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 chose Apple Computers’ slogan, not because I
happen to be a Macintosh user, but because the
issues raised in these three articles should lead us

to “Think Different” as statisticians, data analysts,
and researchers.  One key issue underlying these
articles is the ultimate question, “What are the data
trying to tell us?”  Several statistics texts have used
the signal-to-noise analogy for analyzing data.
Therefore, if we are simply trying to detect a signal
amongst random, ambient noise then it does not seem
as problematic to transform the data or to perform
alternative procedures that potentially test different
statistical hypotheses.  If exact parameter estimation
is of interest, however, data transformations may lead
to interpretive difficulties.

Nevitt and Tam (pp. 54-69) approach this
issue from the parameter estimation perspective of:
What should be done in order to detect an accurate
signal if the data are not “well behaved” or do not
conform to the statistical assumptions of the
regression model?  These authors examine three
general approaches for estimating parameters when
data are not well behaved (i.e., nonnormal): (a) treat
outliers differently (i.e., Trimming, Winsorizing), (b)
transform the data (i.e., Monotonic Regression), or
(c) compute parameter estimates in a different manner
(i.e., LAD, Theil estimators).  

The authors make an important distinction
between robust and nonparametric estimators.
Robust methods were developed for situations in
which symmetric error distributions have heavy tails
due to outliers in the observed data.  Thus, the
normality assumption is simply relaxed.  Robust
estimators are therefore resistant to violation of
assumptions while testing the same null hypothesis
as the normal theory methods (Draper & Smith,
1981).  By contrast, nonparametric and distribution-
free methods may involve (a) transforming data to
ranks or other metrics or (b) computing the parameter
estimate in an entirely different way.  Therefore, the
normality assumption may not apply whatsoever.  In
these cases, the statistical hypothesis tested, although
conceptually similar, may be quite different than the
hypothesis evaluated by a normal theory counterpart.
Because of this difference, the performance of
nonparametric methods relative to OLS methods is
often hard to assess except under conditions where
many parameters (i.e., skew and kurtosis) are held to
normal theory assumptions which of course favors
OLS procedures.  

Recall the question posed in the foreword (p. 2),
“How do these techniques integrate with what is
already known about statistics?”  There are extremely
interesting relationships between OLS and
nonparametric estimators of slope.  By using the
geometric definition of a regression slope and taking
the n(n - 1) pairwise slopes,

bij = 
yj - yi

xj - xi
  where xi ≠ xj,

the Theil estimator of slope is the median of all the
bij slopes. Interestingly, when all values of X  are
distinct, Sprent (1993) demonstrates that significance
testing of the Theil median slope is based on
Kendall’s (1970) tau statistic which is related to
Cliff’s (1994) ordinal multiple regression (Long, pp.
45-53). This can be inferred from the fact that n(n - 1)
pairwise values are used in both procedures.  Other
relationships can be shown by making an aggregate
of these slopes such that

 

β = 

wij bij∑
i  < j

wij ∑
i  < j  

,

OLS regression defines the weight as wij = (xj - xi)
2.

Other nonparametric approaches defines wij = |xj - xi|
(Birkes & Dodge, 1993) which reduces to a sign
function for the X  variable over the sum of the
absolute deviations of X  (Huynh, 1978).  For
Kendall’s tau, the weights would be defined in terms
of the absolute value of both the Y  and X  deviations
(i.e., wij = |xj - xi|/|yj - yi|) which would then reduce to
a sign function for both Y  and X .  Kendall’s tau is
the simple (i.e., unweighted) average sign of the   
n(n - 1) pairwise slopes.

