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Extraneous Variables and the Interpretation
of Regression Coefficients

Cam-Loi Huynh, University of Manitoba

This paper addresses some difficulties concerning the interpretation of the regression coefficients in simple and
multiple regression models. The root of the problem lies in the fact that the fitted multiple regression equation is the
result of transforming raw data of the independent variables into residualized scores. In the standard interpretation of
the partial regression coefficients, effects of the residual term have not been explicitly differentiated from those of the
regressors. Alternative interpretations of the regression coefficients are proposed. The recognition of residual and
residualized effects plays an important role in the evaluation of the obtained values of the regression coefficients, R2,
the overall F tests and the construct validity of the multiple regression model.  

here are three types of variables in a regression
model, namely, the dependent variable (Y ), at
least one regressor or independent variable (X j,

j = 1, ..., m) and the unknown error term (ε) estimated
by the residual scores (e = Y  -   ̂Y ) which in turn
represent the extraneous variables, where   ̂Y  is the
predicted value of Y . Typically, the regression slope
coefficient in the simple regression model   ̂Y  = a + bX
is defined as, "the amount of the difference in   ̂Y
associated with a one-unit difference in X" (Howell,
1997, p. 242), or "The slope of the line equals the
gain in Y  associated with each 1-unit gain in X"
(Darlington, 1990, p.10). On the other hand, each of
the slope coefficients in the multiple regression model

  ̂Y  = a + b1X  + ... + bmXm is called a partial regression
coefficient “to make clear that it is the weight to be
applied to an independent variable (IV) when one or
more specified IVs are also in the equation” (Cohen &
Cohen, 1983, p. 83). The coefficient bj, j = 1, 2,...,
m, is defined as, "the change in the dependent variable
per unit change in the jth independent variable,
assuming all other independent variables are held
constant" (Rawlings, 1988, p. 67). Similar definitions
are found in several textbooks on regression analysis.
It will be argued in this paper that the above def-
initions of b and bj should be used with great care to
avoid misleading interpretation on the effects of X j in
predicting Y  for data analysis. First, some possible
implications of "holding all regressors but one con-
stant" in the multiple regression model are explored.
Next, in an attempt to understand the meanings of
regression coefficients, several ways to obtain their
estimates are investigated. It will be demonstrated that
the independent variables can be operationally
transformed into the residualized terms in the process
of computing the partial regression coefficients. This
leads to the realization that a regression analysis
transforms the obtained data into another data set called
the residualized scores while reproducing the same
values for the partial regression coefficients. As a
result, a simple way to determine the residualized
scores in multiple regression models is developed.

Before proceeding, however, an explanation of the
terms "residual scores" and "residualized scores" is in
order. The residual term  (e) represents the difference
between Y  and   ̂Y  as a result of regressing Y  against
one or more independent variables (X 's); denoted as
eY,1, eY,2, or eY,1, 2 for regression models involving one
or two regressors (where the first subscript represents
the dependent variable and the subsequent subscripts,
the independent variables). A residualized variable is
formed when the residual term (e) is used either as a
regressor (Ej) or as a dependent variables yielding
predicted values (  ̂eY,j and   ̂eY,h). The residual scores (e)
capture the portion of variability in Y , called the
"uncontrolled" extraneous effect of the model, that is
not accounted for by all independent variables (X 's).
On the other hand, the residualized scores of X j, say Ej

(for any j = 1, ..., m), represent the residual term when
X j is regressed on all other independent variables.
Thus, when Y  is regressed on the jth residualized
variable, the resulting regression coefficient represents
only the effect of X j since the effects of other
independent variables in the original multiple
regression model have been "partialled out."

Winne (1969) has studied the problems of
construct validity in using multiple regression models.
He indicated that regressors in such models do not
represent the constructs described by the original data
since the partial regression coefficients are computed
for the residualized scores instead. However, he did not
discuss how these residualized scores can be interpreted
and analyzed. Rather, Winne (1969) recommended that,
"anchor variables not of direct interest in a research
study be measured and correlated with residualized
variables. This supplementary analysis sheds light on
changes to construct validity that must be known
before interpreting multiple regression analyses" (p.
187). On the contrary, it is suggested in this paper that
the effects of regressors in multiple regression models
are interpreted as those of residualized scores, in the
same way as one would interpret partial correlation
coefficients. Then, the simple regression equations of
Y  on the residualized variables (called the "residualized
regression equations") are studied to shed light on the
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interpretation of the partial regression coefficients in
the conventional multiple regression equation.
Moreover, the coefficient of determination associated
with the multiple regression model is explained in
terms of the semi-partial coefficients of determination
obtained from the above residualized regression
equations. Finally, the residual plots of the multiple
regression model and those of the residualized
regression equations (called the partial regression
residual plots) are examined for model diagnostics.
These steps are recommended not only for identifying
the effects of "controlled" extraneous variables
associated with the partial regression coefficients and
recapture the same R2 but also for obtaining test
statistics (t for the slopes and overall F for the fit) that
take into account the influence of the residual and
residualized variables. For the sake of illustration, all
numerical analyses are based on the data set in Figure
1, Panel A. In the multiple regression under
consideration, Test Score (Y ) is regressed on
Cumulative GPA (X1) and Study Hour (X2).   

