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This note presents the simulated annealing heuristic search procedure as an alternative variable selection method 
for use in multiple regression analysis. The procedure performs better than traditionally used model selection 
techni ues. 

D rezner, Marcoulides and Salhi (1999) 
recently illustrated the heuristic Tabu 
search procedure as an alternative variable 

selection method for use in multiple regression 
analysis. The Tahu search procedure was compared 
to traditionally used regression analysis procedures 
(e.g., maximum R2 and stepwise selection). The 
results of the study indicated the superiority of the 
Tabu search procedure over other model selection 
procedures in multiple regression analysis and 
comparability to the all-possible regression that may 
require prohibitive computer time. Using simulated 
data sets, Tabu search found the optimal solutions 
for all test problems examined without any 
computational difficulty. 

The purpose of this note is to present the 
simulated annealing search procedure, which is a 
different heuristic search technique, for model 
selection in multiple regression analysis. To examine 
the capabilities of the simulated annealing search 
procedure, the same simulated data sets used by 
Drezner et al. (1999) were analyzed. 

Simulated Annealing for Model Selection 
Consider a multiple linear regression model 

with n observations and k independent variables. 
The most commonly used criterion to help in 
choosing between alternative equations in multiple 
regression is the R2 (adjusted or unadjusted), the F­
ratio based on R2, along with the statistical 
significance of the F-ratio (Schumacker, 1994). 
Obviously, this criterion could easily be replaced by 
any other selection from those available in the 
literature. Based upon the selected criterion, the 
objective is to find the subset of independent 
variables that yields the lowest significance level 
among all possible subsets. For example, with 26 
independent variables 2'6 = 67,108,864 possible 
subsets must be calculated along with their 
significance levels. As such, it should be obvious that 
a very large number of equations need to be 
examined even when the number of independent 
variables is relatively small. 
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Simulated annealing (SA) is ideally suited for 
solving all types of large-scale opt1m1zation 
problems (Kirkpatrick, Gelat, & Vecchi, 1983). The 
process simulates the annealing of metals by starting 
with a high temperature and cooling the metal off. 
The process of simulated annealing has been 
successfully used for the solution of numerous 
optimization problems in the field of operations 
research (see Salhi, 1998 for a review and detailed 
description of the method). 

The general simulated annealing (SA) approach 
is described below. Following the general 
description, we present the particular parameters 
used to solve the multiple regression model selection 
issue examined in this note. A FORTRAN coded 
computer program for model selection in multiple 
regression is available upon request from the 
authors. 

The General SA Approach 
I. A starting solution is selected. 
2. A starting temperature T0 is selected. 

( T, is the temperature in iteration i.) 

3. The following iterations are repeated N times. 
4. At iteration i: 

a. A perturbation of the current selected set is 
randomly generated. 

b. The difference between the values of the 
objective function of the current set and the 
perturbed set, !!.f , is calculated. 

c. If the perturbation results in a better 
objective function, it is accepted and the set of 
selected variables updated. 

d. If the perturbation results 

objective function, the quantity 

calculated. 

in a worse 

8=o/r, is 

e. The perturbed set is accepted with a 

probability of e -c. Otherwise, the selected set 
remains unchanged and the perturbation ignored. 

f. The temperature T, is changed to T,+i . 
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Specific Parameters needed for Multiple Regression 
I. The empty set was selected as a slatting solution 

(i.e., no independent vatiables). 
2. The starting temperature was set to T0 = I This 

means that if the perturbation doubles the 
significance level, it is accepted 37% of the 
time. 

3. A perturbation of the current selected set is 
created by randomly selecting an independent 
vatiable. If the vatiable is in the current set, it is 
moved out, and if it is not in the current set it is 
put in. 

4. The number of iterations was set to N= I 0,000. 
5. Since our objective function is a significance 

level, which vaties a lot among problems, we 
replaced the change in the objective function 
A/ with the relative change in the objective 

function "½ where f is the value of the 

objective function of the current set. 
6. The last selected set was selected as the solution. 

One may keep the best solution encountered 
throughout the iterations as the solution. 