In terms of Nevitt and Tam’s methodology, it is
questionable whether the sequential series of X  is
realistic.  First of all, the sequential series of X  is a
uniform distribution.  This implies that Nevitt and
Tam are examining fixed-effects models because the
underlying assumption of a random-effects model is
that Y  and X  are sampled from a bivariate normal
distribution (Hays, 1994). Although fixed-effects
models are applied most commonly, even when
random-effects are of interest (Clark, 1973), the use of
a uniform distribution as the basis for the parameter
model seems realistic only if the population
relationship among ranks is of interest. Secondly, in
the population, the uniform distribution of X yields a
uniform distribution for Y  through the linear
transformation described in the methods section (p.
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57).  When a normal, random error component is
added to Y  then the conditional distribution of Y  is
normal which again is adequate for a fixed-effects
model.  In this case however, the overall distribution
of Y is neither uniform nor normal which violates the
bivariate normality assumption of a simple linear
regression random-effects model.  Thus in regression
applications where random-effects models are of
interest, the fact that the data for Y  are nonnormal
could stem from either (a) the structural component
(i.e., population distributions of X  and Y  are
nonnormal), (b) the error component being
nonnormal, or (c) from both (a) and (b).

Thus, from this fixed-effects perspective, Nevitt
and Tam’s methodological approach assumes that
“bad” (i.e., nonnormal) data originates from the error
distribution of a regression model.  Therefore, they
rightfully suggest that “data analyses should always
involve checking for outliers in the observed data and
testing the underlying assumptions under OLS
estimation” (p. 68).  The idea that outliers and
heteroscedasticity may stem from nonnormal error
distributions is certainly interesting and leads to the
question: How does one know if the error distribution
is normal when the data are nonnormal? The
possibilities are that: (a) the variable itself is
nonnormal; (b)  there are outliers present in a
symmetric error distributions; or (c) the error
distribution is skewed or nonnormal.  Thus, there is
an important distinction between: (1) a normal
distribution with outliers that create skewness and (2)
a skewed distribution such as reaction time.  Nevitt
and Tam’s results show that as expected (Draper &
Smith, 1981), robust estimators perform better under
condition (1) but nonparametric methods perform
better under condition (2).  Nevitt and Tam report the
surprisingly good overall performance of the Theil
estimator.  Furthermore, the Theil estimates were
accurate especially with nonnormal error
distributions.  As expected with contaminated normal
error distributions, the robust procedures (i.e., LAD,
Trimming, Winsorizing) performed well.  As a
personal bias, however, I am not fond of Trimming
because this form of discarding data creates a situation
where the data are systematically missing which is
know  to lead to biased estimates.  

One astounding and important result, mainly
because of the common application of rank
transformations, was the poor performance of
Monotonic Regression.  This finding should be
viewed in a certain light, however.  The authors note
that their results substantiate the unacceptability of
rank transformation in the form of Monotonic
Regression with respect to Bias and root mean square
error (RMSE).  Namely, large Bias values reflect the
inability of Monotonic Regression to “recover the
true population values” (see p. 67).  The fact that
Nevitt and Tam used sequential values of X  would

seem to have benefited Monotonic (rank) Regression
because the transformation was linear for X .  With
the addition of a random error distribution, however,
the rank transformation for Y  was not linear in most
cases.  Thus, Monotonic Regression did not perform
well in general.  Yet, procedures that transform the
original data should not be expected to perform as
well.  How would rank values transform back to the
original metric of Y  if sequential X  values were not
used?  Furthermore, one must consider that
Monotonic Regression tests a different null
hypothesis; it tests OLS hypotheses in the metric of
ranks.

As with the Brockmeier et al. article (pp. 20-39),
if the purpose of a study is simply to establish a
relationship (i.e., just detecting the signal) then
finding non-zero correlations (or standardized
regression slopes) is the major issue rather than exact
parameter estimation.  Perhaps the rank transform
procedure (Monotonic Regression) would not perform
so poorly in these circumstances (e.g., a simulation
study where Type I error and Power rates, instead of
estimation bias, would be reported).  Yet, if exact
parameter estimation is of interest then the precision
of both α  and β parameter estimates is important.
The RMSE and Bias reported by Nevitt and Tam are
both valuable indicators because procedures such as
Monotonic Regression can maintain stable Type I
error rates and demonstrate superior power (e.g.,
Harwell & Serlin, 1989) yet provide consistently bad
parameter estimates.  Thus, it would appear that rank
(as well as other non-linear) transformations are not
appropriate when exact parameter estimates are to be
“recovered.”  By contrast, if researchers are merely
attempting to establish a relationship, then they could
consider the signal-to-noise analogy where
transformations (and other alternative approaches) do
not seem so disabling.

