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Every statistic requires some assumptions. This paper examines some of the assumptions in regression-style 
analyses of the stability of self-esteem, and inspects the consequences of some of the assumptions one makes with 
regard to measurement error and the distribution of variables. 

E very statistic requires some assumptions. 
And to the extent the assumptions are not 
met, the statistics calculated will vary 

consequently. Robustness studies can estimate to 
some extent those consequences by systematically 
varying the assumptions against known but arbitrary 
parameters. In most situations, however, one is 
faced with sample data with unknown parameters, 
with assumptions met with varying degrees of 
accuracy, and with unknown inferential 
consequences. 

Background 
One of the most frequently studied constructs in 

psychology is self-esteem. It has most often been 
measured with some form of Rosenberg's (1965) 
instrument, in which respondents rate themselves on 
a Likert-type scale from strongly disagree to strongly 
agree in response to items such as "I feel I am a 
person of worth, on an equal plane with others." 

Just this question was asked in the National 
Longitudinal Study (NLS) of the High School Class 
of 1972 (Riccobono, Henderson, Burkheimer, Place 
& Levinsohn, 1981 ), which was designed to provide 
data on the development of educational, vocational, 
and personal aspects of the lives of adolescents as 
they made the transition from high school to the 
adult world. Included among the many items of data 
collected for over 20,000 respondents were four self­
esteem items, including the one quoted above. The 
analysis reported here was restricted by listwise 
deletion of missing data to 3,51 I U.S. white males 
who answered these items completely in 1972 during 
their senior year of high school and seven years later 
in a 1979 follow-up study, along with information 
provided about their postsecondary educational 
attainment. 

The apparently simple question to be addressed 
here is the stability of self-esteem for U.S. white 
males in the seven years following high school. Do 
those who exhibit high (or low) self-esteem in 1972 
continue to do so seven years later? 

One approach toward addressing such a 
question would be to simply regress the 1979 
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responses on their 1972 counterparts and thus 
estimate the average rate of change of self-esteem in 
metric or standardized form (more complete 
information is conveyed, of course, by reporting 
both). The closer the estimated coefficient comes to 
unity, the greater the agreement between 1972 and 
1979 responses. 

However, such a regression approach requires 
certain assumptions that may or may not be met in 
varying degrees. Indeed, any analytic approach 
toward estimating the stability of self-esteem will 
involve certain assumptions, and it is the purpose of 
this short paper to briefly touch upon these as they 
affect the motivating question about the stability of 
self-esteem. The purpose is not to find a definitive 
answer, but rather to inspect the consequences of the 
assumptions one adopts in seeking an answer. 

Regression Examples 
Take the regression of I 979 responses to "I feel I 

am a person of worth ... " on the 1972 responses to the 
same question. For this sample, the resulting 
regression equation was estimated to be: 

S2B =a+ .150S1B+ e 

(~=.160;R2=.026) (.016) (I) 

in which S2B stands for self-esteem measured at 
time 2 on item B ( of four self-esteem items included 
in the NLS), and S 1B stands for the same item at 
time I; "a" is an intercept or constant; .150 is the 
estimated metric regression coefficient and its 
standard error is shown below it in parentheses; "e" 

is the error of prediction or residual; ~ = .160 is the 

standardized regression coefficient, and R2 = .026 is 
the coefficient of determination. 

The same equation can be shown 
diagrammatically in Figure 1-A, in which the arrow 
from S 1B to S2B indicates that S 1B is thought to be 
a cause of, or to cause changes in, S2B; and the short 
disconnected arrow represents all sources of 
variation in S2B not explained by, and not correlated 
with, SIB. 
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Figure 1. Models of the Stability of Self-Esteem 
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These results indicate that a one-unit change in self­
esteem in 1972 may be expected to produce an 
average change of .150 units of self-esteem reported 
rn 1979, and that less than 3 percent of the variation 
in self-esteem in I 979 is explained by self-esteem in 
1972. The remaining 97 percent of the variation in 
self-esteem in 1979 is due to all other unmeasured 
(in this equation) sources of variation, including 
random changes, measurement error in self-esteem 
deviations from linearity, and all other unspecified 
causes of self-esteem in 1979 uncorrelated with self­
esteem in I 972. 