7. The success of the simulated annealing 
procedure depends on the selection of the 
starting temperature T0, the way the temperature 
is lowered, and the number of iterations. We 
kept the temperature constant for blocks of 100 
iterations each. When a block of 100 iteration is 
completed, the temperature is multiplied by the 
value 0.95. One hundred blocks of 100 iterations 
each were executed for a total of 10,000 
iterations. This lead to a final temperature of 
0.006. At the end of the procedure, a 
deterioration in the significance level by a factor 
of 1.05 is accepted with probability of only 
0.0002. 

Computational Results 
The simulated annealing procedure was tested 

on the simulated data sets exatnined by Drezner et al 
(l 999). The data sets used had 50 observations and k 
vatiables ranging in 17 s k , 26. The data for the 
smallest problem with k = I 7 independent vatiables 
and n = 50 are presented in Table I (the remaining 
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data sets are available upon request from the 
authors). Using this data set, the optimal subset of 
independent vatiables includes #2, #6, #12, and #17. 
It is important to note that the proposed simulated 
annealing procedure found this optimal solution. In 
contrast, stepwise regression prcxluced the set #I, #4, 
#5, #7, #12, #13, #17 (when the entry selection level 
was set to 0.15), the set #I, #5, #12, #17 (when the 
entry selection level was set to 0.05), whereas 
maximum R2 found the set #2, #5, #7, #1, #13, #17. 
Interestingly, vatiable #6, which is in the optimal 
group, was never identified by any of the other 
procedures, and vatiable #5, which is not in the 
optimal group, was included by the other procedures. 
Table 2 presents the results of the comparison 
between the SA procedure and the maximum R2 and 
stepwise procedures. As can be seen in Table 2, the 
SA procedure found the best subset for all the data 
sets examined. In contrast, the other procedures were 
not very systematic in selecting the optimal solution. 
It is important to note that the results obtained using 
the simulated annealing procedure were identical to 
those obtained by Drezner et al. ( I 999) using their 
proposed Tabu seatch procedure which is a different 
local seatch procedure. 
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Table I. Data for the 17 Variable Problem 

x1 x, x, x, x, x, x, x, x, X10 X11 X12 x1, X14 X15 X16 X17 y 

10 12 11 22 25 29 33 34 32 26 28 33 23 21 19 25 31 182 
22 22 22 16 20 16 15 17 12 17 12 14 12 15 15 15 20 129 
35 35 33 36 38 28 28 25 22 26 24 17 17 14 15 18 27 188 
41 42 30 31 23 19 19 21 28 33 36 27 27 21 17 20 21 170 
12 13 14 16 18 27 32 25 19 22 18 27 19 19 21 28 33 167 
31 36 34 24 27 20 26 19 17 22 27 20 16 20 22 23 27 149 
0 1 11 7 15 21 19 15 20 18 13 23 25 30 24 23 28 125 

27 24 20 22 17 24 29 33 35 36 27 21 18 18 27 23 16 130 
10 19 15 25 24 30 21 24 28 23 28 25 24 25 18 13 19 135 
29 21 26 31 32 23 17 14 18 27 19 21 18 23 18 26 31 159 
4 14 13 11 16 24 21 19 27 22 27 31 25 18 20 18 14 151 

21 15 15 18 20 28 29 29 21 21 29 28 23 18 20 27 20 141 
46 32 25 20 21 23 26 19 13 23 28 31 23 30 27 33 28 181 
10 16 21 14 20 17 20 18 19 15 20 25 20 14 10 20 22 132 
37 36 36 32 29 23 25 27 19 25 19 23 27 19 24 20 25 180 
41 38 40 35 25 19 19 18 25 17 26 28 29 27 19 20 25 164 
13 18 16 25 18 20 16 17 23 19 14 21 24 25 22 15 21 155 
27 28 26 27 33 33 33 25 19 24 21 15 17 26 31 28 24 156 
39 29 25 19 28 23 27 25 28 26 29 27 29 29 34 37 35 195 
37 36 26 22 30 30 30 31 30 35 34 24 18 17 19 14 17 176 
4 13 18 19 27 20 17 12 21 19 18 25 24 29 21 14 22 149 