To elaborate, in experimental designs and other
group comparison research, ANOVA models that test
for mean differences are employed.  In contrast to
single-sample statistics where a relevant population
parameter must be known a priori, the fact that there
is a comparison group makes the signal more
detectable.  One may think of this in terms of
perceptual research which has demonstrated that
judging the length or orientation of an object is much
easier when there are perceptual cues that allow for
comparisons (e.g., Witkin & Goodenough, 1981).
Using the same analogy, violations of assumptions
and other data problems can be viewed as the factors
that create perceptual (statistical) distortions and
illusions, and thus, the use of statistics in many
behavioral research contexts may be seen as a field-
dependent endeavor.  Similar to the ANOVA model, a
linear regression model is a comparison of means in
the sense that as X  increases the expected value of Y
increases by the slope on average.  Again, if one is
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simply trying to detect a signal, rather than
estimating a parameter precisely, then the fact that Y
generally increases with increases in X  may be good
enough.  And it does not matter too much how the
variables are expressed.

Popular sources such as Tabachnick and Fidell
(1996) discuss transforming data when assumptions
are violated. This is even more systematized as the
“ladder of re-expression” when power and logarithmic
transformations are used to transform data (Hoaglin,
Mosteller, & Tukey, 1983). Yet most researchers
have problems with such nonlinear transformation
with the exception of the rank transform concept.
That is, unlike taking the square root of a variable to
quell an outlier or reduce asymmetry, ranking the data
still retains the “meaning” of the data to many
researchers (Zimmerman, 1996). Furthermore, there
are conveniences because there are many rank-based
tests already in existence and ranks have known
means and variances.  Despite these conveniences,
Nevitt and Tam’s results are consistent with other
research (Zimmerman, 1996, 1998; Zimmerman &
Zumbo, 1993) that has demonstrated serious
problems in applying rank transformations.
Therefore, the reliance on rank transformation may be
somewhat superstitious because its historical
prevalence and intuitive appeal are more convincing
than empirical evidence showing its statistical
viability for estimating parameters.  

One issue that all researchers have with any re-
expression is what do the data “mean” after
transformation.  For the sake of symmetry in a
variable, a researchers may be left with the question:
What does the square root of achievement scores
mean?  Cliff (1996) argues that  researchers usually
do not want their conclusions to be confined to the
current, somewhat arbitrary version of the variables.
Moreover the current measurements are often assumed
to be manifest versions of latent variables that are not
linearly related to them.  Therefore, a poignant
question for researchers to ask would be: What did my
scores mean in the first place?  From this perspective
the central question of data analysis can be posed as:
What question should I be asking?  That is, the null
hypotheses associated with OLS regression may not
be what is really of interest.  Cliff (1993, 1996)
contends that most of the answers behavioral
researchers want to get from their data are ordinal
ones.  Furthermore, most of the observed variables
have only ordinal justification, at least as measures of
the theoretical constructs they are used to represent.
Therefore, because the questions asked are ordinal and
the data are ordinal, ordinal methods are suggested.

Based on this perspective, Long (pp. 45-53)
explicates another less common re-expression, the
transformation of data into what Cliff (1993) has
termed the “dominance” metric.  Many of us have
been familiarized with this concept through Kendall’s

(1970) measure of concordance.  Not only does this
notion lead to testing statistical hypotheses that are
different from their OLS counterparts, the procedures
require us to “Think Different” because the
hypotheses are different conceptually.  From the
Pearsonian perspective, relationships are an issue of
the average value of Y  conditional on X .  From the
dominance perspective, however, relationships are
expressed as the proportional alignment of Y  with X .
In terms of group comparisons where the OLS
solution involves an ANOVA model, ordinal methods
address what proportion of scores in group one are
larger than the scores in group two.  In terms of a
linear regression, they assess what proportion of Y
scores become larger as X increases.  