Limi tations  of the
Conventional  Interpretations

What Happens to Partial Regression Coefficients If
Only Values of One Regressor Are Changed?

The main difference in the definitions of simple
and partial regression coefficients given above lies in
the requirement that all but one regressors in the
multiple regression model are "held constant." It is
true that if values of the jth regressor X j, i in the
multiple regression equation for the ith subject (i = 1,
2, ..., n) is changed by a constant whereas the observed
values of remaining regressors are intact then the
predicted value   ̂Y i for this particular subject is
modified by an amount of bj. However, if values of X j

in the above example are modified by a fixed constant
for all subjects then in the resulting regression
equation, only the intercept term (a) will change (i.e.,
values of   ̂Y i and all slopes b1, ..., bm remain the same
for i = 1, ..., n). Although only values of a single
regressor have been modified, one no longer has the
same regression model since the intercept term has
changed. The following example serves to illustrate
this point.

Based on the data set in Figure 1, Panel A, three
regression models are considered, the first with the
original values for Y , X1 and X2 and the remaining
two, with the linearly transformed values of X3 = X1 +
5 and X4 = X2 + 3. As expected, the resulting
regression equations have the same slopes but different
intercepts:

Model 1a:   ̂Y  = a1 + b1X1 + b2X2  
= 43.651 + 7.301X1  + 2.839X2, R

2 = .4105,
Model 2:   ̂Y  = a2 + b1X3 + b2X2

=   7.145 + 7.301X3  + 2.839X2, R
2 = .4105,

Model 3:   ̂Y  = a3 + b1X3 + b2X4

= -1.373 + 7.301X3  + 2.839X4, R2 = .4105.

Figure 1. Data and Test Statistics for
             Regression Models 1a and 1b

Panel A: Data Example
ID Y X1 X2

1 73.5 3.5 2.4
2 69.0 2.8 2.5
3 85.5 3.0 5.5
4 82.0 3.7 3.1
5 90.0 3.9 5.2
6 84.0 3.1 5.5
7 86.5 3.3 7.1
8 74.5 2.9 3.6
9 71.5 3.1 5.5

10 75.5 3.6 4.4
11 80.0 4.0 5.1
12 91.8 3.5 4.2
13 86.5 3.3 7.2

Mean 81.76 3.36 1.50
SD 7.96 0.36 1.50

rY,1 = .354 r1,2 = .354 rY,2 = .354
Panel B: Common Statistics for
              Models 1a and 1b

IV     SE
t

(p < t)
C/Intercept 17.941 2.433

(.0322)
X1 5.082 1.437

(.1786)
X2 1.232 2.305

(.0416)
Panel C: Goodness-of-Fit Statistics
              for Models 1a and 1b

Model
SSR
(SST) R2

MSR
(MSE)

F
(p < F)

1a 338.15
(823.77)

0.41 167.08
(44.15)

3.78
(.0547)

1b 93933.73
(94419.35)

0.99 31311.24
(44.15)

709.20
(.0001)

Note. IV  = Independent variable, SE = Standard error of
the regression coefficient estimate, SSR  = Regression
sum of squares, SST = Total sum of squares, MSR  =
Regression mean squares, MSE = Error mean square.