10 8 11 11 16 22 21 23 30 30 21 26 25 30 23 21 18 158 
14 10 19 15 23 26 20 27 30 33 36 31 27 28 23 18 22 143 
31 27 22 23 23 21 16 15 19 22 29 30 30 24 25 31 25 184 
47 41 40 34 32 28 32 25 19 15 19 21 20 24 29 23 30 206 
34 38 35 33 30 28 22 18 21 16 24 19 20 15 24 31 31 186 
34 34 34 38 35 34 25 20 17 17 15 11 21 16 25 31 23 193 
21 20 18 16 24 28 31 25 29 21 20 24 18 22 27 20 25 146 
22 16 16 15 24 27 27 32 28 28 25 23 24 25 28 20 27 157 
14 24 27 21 21 19 21 21 21 28 29 23 16 16 19 20 26 134 
12 21 17 14 20 17 12 13 12 9 6 8 15 21 19 15 24 98 
3 5 14 12 19 19 13 13 22 27 31 33 27 32 25 22 29 143 

24 27 21 22 29 20 18 16 16 13 20 19 27 23 18 19 22 156 
47 40 39 35 27 20 26 28 29 31 24 17 13 16 22 17 26 186 
39 30 23 19 18 23 26 30 21 18 27 31 26 24 21 23 20 151 
5 16 24 24 21 23 26 32 26 21 21 16 14 21 23 24 22 146 

20 22 18 14 20 21 26 28 32 28 33 34 27 30 25 28 29 194 
13 10 13 16 24 19 27 22 30 34 27 18 21 17 20 25 24 146 
28 32 35 35 35 29 30 29 34 33 27 21 17 24 24 28 28 192 
32 37 34 31 22 16 18 23 23 16 22 25 30 35 34 32 25 172 
49 49 35 37 37 27 27 27 33 33 32 33 23 19 25 22 26 206 
34 36 29 30 26 27 32 25 19 19 24 29 32 32 27 33 24 182 
35 28 24 18 18 20 22 16 11 14 20 17 12 14 17 15 24 155 
IO 10 11 12 9 10 7 12 16 16 12 9 II 16 24 26 21 90 
19 18 24 24 31 32 22 28 31 29 30 28 23 27 20 19 15 152 
8 17 21 26 18 13 20 28 30 31 24 24 18 26 21 17 25 140 
1 8 14 24 30 33 33 26 32 36 31 25 22 21 27 32 28 151 

15 21 22 16 22 27 29 22 20 27 22 26 30 31 25 21 17 165 
48 45 35 29 26 21 26 24 27 24 25 18 23 21 26 22 23 173 
3 2 5 13 15 20 24 20 19 21 20 14 11 17 20 16 13 98 
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Table 2. Comparison of Simulated Annealing to Other Regression Procedures 

Number of Variables in SA Stepwise Procednre Max R2 Procednre 

Variables Optimal Solution Procednre Include Exclude Include Exclude 

17 2. 6, 12, 17 identical 1,4,5,7, 2,6 5,7,13 6 
13 

18 I, 6, 12, 13, 16, 17 identical 7 - 7 -

19 2, 6, 12, 13, 17 identical I - 8,10,15 -

20 I, 5, 7, 12, 13, 16, identical 4 - 4,8,15 
17 

21 I, 6, 12, 13, 17, 18 identical identical identical 

22 I, 4, 6, 7, 9, 13, 17, identical identical identical 
18,22 

23 I, 2, 3, 6, 12, 13, identical 4 - 4 -
17, 22 

1,4,5,6,9,11,12, 
24 13, 16, 18,22,24 identical identical identical 

1, 3, 4, 6, 8, 10, 5,18,23 3,4,8,10, 2,7 I 
25 12, 13, 15, 17, 19, identical 15, 19 

22,25 

], 3, 6, 12, 13, 16, 5 - 8 -
26 17, I 8, 20, 22, 24, identical 

26 

Note: The term 'identical' indicates that the final set of variables selected by that procedure is the same as the 
optimal set. The columns headed by 'Include' indicate that the given procedure includes variables not in the 
optimal solution, and those headed by 'Exclude' indicate that the given procedure excludes variables which are 
members of the optimal set. 
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Check Out MLRV's New Website 
http://www.coe.unt.edu/schumacker/mlrv .htm 
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