Marascuilo and McSweeney (1977, pp. 439-440)
discuss Kendall’s tau as a measure of concordance and
as a measure of correlation.  However, Kendall’s tau
as a measure of correlation is not interpreted in the
Pearsonian sense but as a measure of “array.”  That
is, it is an index of the amount of agreement between
two sets of ranks.  When teaching the Pearson
product-moment correlation, I prefer demonstrating
the z-score formula and discussing the Pearson r as an
averaged leverage (i.e., product-moment) value.
Similarly, the notion of the dominance metric is
appealing because it allows a perspective of what
Kendall’s tau (as well as ordinal multiple regression
and Cliff’s d statistic) actually measures.  Thus, from
the dominance matrix, it can be seen that Kendall’s
tau measures the proportional agreement between the
dominance scores on two variables.  Therefore,
Kendall’s tau coefficient, as a summary measure, is
an average of proportional increase.

As is the case with OLS regression, a second
predictor makes the interpretation more complicated
but there are analogies in ordinal multiple regression
(OMR).  However, there are some unresolved issues
in OMR which again force us to “Think Different.”
First of all, OMR does not yield truly partialled
values.  Similar to Marascuilo and McSweeney’s
discussion of the relationship of Kendall’s tau to
Pearson’s r, one cannot interpret the coefficients that
result from OMR as OLS regression weights.
Furthermore, although Kendall (1970) developed a
“partial tau,” its properties are quite different from
those in OLS.  For example, suppose there are three
variables that have positive intercorrelations and a
trivariate normal distribution.  Although the first two
are statistically independent, conditional on the third
(r12.3 = 0), Kendall’s partial tau will not be zero (Cliff,
1996).  Thus, Long rightfully warns that the “OMR
function is much more ambiguous in its specification
of the relationship between the weights and the
criterion. In fact, an algebraic formula expressing the
criterion in terms of the weighted predictors is not
possible” (p. 47).  This means that there is no final
“regression equation” where a line or plane of best fit
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is described.  Predicted values for each subject are not
rendered.  Long states that it  would be possible “if

d ihy were used in the loss function” (p. 47).  To
elaborate, one can use either equation (4) or (6) and

calculate, d ihy = .40(dih1) + .33(dih2), a “prediction
equation” for the n(n - 1) pairwise dominance scores.
Then based on these n(n - 1) predicted values an

“average predicted dominance score” of the form d iy =

Σh(d ihy)/(n - 1) can be computed for each of the n

subjects.  It can be shown that both d ihy and d iy sum
to zero as would standardized predicted values from an
OLS regression.  However, this approach violates the
logic of ordinal analysis. Therefore, only a verbal
description of the functional relationship between the
weights and the criterion is appropriate.  Thus, the
OMR weights are the constants that when applied to
the predictor dominance scores best predict order on
the criterion, “best” meaning that Q is optimal (p.
47).  Thus using equation (5), Q = .5945; however,
this is only the optimization of the weights. That is,
Q can be viewed as analogous to Multiple R2, but it
is not the “variance accounted for” typically associated
with OLS regression.  Furthermore, to date there is
not an omnibus test for Q analogous to the F-test for
the full model R2.  Given the confidence interval
approach taken by Long this may be less
problematic. Still Q is only a statistic descriptive of
the loss function.  Thus, in its current state OMR has
many statistical and interpretive limitations despite
the compelling arguments of Cliff (1996).  Possibly
the OMR methodology forces us to “Think too
Different.”  When applied to group comparison
research, however, the dominance metric approach has
many foreseeable advantages.  In research in which
two or more groups are compared, ANOVA models
are applied to test differences in means which
addresses the question:  “Do the groups have different
average values?”  Cliff (1993) suggests that through
using the dominance metric one can answer the
question many behavioral researchers really want to
ask, “Which group has higher scores?” Yet a similar
and even more general question is:  “Did the groups
respond differently?”