(Note that a2 = a1 - 5b1 and a3 = a1 - 5b1 - 3b2.) For
example, given X1 = 3.50 and X2 = 2.40 for the first
subject then   ̂Y  = 76.02 and e = 2.52 in the three
models. Typically, the same interpretation applies to
the partial regression coefficients in these models, say,
"If X2 is held constant, then each 1-unit increase in X1

leads to an average increase in   ̂Y  of 7.301 units."
However, if the units of measurement for any
independent variable has been changed, not only a new
regression model with a different intercept term is
needed but also the statistical significance of the
intercept term may also be altered (In the three models
above, t(α ) = 2.433, p < .03, t(α ) = 0.167, p > .870
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and t(α ) = -0.032, p > .975, respectively). Apparently,
the standard interpretation is focussed on the case in
which one wants to compute a predicted value   ̂Y i,
given a certain value of X j, i, i = 1, 2, ..., n, for each
subject, one at a time. However, the intercept term
should be considered when the scales of measurement
have been changed for several, if not all, subjects.
Hence, the above statement could be modified as, “For
each observation i, if X2,i is held constant, then a 1-
unit increase in X1,i leads to an increase in   ̂Y  i of
7.301 units. On the other hand, if all values of X2 are
changed by the same constant c, then a 1-unit increase
in X1,i leads to an average increase in   ̂Y i of (43.651 -
7.301c) units.”

The Same Values of Partial Regression Coefficients
May Not Y ield the Same Regression Models

The above three regression models have different
values for the intercept term but otherwise identical
with respect to the test statistics of t for regression
coefficients as well as overall F and R2 for goodness of
fit (as reported for Model 1a in Figure 1, Panel C).
The regression coefficients in Model 1a can be
reproduced by regressing Y  on C, X1 and X2 where C
is a dummy variable of constant values, say C = 1,

Model 1b:   ̂Y  = a1C + b1X1 + b2X2

= 43.651C + 7.301X1  + 2.839X2, R
2 = .995.

Although the t tests for the regression coefficients
in Models 1a and 1b are identical (Figure 1, Panel B),
they are substantially different with respect to
goodness-of-fit statistics (Figure 1, Panel C). Model
1a yields poor fit with small R2 and marginally
significant overall F. In Model 1a, R2 represents the
ratio of sum of squares of regression (SSR) over the
corrected total sum of square (SSTc).  Since Model 1b
has no intercept term, R2 has been redefined by using
the uncorrected total sum of square (SSTu). As a result,
both its R2 and F have increased remarkably! It can be
explained that this phenomenon occurs when
extraneous effects independent of the predictors have
been accounted for in the regression model. Hence the
significance test of the failure to control for the impact
of extraneous variables under the null hypothesis can
be conducted by means of the following F test with
degrees of freedom (q, dfr):

  
F

R R

R

df

q
r= −2 2

2
(Model.1b) (Model.1a)

1 - (Model.1b)
[ ] ,

where dfr = the residual degree of freedom in Model 1b
and q = (the difference in number of regressors in
Models 1b and 1a) = 1 (Darlington, 1990, pp. 124-
125; Cohen and Cohen, 1983, pp. 145-151). For the
data at hand, F = (.9610 - .2652)(11) = 7.653, p <
.00001.

Different Ways  to Obtain Values
of the Regress ion Coeffi ci ents

In an attempt to enhance the understanding, and
thus improving the interpretations, of simple and
partial regression coefficients, it is necessary to
investigate several ways to obtain the same values of
these coefficients for a given data set. Some of the
steps presented below have been discussed elsewhere
(Draper and Smith, pp. 196-201) but for a different
objective, namely, the confirmation of the least-
squares results by various methods rather than the
difference in their interpretations.

As presented in Table 1, thirteen regression
models can be computed on the basis of two predictors
X1 and X2 (in Figure 1, Panel A). The three models g,
h and k are the pivot models against which all
remaining models will be compared. For identification
purposes, the subscripts "g", "h" and "k" are attached
to the regression coefficients when necessary. The
predicted values   ̂Y  and   ̂X j, j = 1, 2, in steps h, k, 4
and 5 are used as dependent variables (  ̂Y Y,1,   ̂Y Y,2) or
regressors (  ̂X 1, and   ̂X 2) in steps 6 and 7, respectively.
For the remaining models (steps 8 to 13), either the
residual scores (obtained in steps h and k) or Y  are
regressed on the residualized scores (Ej obtained in
steps 4 and 5) and X j. The intercept terms are present
in all regression models with raw data, except in steps
8 and 9 where only the residual and residualized scores
are involved.

The regression models in Table 1 were computed
using both raw and standardized data with identical
variables. All the regression models with standardized
scores must be fitted without the intercept terms (The
computed values of the intercept terms would be zero
had they been included). The results in Table 2
illustrate that it is the variable type, not the data
metric, which determines the elements constituting the
"extraneous variables."

Approach 1 (Based on Raw Data)
The simple regression coefficients for X1 and X2

are 7.775 (step h) and 2.911 (step k), respectively.
Their partial counterparts are bY,1.2  b1g = 7.301 and
bY,2.1  b2g = 2.839 (step g).

