -----
 10,100 .30  -----  0.013  -----  ----    -----   -----  -----
 10,100 .50  -----  0.874  -----  ----    -----   -----  -----
 30, 30 .10  -----  0.060 0.062 0.062 0.057 0.044 0.063
 30, 30 .30  -----  0.197 0.146 0.145 0.138 0.105 0.147
 30, 30 .50  -----  0.998 1.000 1.000 1.000  ----- 1.000
 30,100 .10 0.073 0.056 0.093 0.093 0.090 0.035 0.065
 30,100 .30 0.584 0.212 0.257 0.256 0.251 0.098 0.180
 30,100 .50 0.998 1.000 1.000 1.000 1.000  ----- 1.000
100,10 .10 0.154 0.099 0.083 0.083 0.081 0.078 0.083
100,10 .30 0.972 0.495 0.340 0.340 0.335 0.331 0.343

                       100,10             .50              1.000            1.000               1.000               1.000               1.000                    -    -    -    -    -                     1.000       
1:2:4:2:1  10, 10 .10 0.035 0.070  -----   0.095 0.062 0.069 0.089

 10, 10 .30 0.105 0.222  -----   0.283 0.210 0.227 0.274
 10, 10 .50 0.319 0.536  -----   0.625 0.533 0.481 0.628
 10, 30 .10 0.063 0.078 0.115 0.111 0.088 0.086 0.094
 10, 30 .30 0.216 0.299 0.379 0.372 0.322 0.334 0.352
 10, 30 .50 0.654 0.725 0.787 0.783 0.733 0.778 0.799
 10,100 .10 0.064 0.079  -----    -----  0.100 0.086 0.089
 10,100 .30 0.305 0.378  -----    -----  0.411 0.411 0.424
 10,100 .50 0.821 0.821  -----    -----  0.797 0.871 0.872
 30, 30 .10 0.075 0.103 0.123 0.120 0.104 0.111 0.116
 30, 30 .30 0.417 0.540 0.616 0.611 0.581 0.603 0.612
 30, 30 .50 0.934 0.948 0.974 0.974 0.968 0.974 0.975
 30,100 .10 0.103 0.139 0.162 0.161 0.149 0.150 0.153
 30,100 .30 0.650 0.729 0.782 0.780 0.764 0.785 0.787
 30,100 .50 0.995 0.994 0.996 0.996 0.995 0.998 0.998
100,100 .10 0.166 0.235 0.266 0.265 0.257 0.262 0.264
100,100 .30 0.954 0.967 0.982 0.982 0.981 0.981 0.981

                       100,100          .50             1.000           1.000              1.000              1.000              1.000              1.000              1.000      

Note.  Estimates are based on 10,000 samples of each condition.  Power estimates are provided only for conditions
in which Type I error was controlled.

Conclusions
The results of this research need to be interpreted

in the light of the limitations of the study. First,
only analyses based on two independent groups were
conducted. Although all of the statistical procedures
investigated can be extended to multiple group
applications, the resulting Type I error rates and
power estimates will not necessarily be comparable to
those obtained here. Secondly, a limited number of
distribution shapes were examined in this study.
Extensions to other shapes, such as bimodal
distributions, are important areas to explore because
distribution shape was seen to influence both Type I
error control and the relative power of these tests.

Finally, in the consideration of statistical power, the
nature of the differences between groups can assume
several forms. Although ordered categorical data
preclude the consideration of simple shifts in location
(because of the boundedness of the response scale),
types of non-null effects other than those modeled
here need to be investigated.

In light of these limitations, the superiority of the
t-test and the cumulative logit model in their control
of Type I error is evident in these data. Problems with
the control of Type I error rates were frequently
encountered in conditions with skewed marginal
distributions and with unbalanced or small samples.
Specific limitations in Type I error control were
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Table 7.  Statistical Power Estimates for 7 Point Response Scale at nominal α  = .05
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution        Size               Size             Square            t    -    test             Unbiased        Consistent              CI                    Wald                    LR         

1:1:1:1:1  10, 10 .10  -----  0.053  -----  0.071 0.041 0.059 0.067
 10, 10 .30  -----  0.060  -----  0.079 0.046 0.067 0.077
 10, 10 .50  -----  0.081  -----  0.106 0.064 0.093 0.104
 10, 30 .10 0.054 0.055 0.076 0.072 0.052 0.059 0.062
 10, 30 .30 0.181 0.073 0.093 0.087 0.066 0.083 0.084
 10, 30 .50 0.548 0.103 0.126 0.120 0.090 0.119 0.121
 10,100 .10 0.064 0.053  -----   -----  0.063 0.061 0.059
 10,100 .30 0.265 0.078  -----   -----  0.081 0.097 0.090
 10,100 .50 0.757 0.127  -----   -----  0.111 0.156 0.145
 30, 30 .10 0.067 0.052 0.059 0.056 0.047 0.053 0.055
 30, 30 .30 0.347 0.083 0.095 0.092 0.077 0.088 0.091
 30, 30 .50 0.868 0.143 0.160 0.155 0.136 0.151 0.155
 30,100 .10 0.084 0.056 0.064 0.063 0.055 0.058 0.058
 30,100 .30 0.578 0.111 0.114 0.112 0.102 0.122 0.119
 30,100 .50 0.988 0.212 0.205 0.203 0.187 0.230 0.223
100,100 .10 0.137 0.065 0.068 0.067 0.064 0.066 0.067
100,100 .30 0.923 0.165 0.171 0.170 0.163 0.168 0.169