Kromrey and Hogarty (pp. 70-82) address the
differences among these three questions.  They present
an interesting situation in which two groups are
compared on an ordered categorical response, as
opposed to analyzing a dependent variable that is truly
continuous in nature.  This is a common practice in a
variety of educational and psychological studies where
Likert-type responses are elicited and groups are
subsequently compared.  Kromrey and Hogarty
evaluate the statistical properties of four general
procedures (t-test, Pearson chi-square test, Cliff’s d,
and Cumulative Logit model).  They contend that
despite the differences among the statistical null

hypotheses tested, each of these procedures may be
used to test the same, “conceptual” research
hypothesis (p. 70).  Although these methods may
seem to address conceptually similar research
questions, statistically they are not the same.  Thus, a
review of the procedures, their null hypotheses, and
the questions addressed should be examined carefully.

Again, the most general question is, “Did the
groups respond differently?” It is most likely to be
addressed with the Pearson chi-square test for
contingency tables which for two groups has the
following null hypothesis:

HO(π): π1k = π2k, for all k categories.  
The question of “Which group has higher scores?” is
often thought of terms of the t-test.  However,  this
issue is actually more in line with Cliff’s d statistic.
It tests the null hypothesis that the probability that a
randomly selected member (i) of one population has a
higher response than a randomly selected member (j)
of the second population is equal to the reverse
probability.  That is, the probability that the scores
from one group are higher minus the probability that
a second group’s scores are higher is equal to zero:

HO(δ): δ = Pr(yi1 > yj2) - Pr(yi1 < yj2) = 0.  
These population probabilities are measured by the
frequencies in the samples.  It should be noted that
the d statistic is equivalent to Kendall’s tau performed
with a dummy code representing the group
distinctions, and thus, Cliff’s d can extend into
multiple group and factorial designs (Cliff, 1996).  

The most specific of the three research questions
is, “Do the groups have different average values?”  It
is addressed by the independent samples t-test with the
following null hypothesis:

HO(µ): µ1 - µ2 = 0.
A fourth approach investigated by Kromrey and

Hogarty is a Cumulative Logit model suggested by
Agresti (1989).  In the current situation, this method
treats the categorical response as an ordinal variable
and the grouping variable as dichotomous.  The
impetus for the Cumulative Logit model is that the
Pearson chi-square test was designed for variables that
have unordered categories.  Therefore, it detects any
type of deviation from the null hypothesis HO(π).  If
the variable is ordinal, however, the categorical data
may be represented with fewer degrees-of-freedom
which for a fixed noncentrality structure increases the
statistical power of a test.  Thus, the Cumulative
Logit model detects only monotonic deviations but
these are the ones of most importance with ordinal
variables (Agresti, 1989, p. 298).  

To explicate this approach, Beasley and
Schumacker (1995) demonstrated a method for
orthogonally partitioning a contingency table using
ANOVA contrast codes.  One thing not pointed out
by Beasley and Schumacker is that in the situation
presented by Kromrey and Hogarty, the contingency
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table can be partitioned in order to test for mean
differences (i.e., HO(µ)).  Suppose a linear polynomial
contrast (i.e., [-2 -1 0 1 2] for 5 categories, [-3 -2 -1 0
1 2 3] for 7 categories) is applied to the categorical
variable.  If this contrast variable is weighted by the
frequencies and then correlated with a dummy code
representing the two groups, the result is identical to
the t-test.  Therefore, with 5 ordered categories and
two groups, the null hypothesis for the linear
polynomial contrast (ψ) of population proportions in
a contingency table,

    HO(ψ): -2π11 -1 π12 +0 π13 +1 π14 +2 π15

     +2π21 +1 π22 +0 π23 -1 π24 -2 π25 = 0 ,
is equivalent to evaluating differences in population
means, HO(µ): µ1 - µ2 = 0.  The Cumulative Logit
model uses a similar approach (Agresti, 1989, p.
294); however, a Logit model instead of a Pearsonian
model is used. Thus, the null hypothesis associated
with the cumulative Logit model (HO(β): β = 0, see p.
73 or Agresti, 1989 for details), although not
identical to HO(µ), is extremely similar in concept.
Differences among these statistical hypotheses will be
discussed later.