The statement that a one-unit change in self­
esteem in I 972 may be expected to produce an 
average change of .150 units of self-esteem reported 
in 1979, however, is based on an implicit assumption 
about the accuracy with which self-esteem was 
measured. As pointed out, for example, some time 
ago (Costner, 1969; Werts, Rock, Linn, & Jiireskog, 
1976; Wolfle, 1979) and more recently (Rigdon, 
1994 ), the regression approach assumes, in this 
instance, that self-esteem was measured perfectly' 
More specifically, it assumes that SIB was measured 
with reliability equal to 1.0. But as Schumacker and 
Lomax (1996, p. 38) have pointed out, the effect of 
unreliable variables on statistics can sometimes have 
dramatic effects. 

Adding a measurement component to the 
analysis could be shown diagrammatically in Figure 
1-B, in which Selfl is considered to be a so-called 
latent, unmeasured variable, thought to be a cause of 
SIB, the manifestly measured variable. In the 
previous equation, the coefficient thought to relate 
Self! to S 1B would be 1.0, and the residual of S 1B 
(or, more accurately, the residual variance) would be 
zero, indicating no error of measurement. In this 
case, then, Figures 1-A and 1-B would be identical. 

What if we relax the assumption of perfect 
measurement of the independent variable? What if 
we assume the reliability of the measurement of self­
esteem in 1972 was less than unity? We can do this. 
Let us assume the reliability was 0. 70. (This is not 
completely arbitrary, and is approximated from a 
confirmatory factor analysis with these data of the 
four self-esteem items included in the NLS.) 

Assuming that the reliability of S 1B was r xx = 

.70 would imply that the error variance for SIB 
would be (I - rxxl(variance of SIB)= (I - .70)(.315) 

= .0945 (see foreskog & Sorbom, 1993, p. 37). The 
model thus implied in Figure 1-B was estimated with 
LISREL 8.30 (Jiireskog & Sorbom, 1993) using 
maximum likelihood estimates derived from the 
variances and covariances for the data described 
above. 

Multiple Linear Regression Viewpoints, 1999, Vol. 25(2) 

Assumptions in Regression Analyses 

The resulting (structural portion in 
terminology) equation was estimated to be: 

S2B = a + .215 Selfl + e 

( ~ = .192; R2 = .037) (.022) 

LISREL 

(2) 

In this case, assuming S2B was regressed on S 1B 
corrected for measurement error (i.e., Selfl), one 
would expect that a one-unit change in self-esteem 
(Selfl) in 1972 would be expected to produce a 
change of .215 units of self-esteem in 1979 (S2B) 
with an R-square of .037. 

That errors in the independent variable reduce 
the coefficient in a bivariate regression is well 
known (e.g., Walker & Lev, 1953, p. 305). As seen 
here, the uncorrected regression coefficient of .150 
underestimates the corrected (by measurement error) 
estimate of .215 by 30%. The converse is not true -
errors in the dependent variable have no effect on 
ordinary least squares regression estimates, since 
such errors are absorbed as ordinary disturbances of 
prediction (Goldberger, 1964, p. 284). 

The extension of this example to the case of two 
or more explanatory variables introduces unknowns 
into the system of equations that involve varying 
degrees of measurement error and multicollinearity 
among the predictors (Narnboodiri, Carter & 
Blalock, 1975, pp. 541.ff). In the present case, for 
example, one might expect that additional years of 
formal postsecondary education from 1972 to 1979 
(see, e.g., Pascarella & Terenzini, 1991, pp. 162.ff) 
might partially mediate (e.g., Baron & Kenny, 1986) 
the effect of self-esteem in 1972 on self-esteem in 
1979, or equivalently said, that a part of the causal 
relationship of self-esteem in 1972 and 1979 occurs 
indirectly (e.g., Duncan, 1975) through the 
intervening accumulation of additional years of 
education. 