                       100,100           .50              1.000            0.378               0.383               0.381               0.372               0.383               0.384  
9:1:1:1:1  10, 10 .10  -----  0.064 0.092 0.084 0.059 0.048 0.084

 10, 10 .30  -----  0.207 0.293 0.278 0.218 0.172 0.278
 10, 10 .50  -----  0.521 0.665 0.646 0.568 0.394 0.654
 10, 30 .10 0.017 0.065  -----  0.132 0.116 0.048 0.100
 10, 30 .30 0.028 0.260  -----  0.424 0.385 0.241 0.382
 10,100 .10 0.023 0.060  -----   -----   ----   0.030 0.106
 10,100 .30 0.022 0.296  -----   -----   ----   0.295 0.441
 10,100 .50 0.350 0.761  -----   -----   ----   0.670 0.879
 30, 30 .10 0.048 0.094 0.117 0.114 0.102 0.107 0.114
 30, 30 .30 0.317 0.521 0.631 0.626 0.603 0.615 0.628
 30, 30 .50 0.862 0.939 0.981 0.981 0.978 0.972 0.982
 30,100 .10 0.036 0.120 0.181 0.180 0.170 0.141 0.158
 30,100 .30 0.406 0.680 0.806 0.805 0.791 0.797 0.807
 30,100 .50 0.971 0.990 0.998 0.998 0.997 0.992 0.999
100,100 .10 0.139 0.229 0.283 0.283 0.276 0.279 0.282
100,100 .30 0.916 0.958 0.986 0.986 0.985 0.986 0.986

                      100,100          .50             1.000           1.000              1.000              1.000              1.000              1.000              1.000  

observed for the tests of delta suggested by Cliff
(1993, 1996a). Of special interest is that in many
conditions, Cliff's Confidence Interval approach to
inferences regarding delta were superior to the two z
test approaches examined. The asymmetric approach
to the confidence interval estimation appeared to
improve the control of Type I errors in several of the
conditions examined in this study. However, for
researchers working with small samples or unequal
sample sizes, the t-test or cumulative logit model
appear to be the tests of choice to maintain Type I
error control.

Finally, in terms of statistical power, although
the independent means t-test provided the best control
of Type I error rates across the conditions examined,
this test was rarely the most powerful, and,

consequently, should not be the first choice in most
applications. For the 5-point response scales, the
chi-square test of homogeneity was clearly the most
powerful test for those conditions in which it
maintained Type I error control. In contrast, for the
7-point scales, the Chi-Square test was only the most
powerful when the marginal distribution was
symmetric. For the skewed marginal distributions,
the cumulative logit models or the tests of delta
tended to be the most powerful. However, the
variation in power across these scales should not be
interpreted as a simple function of the number of
scale points. Rather, such variations represents
changes in the magnitude of the population
differences in terms of standardized  mean difference or
proportion of non-overlap of the populations.
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Table 7 (continued). Statistical Power Estimates for 7 Point Response Scale at nominal α  = .05.
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution           Size               Size             Square                t    -    test             Unbiased        Consistent              CI                    Wald                     LR          
24:1:1:1:1  10, 10 .10  -----  0.046  -----  0.063 0.057  -----   -----

 10, 10 .30  -----  0.173  -----  0.232 0.217  -----   -----
 10, 10 .50  -----  0.506  -----  0.622 0.622  -----   -----
 10, 30 .10 0.011 0.024  -----   -----   -----  0.007 0.126
 10, 30 .30 0.001 0.145  -----   -----   -----   -----  0.441
 10, 30 .50 0.004 0.620  -----   -----   -----   -----  0.982
 10,100 .10  -----  0.011  -----   -----   -----   0.005  -----
 10,100 .30  -----  0.107  -----   -----   -----    -----    -----
 10,100 .50  -----  0.818  -----   -----   -----    -----    -----
 30, 30 .10  -----  0.105 0.129 0.128 0.119 0.090 0.131
 30, 30 .30  -----  0.575 0.694 0.692 0.677 0.535 0.699
 30, 30 .50  -----  0.999 1.000 1.000 1.000  -----  1.000
 30,100 .10 0.017 0.100 0.224 0.223 0.220 0.094 0.167
 30,100 .30 0.129 0.707 0.894 0.894 0.890 0.708 0.859
 30,100 .50 0.960 1.000 1.000 1.000 1.000  -----  1.000
100,10 .10 0.120 0.233 0.288 0.288 0.284 0.278 0.288
100,10 .30 0.920 0.972 0.992 0.992 0.992 0.991 0.992