When evaluating the performance of these four
procedures, one must consider that any test of
statistical significance has assumptions.  The
assumption that each of the observations are
independent of each other applies to all these
procedures.  Importantly, the independent t-test has
the additional assumptions that the two groups are
sampled from identical (i.e., homogeneous variances),
normal (i.e., skew and kurtosis of zero) populations.
The assumption of homogeneous variances translates
into the notion that the group effect is “additive.”  As
a point of distinction, the Cumulative Logit model
can be interpreted as the multiplicative effect of the
grouping variable on the cumulative odds.  Because
these odds for cumulative probabilities are expressed
in logits, however, this multiplicative effect can be
interpreted as “additive.” The Cumulative Logit model
investigated by Kromrey and Hogarty implies a
uniform association of cumulative odds ratios and is
referred to as the “Proportional Odds” model (Agresti
& Finlay, 1997, p. 601).  Therefore, this Cumulative
Logit Model assumes that the group effect is the
same for each cumulative probability, an assumption
analogous to an additive model (Agresti, 1989, p.
293).  Furthermore, under the conditions imposed by
Kromrey and Hogarty, the Cumulative Logit model
performed similarly to the t-test in terms of Type I
error (e.g., Table 4, p. 74) and power rates (e.g.,
Table 6, p. 78).  Unlike the t-test, however, the
independence of the variables corresponds to the
distribution of the response variable being identical,
not necessarily identical and normal.  Therefore,
similar to the Pearson chi-square and Cliff’s d, which
are relatively “distribution-free,” the Cumulative

Logit model makes no assumption about the shape of
the response variable.  Moreover, like the Pearson
chi-square and Cliff’s d, it can be sensitive to
differences in variance and shape even when
population means are identical. Thus, the Cumulative
Logit model tests a statistical hypothesis that is
different from HO(µ), a topic explicated later.

Kromrey and Hogarty’s results confirmed that the
Pearson chi-square test should not be used with small
sample sizes which accentuates the need for an
alternative procedure such as the Cumulative Logit
model that reduces the hypothesis degrees-of-freedom
in a contingency table analysis.  That aside, it is
interesting that most tests were generally acceptable
for testing the null hypothesis of identical population
distributions, but the t-test gave the most consistent
Type I error rate (see Fig. 1, p. 76).  The Type I error
results (e.g., Table 4, p. 74) also showed that even
when the conditional distribution of the dependent
variable was highly skewed, the t-test was generally
robust to violations of the normality assumption thus
confirming the seminal work of Norton (1952, cited
in Lindquist, 1956) and Boneau (1960).  It should be
noted, however, that under the conditions simulated
the conditional distributions for Y  were identical in
that the population values for variance, skew, and
kurtosis, as well as the population means, were the
same for both groups.  Therefore, the null hypotheses
for all procedures were true.  Thus, because of the
robustness of the t-test to violations of the normality
assumption, the three research questions are
considered the same if the groups have identical
distributions in terms of variance, skew, and kurtosis.
However, one must consider that outside of violating
the normality assumption, the Type I error
simulation conditions favored the parametric t-test
(i.e., identical conditional distributions).  Although
the Type I error results are valid, they are limited in
the sense that there are many situations in which
some of the null hypotheses are false while others are
true.  Moreover, it is difficult to reconcile one
procedure being more “robust” when they have
different assumptions.  That is, a test cannot be
robust to a condition for which it makes no
assumption (Huber, 1991).

