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The typical method of analyzing categorical variables is to use the chi-square statistic. However, with more than 
two categorical variables, simultaneous examination of main and interaction effects is not feasible. The logit 
regression technique permits analysis of categorical variables, the modeling of main and interaction effects, control 
of Type I error, and distribution freer assumptions. This study investigated parsimonious model fit related to the 
selection of the best set of categorical predictor variables. Findings indicated that the various variable selection 
criteria (L2

, z, log-odds ratio, R2
L, model variance, and L\.C2

) provided different results. Order of variable entry 
also produced significantly different results. The use of a Tabu search procedure and L\.C2 criteria is recommended 
to detennine the best set of categorical independent predictor variables in logit regression. 

L ogit regression is a special case of log linear 
regression where both the dependent and 
independent variables are categorical in 

nature (Klienbaum, 1992). It offers distinct 
advantages over the chi-square method for analysis 
of categorical variables. Some of these advantages 
are: (1) control of Type I error rates, (2) modeling of 
interaction effects, and (3) distribution freer 
assumptions. The main objective of this study was to 
investigate the selection of the best set of categorical 
predictor variables in the presence of main and 
interaction effects. In logit modeling, natural log 
odds of the frequencies are computed which allow 
different models and different model parameters to 
be compared given the additive nature of the L2 

component for each model. 
Logit regression is affected by sample size, 

outliers and inadequate expected frequencies in 
categorical cells (Demaris, 1992). This often occurs 
with too many categorical variables and small 
sample sizes, hence inadequate cell sizes. In has 
been understood that cell size should not have fewer 
than n = 5 (Hinkle, McLaughlin, & Austin, 1998; 
Kennedy, 1992). Another rule of thumb indicated 
that total sample size should be at least 4 to S times 
the number of cells in the model (Feinberg, 1981). 
Marasculio and Busk (I 987) suggested that low 
expectancy in cells, possibly due to rare events, 
should be sampled until adequately filled, and if 
outliers are suspected, residuals be examined. 
Collapsing categories is also a reasonable option. 

A theoretical logit regression model is generally 
postulated (null model or base model). A common 
practice is then to create one or more hierarchical 
mcx:lels where each new mcx:lel contains parameters 
of the previous model, plus a hypothesized new 
parameter. The theoretical model can be tested 
beginning with a null model and adding parameters, 
or with a saturated model deleting parameters. The 
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best model is selected based on the likelihood ratio 
statistic, L2

. If the likelihood ratio statistic is 
significant, then the observed frequencies do not fit 
the expected frequencies, or in other terms, the data 
doesn't fit the theoretical model (hypothesized logit 
regression equation). Several logit regression 
models may "fit" equally well. In this case, the non­
significant likelihood ratio statistics' for the 
competing models are subtracted yielding a L2 

difference test of model fit analogous to the change 
in R2 in regression analysis. If the model change is 
not significant, then the most parsimonious model is 
typically chosen. Identification of significant 
variable parameters in the model is assessed by 
partitioning the L2 into its additive components 
relative to the specified model. Post-hoc procedures 
generally evaluate fit of the data to individual cells 
based on standardized residuals or variance 
accounted for in the model. 

Various criteria can be used to determine the 
predictors to include in a logit regression model: 

1. Pearson chi-square or likelihood-ratio x' 
2. z-test of parameters in model 
3. log-odds ratio 
4. Predictive efficiency (R2 type measure) 
5. L\.C2 (difference between -2logL values for 

null and model) 
The traditional Pearson chi-square and the 
likelihood-ratio chi-square with (/-1)(1-1) degrees of 
freedom are similar because, as sample size becomes 
larger, the sampling distributions of both statistics 
become asymptotically chi-squared. The likelihood­
ratio chi-square is computed as: 

L2 = 2:E:Enulog[n,/ m,J; 
where n,j = observed cell frequency, mu = expected 
cell frequency (Demaris, 1992, p. 4) .. 

The parameter estimates calculated using 
maximum likelihood estimation possess asymptotic 
properties. As sample size increases, the parameter 
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estimates become unbiased and consistent with 
population parameters. The sampling distribution 
also approaches normality with variance lower than 
other unbiased estimation procedures (least squares, 
etc.). Therefore, given larger samples, the test of a 
parameters' significance (independent categorical 
predictor variable) is a z-test calculated by: 

Z= ~ 1 
/ SE(~ 1

) 

Parameter estimates in logit models can also be 
readily interpreted as a log-odds ratio. This is 
calculated as ep for a single parameter, or e<P• • p,, for 
differences between two parameters. This is useful 
when examining contrasts between levels of two 
independent categorical predictor variables. The 
log-odds ratio will always agree with the expected 
cell frequencies. 