                          100,10             .50              1.000            1.000               1.000               1.000               1.000                    -    -    -    -    -                     1.000       
1:2:3:8:3:2:1  10, 10 .10  -----  0.072  -----   0.098 0.066 0.072 0.089

 10, 10 .30  -----  0.245  -----   0.307 0.232 0.244 0.293
 10, 10 .50  -----  0.611  -----   0.680 0.596 0.539 0.667
 10, 30 .10 0.050 0.082 0.116 0.111 0.089 0.091 0.096
 10, 30 .30 0.208 0.369 0.410 0.402 0.345 0.401 0.408
 10, 30 .50 0.632 0.810 0.799 0.792 0.741 0.821 0.837
 10,100 .10 0.082 0.087  -----   ----- 0.098 0.095 0.094
 10,100 .30 0.352 0.432  -----   -----  0.405 0.472 0.464
 10,100 .50 0.882 0.891  -----   -----  0.802 0.910 0.902
 30, 30 .10 0.054 0.114 0.131  0.126 0.111 0.118 0.123
 30, 30 .30 0.310 0.602 0.653  0.645 0.612 0.634 0.643
 30, 30 .50 0.876 0.978 0.984  0.983 0.979 0.981 0.983
 30,100 .10 0.088 0.139 0.156  0.154 0.144 0.150 0.152
 30,100 .30 0.624 0.803 0.806  0.804 0.790 0.831 0.829
 30,100 .50 0.994 0.998 0.997  0.997 0.997 0.999 0.998
100,100 .10 0.136 0.259 0.282  0.280 0.272 0.276 0.279
100,100 .30 0.919 0.982 0.987  0.987 0.987 0.987 0.987

                          100,100          .50             1.000           1.000              1.000               1.000             1.000              1.000              1.000      

Note.  Estimates are based on 10,000 samples of each condition. Power estimates are provided only for conditions
in which Type I error was controlled.

Further, the power differences among these procedures
were small suggesting that researchers' choices may
be based on the types of interpretations that are
appropriate for the research questions being addressed.
For interpretations based on simple dominance, the d
statistics and their inferential tests would be the most
appropriate. In contrast, a more rigorous modeling of
response probabilities is provided by the cumulative
logit models.

In summary, ordered categorical data, such as
those investigated in this study, are frequently
encountered in educational research. Unfortunately,
the analysis strategies most frequently employed with
these types of data are not necessarily the best

strategies to use. This research has provided
information about the operating characteristics (Type
I error control and statistical power) of the commonly
used tests employed with ordered categorical data, and
has provided evidence of the advantages (in some data
conditions) associated with two recently recommended
options for testing hypotheses. Although additional
research is certainly needed to further explore the
performance of these tests and their limitations, this
initial examination suggests that for many data
conditions, the choice of an appropriate test statistic
is vitally important to the validity of research
inferences.   
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Table 8.  Indices of Differences in the Simulated Populations
                                                                                                                                                                  
Population                                    Index of Group Difference                                   
   Group Marginal          Effect size       W                       Effect Size     d                         Cliff's     d               
   Differences          Distribution            5-    point        7-    point           5-    point        7-    point           5-point 7-point      

Null Model Uniform 0.00 0.00 0.00 0.00 0.00 0.00
Slight Skew 0.00 0.00 0.00 0.00 0.00 0.00
High Skew 0.00 0.00 0.00 0.00 0.00 0.00
Unimodal Sym 0.00 0.00 0.00 0.00 0.00 0.00

Small Effect Uniform 0.10 0.10 0.13 0.05 0.07 0.03
Slight Skew 0.10 0.10 0.10 0.17 0.05 0.10
High Skew 0.10 0.10 0.09 0.18 0.03 0.08
Unimodal Sym 0.10 0.10 0.17 0.19 0.10 0.11

Medium Effect Uniform 0.30 0.30 0.39 0.14 0.21 0.08
Slight Skew 0.30 0.30 0.31 0.53 0.14 0.29
High Skew 0.30 0.30 0.28 0.57 0.09 0.24
Unimodal Sym 0.30 0.30 0.54 0.58 0.31 0.32

Large Effect Uniform 0.50 0.50 0.67 0.23 0.36 0.13
Slight Skew 0.50 0.50 0.52 0.95 0.23 0.49
High Skew 0.50 0.50 1.40 1.36 0.40 0.40
Unimodal Sym 0.50 0.50 1.00 1.05 0.51 0.54

Correspondence should be directed to
Jeffrey D. Kromrey
Educational Measurement & Research,
University of South Florida
4202 East Fowler Avenue, Tampa, FL  33620
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