The Power results were even more difficult to
interpret because in the conditions simulated, all three
null hypotheses were false but to different extents (see
Table 8, p. 82).  Furthermore, because some tests are
sensitive to different parameters, a researcher may
confirm the “conceptual” research hypothesis for a
variety of reasons.  For example, the Pearson chi-
square test was powerful because it can detect a
variety of differences (i.e., mean, variance, skew,
kurtosis).  By contrast, the t-test detects very specific
differences.  It is designed to detect differences in
means but can be sensitive to differences in variance.
Thus, as compared to evaluating the robustness of
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these tests, it is even more problematic to discern
which is most “powerful” when the null hypotheses
tested are different.  To elaborate, the chi-square null
hypothesis is the most general.  Consequently, if
HO(π) is true, then HO(µ), HO(δ), and HO(β) are also
true.  However, a true HO(µ) does not imply that HO(π)

is true.  Likewise, a true HO(δ) does not imply that
HO(δ) is true.  This is also the case for HO(β).  

Imagine the following tables show the
population probabilities (πk) for each of the K = 5
ordered categories in each group.  Situation One is
identical to the moderately skewed distribution
condition simulated by Kromrey and Hogarty for
assessing Type I error rates.

Situation One
Probabilities π1 π2 π3 π4 π5

Group 1 60 10 10 10 10
Group 2 60 10 10 10 10

In this case all four null hypotheses are true.  By
contrast, imagine the following scenario.

Situation Two
Probabilities π1 π2 π3 π4 π5

Group 1 44 4 4 4 44
Group 2 10 20 40 20 10

In this case µ1 = µ2 = 3, and thus, HO(µ) is true. HO(δ)

and HO(β) are also true.  However, HO(π) is false again
demonstrating that the Pearson chi-square test of
HO(π) is sensitive to parameters other the mean
differences.  It should also be noted that the
homoscedasticity assumption of the t-test is violated
in that σ2

1 = 3.6 and σ2
2 = 1.2. Therefore, the t-test

may not maintain a Type I error rate near the nominal
alpha in this case (i.e., it can be sensitive to
differences in variance).  

In the following scenarios the difference between
the t-test, Cliff’s d, and the Cumulative Logit Model
can be further demonstrated.

Situation Three
Probabilities π1 π2 π3 π4 π5

Group 1 6 34 30 14 16
Group 2 16 14 30 34 6

In this case the two distributions have identical values
for the population mean (µ1 = µ2 = 3), variance (σ2

1 =
σ2

2 = 1.36), and kurtosis (γ4
1 = γ4

2 = -0.80).
Therefore, the null hypothesis for the t-test is true.
The population skews are different (γ3

1 = -0.39, γ3
2 =

0.39).  Furthermore, HO(π), HO(δ), and HO(β) are false.
Importantly, Cliff’s d and the Cumulative Logit
Proportional Odds model can be sensitive to

differences in skew even when population means and
variances are identical.  However, if the means are the
same and both distributions are symmetric, not
necessarily identical (e.g., Situation Two) both HO(δ)

and HO(β) are true (see Vargha & Delaney, 1998, for a
discussion of what they call Stochastic
Homogeneity).  

To further accentuate how Cliff’s ordinal method
and Agresti’s Cumulative Logit model forces us to
“Think Different,” all four population moments are
different (µ1 = 3.0, µ2 = 3.1; σ2

1 = 0.96, σ2
2 = 3.60;

γ3
1 = -0.34, γ3

2 = 0; γ4
1 = -0.55, γ4

2 = -1.98) in
Situation Four, but HO(δ) and HO(β) are true.

Situation Four
Probabilities π1 π2 π3 π4 π5

Group 1 4 36 32 22 6
Group 2 44 4 4 4 44

Also, imagine a situation where Cliff’s d would be
equal to 1.0.  That is, every subject in Group 1 (n1 =
100) has a higher score than every subject in Group 2
(n2 = 100).  Furthermore, suppose that 50 people in
Group 1 responded to category 5 and the other 50
endorsed category 4.  

Situation Five
Probabilities π1 π2 π3 π4 π5

Group 1 0 0 0 50 50
Group 2 0 50 50 0 0

In terms of maintaining a Cliff’s d of 1.0, it does not
matter what pattern of 3, 2, or 1 categories is
endorsed by Group 2.  