Predictive efficacy refers to whether a model 
generates accurate predictions of group membership 
on the dependent variable. It is possible to have an 
excellent fit between the logit model and the data 
without having predictive efficacy. Recall, if L2 = 0, 
a saturated model exists which perfectly fits the data, 
yet predictive efficacy (classification) can be far from 
perfect. In ordinary least squares regression, a 
saturated model would yield R2 = I. In SPSS, a 
classification coefficient (c) is calculated to indicate 
the amount of variance in the dependent variable 
accounted for by a set of predictors in the model. 
Given a 50-50 sample split, the base percent would 
be 50% for the independence model (intercept only 
model), thus c for each variable should be 
interpreted as a percent that contains this base 
percentage. 

The R\ - type measure for logistic regression is 
not meant as a variance accounted for interpretation, 
as traditionally noted in least squares regression, 
because it under estimates the proportion of variance 
explained in the underlying continuous variables (an 
assumption made about categorical variables). 
Basically, a loss of power results when data are 
reduced from interval to ordinal to nominal. Instead, 
the R\ - type measure is an approximation (lower 
bound) for assessing predictive efficacy ranging from 
zero (0) [independence model] to one (I) [saturated 
model]. This can be depicted as: 

Independence 
Model 

(Intercept/Null) 

Hypothesized 
Model 

+ Saturated 
Model 

(All Effects) 

The R\-type measure (Hosmer & Lemeshow, 
1989) is calculated as: R\ =(SST-SSE)/ SST, where 
SST= -2loglo and SSE= -2logL,. 
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The .6.C2 value provides a way to examine 
alternative logit models. The L2 from one model is 
simply subtracted from the L 2 of the second model. 
This is similar to testing a full versus restricted modi 
in multiple regression. The calculation is simply: 
L2(2ll) = L2

2 - L2
1 with the degrees of freedom equal 

to the difference in the degrees of freedom of the two 
models. In terms of the log values it is 

c' = -2Ioglo- (-2IogL1). 

If C2 is non-significant, then additional independent 
categorical predictors in Model 2 are not needed. 
This type of test is only appropriate for the 
likelihood-ratio chi-square and not the Pearson chi­
square because adding additional independent 
categorical predictor variables will never result in a 
poorer fit of the model to the data (similar to adding 
terms to a regression model that will never yield a 
lower unadjusted R2

). This property doesn't hold for 
the Pearson chi-square. 

Logit Models 
The logit model contains a categorical 

dependent variable and a set of categorical 
independent predictor variables. If a non-significant 
likelihood-ratio chi-square (L2) value is computed, 
then a given model fits the observed data, which is 
what we desire. On one extreme of the logit model 
continuum is the saturated model or model with 
perfect fit, yielding a L2 = 0 and df=O. The saturated 
model has as many parameter estimates as degrees of 
freedom, so it always perfectly reproduces the cell 
frequencies. For example, a model with all variable 
main effects and all interaction effects would lead to 
a saturated model. The independence model, in 
contrast, sets all parameter estimates to zero, 
resulting in the null model or intercept only model. 
Consequently, we have a model continuum ranging 
from the saturated model (all parameters estimated) 
to the independence model (no parameters 
estimated). A hypothesized model should fall 
somewhere between these two end-points and reflect 
a model with fewer parameter estimates than degrees 
of freedom, so that the degrees of freedom equals the 
total number of cells minus the number of 
parameters to be estimated in the model. A model 
containing only main effects would be an example. 

The problem for a researcher becomes one of 
finding the best set of independent categorical 
predictor variables. However, what criteria should a 
researcher use to determine data-to-model fit? 
Oftentimes, main effects and/or interaction effects 
are included in a model to predict a dependent 
variable. For the purpose of this study, two 
examples are given which focus on the prediction of 
high-school dropout percent given a set of 
independent categorical predictor variables. Can we 
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Table 1 Logit Regression Models 
Model 

Loglinear Model Designation 
I 1.,+\+1.,+1."u [RL, DJ 

2 A;+ Aj + Ak + /1.,Rij+ /\,Rik [RL, RD] 

3 A;+ Aj + Ak +A\·+ A Rik+ A\k [RL, RD, LD] 

4 A; + Aj + A,k + /\, \+A Rik+A \k+ARijk [RLD] 

predict dropout/non-dropout status based on a set of 
independent categorical predictor variables? Given 
this research question, we were concerned with the 
predictive efficacy of the logit model. 