Yet the effects of measurement error on such 
estimates is not necessarily predictable a priori. In 
this instance, consider the model shown in Figure 
1-C, in which S2B is seen to be caused by Selfl and 
Educ, a measure of additional years of formal 
postsecondary education. Initially, the variable Educ 
is thought to be a latent variable measured without 
error, as is Self!. That is, initially Educ and 
EDATT are thought to be equivalent in which the 
error of EDA TT is zero; similarly, Selfl and S 1B are 
thought to be equivalent. The resulting set of two 
equations was estimated to be: 

Educ = a + .204 Selfl + e 

(R2 = .007) (.040) 
(3) 

S2B = a + .141 Self!+ .044 Educ+ e 

(R2 = .038) (.016) (.006) 
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The difference in the estimated stability of .150 of 
self-esteem in Equation (I) and that of .141 in 
Equation (3) represents the indirect effect of 1972 
self-esteem through educational attainment, namely 
(.204)(.044) = .009. In standard form, the same set 
of equations would be: 

Educ= .204 Self! (4) 
S2B =.151 Self! +.113Educ 

If we no longer assume perfect measurement, 
the results are not as tractable. If we assume, as 
before, that self-esteem in 1972 was measured with 
reliability of . 70, and that educational attainment 
was measured with reliability of .85, then the model 
shown in Figure 1-C can be re-estimated by 
specifying that the errors of S 1B and EDA IT, 
respectively, are not zero, but rather (I - .70)(.315) = 
. 0945 for SIB and (I - .85)(1.818) = .2727 for 
EDA IT. The resulting set of two equations was 
estimated to be: 

Educ = a + .295 Selfl + e 

(R2 = .012) (.058) 
(5) 

S2B = a + .203 Selfl + .049 Educ+ e 

(R2 = .051) (.023) (.008) 

and in standard form: 
Educ= .Ill Self! (6) 
S2B = .180 Self!+ .117 Educ 

These results are not easily related to those 
previously reported, except by their relative 
magnitudes, due to variations in reliabilities and 
multicollinearity ( except to note its near absence in 
this instance), and have led many researchers to 
assume, for example, that "all instrumental variables 
are measured without error" (Wonnacott & 
Wonnacott, 1970, p. 371). Another approach (not 
pursued here) would be to construct overidentified 
models that could allow the estimation of, and 
correction for, random and systematic measurement 
error in variables (e.g., Wolfie, 1982). 

Returning to the consideration of the stability of 
self-esteem without an intervening variable, with 
more information than just the single covariance of 
responses to the self-esteem items in I 972 and 1979 
(and an assumed estimate of reliability of self-esteem 
in I 972 imposed on the model) one could estimate 
both the reliabilities of multiple self-esteem items 
and the stability of the latent estimates of self-esteem 
in 1972 and 1979. This can be accomplished by 
taking advantage of responses to multiple self-esteem 
items at the two time periods. Another such stem 
item was "I am able to do things as well as most 
other people." If we incorporate that item into the 
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analysis, we could represent it appropriately as 
shown in Figure 1-D. 

Figure 1-D specifies that a latent self-esteem 
variable, Selfl, is the cause of two manifest items in 
the 1972 survey, SIB and SIC; similarly, Self2 is 
seen to be the cause of two identically worded items 
in the 1979 survey, S2B and S2C. In order to 
establish a metric for the latent variables, the slopes 
relating Selfl to S 1B and Self2 to S2B were set to 
unity. The other two measurement parameter slopes 
were free to be estimated, as was the parameter 
relating Selfl to Self2. There were also two 
variances of latent variables to be estimated, as well 
as four error variances for the four manifest 
variables. With ten variances and covariances 
among the four manifest variables, this model is 
actually overidentified with one degree of freedom . 
Variations of this model have appeared before, some 
frequently with standardized variables, as early as 
some of Wright's (1934) work, and early work in the 
literature of path analysis in sociology (Siegel & 
Hodge, I 968). In standardized form, with minor 
restrictions, this is, of course, Spearman's (1907) 
correction for attenuation. It is also the model 
introduced by Costner (1969, Figure 4) that came to 
be known as the walking dog model, because of the 
visual appearance of the diagram. 