Situation Six
Probabilities π1 π2 π3 π4 π5

Group 1 0 0 0 50 50
Group 2 50 0 0 0 0

That is, regardless of whether Group 2 responds to
categories 3 and 2 only (Situation Five) or all of
them endorse category 1 (Situation Six), Cliff’s d
would still be equal to 1.0.  Thus, in this scenario,
the d statistic can be contrasted with the t-test in the
sense that Cliff’s d considers rank position and
dominance rather than average magnitude.  Although
the Cumulative Logit Proportional Odds model is
somewhat sensitive to these differences in magnitude
(Agresti, 1989), in general it seems more similar to
Cliff’s d than to the t-test, at least statistically.

It would be interesting to see how the
Cumulative Logit model performs empirically under
the various conditions elaborated, especially with
between group differences in variance and skew (e.g.,
Situations Two through Four).  Agresti (1989, p.
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294) indicates that the independence of X  and Y  (i.e.,
HO(β) is true) corresponds to the distribution of the
ordered categorical response (Y) being the same for
each level of X (the grouping variable).  In Situation
Two, however, the β parameter is zero although the
distributions of the ordered categorical responses are
not identical for both groups which presents a
violation of the Proportional Odds model.  Therefore,
it would also be interesting to determine whether the
Cumulative Logit model performs more similar to
Cliff’s d, the Pearson chi-square, or to the t-test under
such conditions.  

Because of these statistical issues, the conceptual
differences, and other previously elaborated
arguments, Cliff (1996) contends that δ (and Q for
OMR) are NOT just surrogates for OLS solutions;
they are parameters worth estimating in their own
right.  From this perspective, Cliff’s d, Kendall’s tau,
and OMR make parametric use of “nonparametric”
statistics.  For such statistical procedures, Bradley
(1968) suggested the term “distribution-free,” while
Cliff prefers the term “ordinal methods.”  

Bradley (1968) and Zimmerman (1996) have
pointed out that much of the confusion concerning
the use of nonparametric methods lies in the
treatment of nonparametric tests as “different” in most
textbooks when actually many nonparametric tests are
often algebraic reduction of OLS parametric tests
performed on ranks (or signs or a dominance matrix).
Under the basic assumptions of parametric tests,
ranks have known means and variances.  This allows
the parametric formula to simplify which in turn
makes it seem different.  However, many of the
problems associated with the original data can be
inherited by the ranks (Zimmerman, 1996, 1998).
Therefore, they may not be as “robust” as commonly
believed. It is also true that the ordinal methods (i.e.,
Cliff’s d, OMR) are OLS solutions for the dominance
matrix (see Long, p. 46).  Yet, the dominance matrix
is a transformation that partially changes the meaning
of the score.  Therefore, the associated hypotheses are
different both statistically and conceptually.  Given
its statistical similarity to Cliff’s d , the same may
also be said for the Cumulative Logit model.

The differences among the statistical hypotheses
of parametric and alternative procedures has been seen
as a drawback to employing “nonparametric”
methods.  Yet, Cliff (1996) argues that the
hypotheses tested by alternative methods are often
more in line with what behavioral researchers want to
know from their data as compared to a null
hypothesis of equal means.  The point is that mean
differences may not always be of interest (Olejnik,
1987).  For example, in a randomized experiment if
differences in variances occur then, an ANOVA model
(t-test) may be inappropriate because a non-additive
effect is suggested.  That is, differences in variance
indicate that the treatment did something to change

the variability and thus a test of means may not be
entirely appropriate.  Furthermore, heterogeneous
variances may also indicate some non-additive,
interaction effect that has not been examined.  This
emphasizes the importance of data screening, data
exploration, descriptive statistics, and graphical
display in order to evaluate “What the data are trying
to tell us.”  Moreover, instead of employing
parametric statistical tests ritualistically, perhaps
researchers should “Think Different” and perform
alternative procedures.  Again, the conclusions may
be similar conceptually.  Yet, there is the distinct
possibility that the results from an alternative
procedure may force investigators to “Think
Different” about their research questions.
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