Study One 
Method and Data 

The National Education Longitudinal study of 
I 988 (NELS) data base was used for data analysis. 
Subjects were 391 twelfth grade students selected 
randomly from the NELS data base. Dropout status 
was treated as the categorical dependent variable. 
Grade repeat status and locus of control were 
designated as categorical independent variables. The 
main and interaction effects research questions were: 
(I) Do drop-out rates differ significantly between 
students who repeat a grade versus not repeat a 
grade?; (2) Do drop-out rates differ significantly 
between students who have high versus low locus of 
control?; and (3) Do drop-out rates differ 
significantly given an interaction between grade 
repeat status and locus of control? This basic study 
analysis was gleamed from a previous presentation 
by Anderson (1995). 

The null model and alternative models are 
specified in Table I. Model I is a null model which 
hypothesized that drop-out rates (D) are the same 
regardless of grade repeat status (R) and locus of 
control (L). Model 2 hypothesized a main effect for 
grade repeat status (R). Model 3 hypothesized a 
main effect for locus of control (L). Model 4 
hypothesized an interaction between grade repeat 
status (R) and locus of control (L) in predicting 
drop-out rates (D). 

Results 
The calculation of L2 is affected by the order of 

entry of independent categorical variables, 
consequently Table 2 indicates grade repeat status 
entered first (Method A) compared to locus of 
control entered first (Method B). Method A 
indicated a non-significant main effects L 2 value for 
grade repeat status and locus of control. Method B 
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however indicated a non-significant main effects L 2 

value for grade repeat status only. No interaction 
was indicated. A subsequent approach was to use 
the additive properties of the likelihood ratio statistic 
to assess the specific contribution of each parameter 
m the model specified by calculating the L2 

difference. Table 3 indicates the component L 2 

values which are the difference between two modeled 
L2 values. Model 2 (grade repeat status main effect) 
is statistically significant accounting for 93% of the 
total modeled L2

. Locus of control main effect and 
interaction effects are not significant. 

The variance accounted for approach is yet 
another way to assess how much of the Null Model 
L2 (48.58) is attributed to a hypothesized logit 
model, in this case Model 2 L2 (45.13) in Table 2. 
It follows that 45. 13 divided by 48.58 equals 93% of 
the Total L2

. Obviously, the other modeled L2 values 
account for the remaining percent of the Total L2

. 

SPSS does compute and list a c value which 
indicates the percent classification. 

Several post-hoc procedures have been 
suggested including standardized residuals (Hinkle 
et al., 1988), scheffe-type contrasts (Marascuilo & 
Busk, 1987), log-odds ratio of parameter estimates 
(Kennedy, 1992), and variance accounted for 
indicated above. A further investigation of this 
technique and analysis is presented in a second study 
to clarify best model selection strategies given 
multiple categorical independent predictor variables 
in logit regression mcxlels. 

Study Two 
Met hod and Data 

There were 29,124 students enrolled in grades 
7-12 in Richardson !SD. Of these students, 754 
were dropouts (2.6%) and 28,370 were non-dropouts 
(97.4%). To facilitate the analysis, a random sample 
of 754 students was taken from the non-dropout 
students. The dependent variable was dropout status 
(dropout, non-dropout). The categorical independent 
predictor variables were: gender (male, female); 
ethnicity (asian, black, hispanic, white); grade 
(7,8,9,10,ll,12); retained in grade (not retained, 
retained I+ times); parent (natural, step/in-law); 
suspensions from school (none, 1, 2+); economic 
disadvantaged (no, yes); and number of courses 
missed (none, 1-5, 6+). 

The research question of interest was in 
predicting dropout/non-dropout status from several 
independent categorical predictor variables. 
Consequently, predictive efficacy or classification 
status was the focus of the study. Basically, What set 
of independent predictors provides the best 
classification of dropout/non-dropout? 
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Table 2. Logit Regression Model Fit. 