This model (shown in Figure 1-D), unlike that 
of the model implied by Figure 1-A, makes no a 
priori assumption of error-free measurement. The 
estimate of the stability of self-esteem is thus 
adjusted for measurement error. The resulting 
structural equation was estimated to be: 

Self2 = a + .291 Self! + e 

( ~ = .255; R2 = .065) (.029) (7) 

This result was obtained with LISREL 8.30 
(Joreskog & Sorbom, 1993) using maximum­
likelihood estimates from the covariance matrix, 
resulting in a model that exhibited a likelihood-ratio 
chi-square of 10.54 with I degree of freedom and a 
root mean square error of approximation (RMSEA; 
Steigler & Lind, 1980) of .052, which is numerically 
less than the cutoff value close to .06 recommended 
by Hu and Bentler (1999). 

In substantive terms, then, having relaxed the 
constricting assumption of error-free measurement of 
self-esteem, one would expect that a one-unit change 
in self-esteem in I 972 (Selfl) would be expected to 
produce a change of .291 units of self-esteem in 
1979 (Se!f2), or .255 standard deviations, with an 
R-square of .065. 

This latest estimate, however, is itself not free of 
assumptions of some kind. In particular, by 
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estimating the associat10ns by the method of 
maximum likelihood, one assumes that the manifest 
variables are distributed multivariate normally, and 
as we shall see, this is an unrealistic assumption to 
make with regard to the measurement of self-esteem. 
For example, the NLS respondents were asked to 
respond to "I feel I am a person of worth, on an 
equal plane with others," on a 4-point scale, to which 
they could respond (I) agree strongly, (2) agree, (3) 
disagree, or ( 4) disagree strongly. (For this analysis, 
the items were reverse coded so that higher scores 
indicated higher self-esteem.) But these variables 
are highly skewed and kurtotic; for example, the 
estimate of skewness was -.377 (z = -4.66) for S2B 
and the estimate of kurtosis was -1.237 (z = -14.96), 
as calculated by PREUS 2.30. Indeed, for these 
subjects no one agreed strongly with this statement! 
While non-normal bivariate distributions can occur 
with normal marginals (Kowalski, 1973), it may be 
said with near certainty that the non-normal 
univariate distributions seen here insure non-normal 
multivariate distributions. 

Possible Solutions 
A new (actually, a renewed) feature in PREUS 

2.30 (Ji.ireskog, Sorbom, du Toit & du Toil, 1999, 
pp. I 62ff) provides one possible solution to this 
violation of the assumption of non-normality, 
namely to normalize the variables before analysis. 
The idea would be to substitute normal scores as a 
continuous variable rather than ordinal scores, but it 
is doubtful that this tact would work in general and 
simply does not work in the present case since the 
ordinal and the so..called normalized variable are 
correlationally equivalent. 

A more useful approach would be to treat self­
esteem scores as if they were ordinal and censored 
measures of latent, continuous normal distributions. 
Diagrammatically, this may be shown in Figure 1-E, 

in which the y * variables represent unmeasured 
estimates of continuous normal variables thought to 
be caused by latent self-esteem factors, and thought 
in turn to underlie the ordinally, manifestly 
measured self-esteem scores (Muthen, 1984; 
foreskog, 1990, 1994). 