Residual 
Method A 

Model L2 df p 

Null Model - (I) 48.58 3 .0001 
[RL,D] 
Main Effects - (2) 3.45 2 .1779 L20-2) 

Grade Repeat 
[RL, RD] 
Main Effects - (3) 0.24 I .6242 L

2
<Z-3) 

Locus of Control 
[RL, RD, LD] 
Interaction - (4) 0 0 --- Lz(3-4) 

Grade Repeat x 
Locus of Control 
[RLD] 

MethodB 
Null Model - (I) 48.58 3 .0001 
[RL, DJ 
Main Effects - (2) 41.85 2 .0001 L\1-2) 

Locus of Control 
[LR, LD] 
Main Effects - (3) 0.24 1 .6242 L

2
<2-3) 

Grade Repeat 
[LR,LD, RD] 
Interaction - (4) 0 0 --- L

2
o-4) 

Grade Repeat x 
Locus of Control 
[RLD] 

Results 
A preliminary univariate analysis of each 

categorical independent predictor with the dependent 
variable dropout status is in Table 3. It is apparent 
that gender differences are not significant in 
determining dropout/non-dropout status. Similarly, 
economic disadvantaged doesn't yield a high L2 or 
x' relative to the other predictor variables. The 
slight difference in L2 and x' values is due to sample 
size, as noted before these values will be more 
similar as sample size increases because the 
sampling distributions are asymptotically chi­
squared. If one were to interpret these individual 
results, the number of course failures would best 
predict dropout/non-dropout status, followed by 
number of times retained in grade, number of 
suspensions, grade level, et cetera. Variable entry 
order, however, does affect results (see Appendix). 
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Component 

L2 df p 

45.13 I .0001 

3.21 I .0421 

0.24 I .6242 

6.73 I .0071 

41.61 I .0001 

0.24 I .6242 

Table 4 indicates the main effects for the eight 
predictor variables and several criteria which are 
used to judge the significance of categorical 
independent variable entry in the logit model 
equation. A comparison of the hypothesized logit 
models with single predictors to the intercept model 
(independence model) is given by ~C2

. A 
continuation of this table to include all 2-way 
interactions, 3-way interactions, 4-way interactions, 
et cetera would be required to determine the best set 
of predictor variables using the ~C2 criteria . 
Subsequently, one could compare the predictive 
efficacy of each logit model equation provided by the 
~c value which indicates the percent above and 
beyond the c value for the intercept model. 
Calculation of the total number of logit model 
equations, i.e., 256, (2m) is beyond the scope of this 
paper. 
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Table 3 Univariate L2 and y 2 on Drooout Status 
Categorical 
Variable L' x' df p 

Gender 2.736 2.735 1 .09800 
Ethnicity 52.859 52.481 3 .00001 
Grade 99.508 97.137 5 .00001 
Retained 139.872 133.628 I .00001 
Parent 34.084 32. 189 I .00010 
Suspend 112.089 l08.991 2 .00001 
Economic 6.602 6.590 I .01000 
Course 324.900 306.150 2 .00001 
Failure 

Note: L2 and x' are asymptotically chi-squared and 
become similar as sample size increases. 

All Possible Subsets 
The logit main effects and interaction effects 

model in study two would contain 256 equations in a 
saturated model. This is calculated by 2m, where 
m=8 (Freund & Littell, I 99 I, p. l07). This does not 
take into account the fact that the order of entry for 
the categorical independent predictor variables 
would change the results. Many of the criteria for 
determining the best set of predictors have inherent 
problems. For example, the individual univariate 
Pearson chi-square or likelihood-ratio chi-square 
tests don't reflect interaction effects; the z-test of 
parameters in the logit model would change based on 
the order of entry in the equation and number of 
variables in the equation; the log-odds ratio because 
it is the exponentiation of the parameter estimate 
would also differ depending upon the order of entry 
and number of variables in the logit model equation; 
and the predictive efficacy (classification percent) is 
not necessarily a function of the significance of the 
parameters in the logit model. Consequently, the 
ilC2 (difference between -2logL values for null and 
hypothesized models) appears to be the most useful. 
A problem still remains in that SPSS and SAS do 
not provide a test for subsets of predictors nor do 
they generate all possible subset equations (Demaris, 
1992, p. 68). 