Estimates of the moment matrix of the 

associations among the four y * variables may be 
obtained with the use of polychoric correlations 
among the four variables, a procedure that is 
available in PREUS 2.30 (foreskog & Sorbom, 
1996). We are assuming in this case that there exist 

normally distributed, continuous y* variables that 
underlie the ordinal self-esteem variables; 

furthermore, the associations among these four y * 
variables can be estimated, but their metric is 
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unknown, hence their associations are measured in 
correlational terms, specifically with polychoric 
correlations, where an underlying bivariate normal 
distribution is assumed for each pair. The 

assumption of bivariate normality among the y* 
variables may be tested with a chi-square goodness­
of-fit test implemented in PREUS; for these 
variables even this assumptions is questionable since 
all such bivariate tests should be rejected at the .01 
level. 

In order to estimate the structure implied by 
Figure 1-E for these variables, a general fit function 
called "asymptotically distribution free" by Browne 
(1982, 1984) or "weighted least squares" by Joreskog 
and Sorbom (I 996) was employed. This procedure 
requires a weight matrix for the polychoric 
correlations obtained from PREUS 2.30. As a 
practical matter, this weight matrix increases rapidly 
in size as the number of variables increase. In this 
instance, we have 
k = 4 variables with p = k(k + 1)/2 = IO unique 
moments, and the weight matrix is of the order p x p 
= 100 with p(p + 1)/2 = 55 unique elements. As a 
further practical matter, to estimate moments of the 
fourth order with reasonable precision requires very 
large samples (Joreskog & Sorbom, I 996, p. 28). 

With these caveats in mind, estimates for the 
model implied by Figure 1-E were obtained with 
PREUS 2.30 and USREL 8.30. The resulting 
structural equation in standardized form was 
estimated to be: 

Self2 = a + .292 Self! + e 

(R2 = .085) (.031) (8) 

The full model exhibited a likelihood-ratio chi­
square of 8.58 with I degree of freedom and an 
RMSEA of .046. These results can be compared to 
the standardized estimate shown in Equation (7), 
and we see that the estimated standardized stability 
of self-esteem is now estimated to be .292 rather than 
.255. Which is to say, by specifying a model with 
selt~esteem at two points in time, with two fallible 
indicators each, all distributed bivariate normally, 
but measured with censored ordinal variables, then 
the standardized estimate of stability is .292 with an 
R-square of .085. 

Conclusions and Implications 
That last sentence may be difficult to read with 

all of its clauses, but it represents most of the travails 
that got us to this point. We began by estimating the 
stability of self-esteem by assuming it was measured 
perfectly. That assumption was relaxed a bit by 
imposing a degree of measurement error on self­
esteem as measured in I 972. With more than one 
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predictor, the estimated stability of self-esteem 
changes, and changes yet again depending on 
assumptions of measurement error imposed on the 
model. If multiple indicators of self-esteem are 
brought to the analysis, one no longer must assume 
lack of measurement error, or impose arbitrarily 
estimated levels of measurement error, but can 
estimate a model incorporating estimates of both the 
measurement properties and stability of self-esteem. 
But those estimates were purchased at the cost of 
distributional assumptions among the manifest 
variables. If the manifest variables cannot be 
assumed to be normally distributed, perhaps their 
underlying distributions can be, but the data­
collection costs to obtain such estimates can be high. 

Thus, the estimate of the stability of self-esteem 
for a sample of high school males depends on the 
assumptions one is willing to make about the 
variables involved. In a simulation study, one would 
start with known parameters and examine on the 
average how estimates deviated as a consequence of 
the effects of varying assumptions. In the present 
case, however, the parameters are unknown and we 
simply do not know if the correct (standardized) 
measure of stability is .160, .192, .151, .180, .255, 
.292, or some other value. It depends on the 
assumptions one makes, and is willing to defend. I 
don't think this is a reason to quit in frustration as I 
perceive some critics of regression-style structural 
modeling would have us do. Rather, I think it 
merely requires that one acknowledges the 
assumptions involved in any statistical application, 
and addresses them appropriately in the design of the 
research. 
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