A new procedure, TABU (Drezner, 
Marcoulides, & Salhi, 1999), provides a solution to 
model selection in multiple regression which is 
directly applicable to logit modeling, and provides 
better results than a previously determined Mallows' 
Cp criteria (Schumacker, 1994). The Tabu program 
generates the F-ratio based on the L2 and/or X2 

value for all possible equations between the 
independence (null model) and the saturated model. 
Given a best model selection criteria of ilC2

, one 
could easily pick the best set of categorical 
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independent predictor variables. 
the best ilC2 models, predictive 
compared (Ile). 

Conclusions 

Subsequently, of 
efficacy could be 

In the first study, Table 2 indicated that a grade 
repeat status main effect was statistically significant 
accounting for 93% of the total modeled L2

. Locus 
of control main effect and interaction effects were 
not significant. [Please note that in Table 2, L2

1.2 , is 
the same as ilC2 in Table 4.] With only a few 
independent predictors one can easily hand calculate 
all of the possible subsets of equations. The entry 
order of independent predictor variables did have an 
impact on parameter estimates. 

In the second study, Table 4 indicated that 
ethnicity, grade level, retained in grade, parent, 
suspensions, economic disadvantaged, and course 
failures main effects were statistically significant in 
the prediction of dropout/non-dropout status. 
Gender was not significant. A relative comparison 
of the ilC2 values for these main effects suggests that 
number of course failures followed by number of 
times retained in grade and number of suspensions 
would provide a possible best subset model. 
However, a researcher would not ultimately know 
the best subset model unless all possible subsets were 
calculated and compared on ilC2

• The use of a Tabu 
search procedure to generate all possible subsets is 
therefore needed. 

Educational Importance 
The logit regression technique is not widely 

used in education even though it offers several 
advantages over the use of the chi-square statistic in 
analyzing categorical variables (Green, 1988). The 
type of variables used in these two studies are typical 
of the data recorded in school districts. A better 
understanding of this statistical technique, its 
applications, and interpretation will hopefully 
increase awareness of its value to educational 
researchers (Tabachnick & Fidell, 1989; Stevens, 
1992). 
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Table 4. Logit Models: Main Effects Only 

Main 
Effects -2logL, ac2 df 

Intercept 2090.532 
Gender 2087.796 2.736 1 
Ethnicity 2037.673 52.859 3 
Grade 1991.024 99.508 5 
Retained 1950.660 139.872 1 
Parent 2056.448 34.084 1 
Suspend 1978.443 112.089 2 
Economic 2083.930 6.602 1 
Course 1765.632 324.900 2 
Failure 
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APPENDIX 
Variable Entry Order 

FAILURE ENTERED FIRST 

Null Model (Intercept Only): -2 Log Likelihood 

Hypothesized Model: -2 Log Likelihood= 

Model Chi-Square (df=5): 

Classification Overall: 

------------------------ Variables in the Equation 

Variable B S.E. Wald df 

FAILURES 128.0864 2 
FAILURES ( 1) -2.0569 .1839 125.0690 1 
FAILURES(2) -1. 0140 .1612 39.5877 1 

RETAINED(l) -.6551 .1681 15.1808 1 
SUSPEND 7.5456 2 

SUSPEND(l) -.4718 .1730 7.4344 1 
SUSPEND(2) - . 2 892 .2217 1. 7 012 1 

Constant 1.9468 .1852 110.5476 1 

FAILURE ENTERED LAST 

Variables in the Equation 

Variable B S.E. Wald df 

RETAINED(l) -.6510 .1648 15.6055 1 
SUSPEND 7.5251 2 

SUSPEND(l) -.4708 .1729 7.4136 1 
SUSPEND(2) -.2887 .2218 1.6940 1 

FAILURES 1.0301 . 0910 128.0361 1 
Constant -.1093 .2522 .1878 1 

Note: df= 4, Model Chi-square= 348.417 

2090.5319 

1742.100 

.206 

348.432 

71.15% 

------------------------

Sig R Exp(B) 

.0000 .2436 

.0000 -.2426 .1278 

.0000 - .1341 .3628 

.0001 -.0794 .5194 

.0230 .0412 

.0064 -.0510 .6239 

.1921 .0000 .7489 

.0000 

Sig R Exp(B) 

.0001 -.0807 .5215 

.0232 .0411 

.0065 -.0509 .6245 

.1931 .0000 .7493 

.0000 .2455 2.8012 

.6648 

28 Multiple Linear Regression Viewpoints, 1999, Vol. 25(2) 