Approach 2 (Based on Standardized Scores)
For simple regression models (in steps h and k),

the simple, or zero-order, correlations of Y  and X j are
used instead of bj (i.e., rY,1  rh = .3545 and rY,2  rk =
.5476). For multiple regression models, each rY,j.i

denotes the partial correlation of Y  and X j, or the
correlation of Y  and X j, given that X i has already
entered the model (rY,1.2  r1g = .3329, and rY,2.1  r2g =
.5341 in step g).
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Table 1 . Regression Models for Comparing
  Regression/Correlation Coefficients and R2.

Step Regression Models
g Y  is regressed on X1 and X2

h Y  is regressed on X1 (yielding   ̂Y Y,1 and eY,1)
k Y  is regressed on X2 (yielding   ̂Y Y,2 and eY,2)
4 X1 is regressed on X2 (yielding   ̂X 1 and E1)
5 X2 is regressed on X1 (yielding   ̂X 2 and E2)
6   ̂Y Y,1 (from step h) is regressed on   ̂X 1

       (from step 4)
7   ̂Y Y,2 (from step k) is regressed on   ̂X 2

       (from step 5)
8 eY,1 (from step h) is regressed on E1

      (from step 4) (without the intercept term)
9 eY,2 (from step k) is regressed on E2

     (from step 5) (without the intercept term)
10 Y  is regressed on E1 (from step 4)
11 Y  is regressed on E2 (from step 5)
12 Y  is regressed on X2 and E1 (from step 4)

13
Y  is regressed on X1 and E2 (from step 5)

Approach 3 (Based on Predicted and
        Residualized Scores)

The same values of the slope/correlation
coefficients in the simple and multiple regression
models can also be obtained by fitting regression
models on the basis of predicted (  ̂Y ) and residualized
scores. In step 6, by regressing   ̂Y Y,1 obtained in step h
on   ̂X 1 in step 4, the simple regression/correlation
coefficients in step h are recovered. Similarly, the
results in step k are reproduced in step 7 by regressing

  ̂Y Y,2 (step k) on   ̂X 2 (step 5). The two partial
regression/correlation coefficients in step g are
reclaimed by fitting two simple regression models in
terms of residualized scores (  ̂eY,j and Ej) in steps 8 and
9, respectively.

Identi fying the Extraneous  Variables  in
the Mul tipl e Regress ion Model

What Are the Residualized Scores for Xj?
A much simpler procedure to obtain the

residualized scores for any regressor and show that its
effect can be measured by the corresponding partial
regression coefficient is described below.
 Step (i). Fit X j on the remaining regressors:

     ̂X j = a + b1X1 + ... + bj-1X j-1 + bj+1X j+1.

For Model 1a, this is realized by obtaining the
regression equations in steps 4 (for X1) and 5 (for X2)
in Table 2.

Step (ii). Obtain the residualized scores for X j:

Ej = X j -   ̂X j for j = 1, 2, ..., m.

Thus, in the example, the residual terms obtained
by fitting the regression equations in steps 4 and 5
(Table 2) yield the residualized scores for X1 and X2,
respectively.

Step (iii). Reproduce the partial regression
coefficient for X j, by fitting the regression equations in
steps 8 and 9 (or steps 10 and 11, Table 2).
Alternatively, they can be computed as:

    bj = Cov(Y , Ej)/S
2(Ej) = r(Y ,Ej){S (Y )/S (Ej)},

where Ej = the jth residualized variable, Cov(Y , Ej) =
covariance of Y  and Ej, S

2(Ej) = sample variance of Ej,
S (Y ) = sample standard deviation of Y , and r(Y ,Ej) =
the zero-order correlation of Y  and Ej. For the example,
S (Y ) = 7.9603, S (E1) = .3626, S (E2) = 1.496, r(Y ,E1)
= .3325 and r(Y ,E2) = .5337. Therefore, the partial
regression coefficients for X1 and X2 are:

b1 = r(Y ,E1){S (Y )/S (E1)} = (.33)(7.96)/.36 = 7.30,
and b2 = r(Y ,E2)/{S (Y )/S (E2)}=(.53)(7.96)/1.49 = 2.84,
respectively.

Understanding the Simple Regression
   Correlation Coefficient

So far, the regression and correlation coefficients
in a simple regression model play the same roles. The
same values of simple regression/correlation
coefficients are reproduced in steps h and 6 (Table 2)
because the predicted values of   ̂Y  and   ̂Y Y,1 in these
equations are determined by X1 independently of X2.
Analogously, the regression/correlation coefficients in
steps k and 7 are identical since the relevant predicted
values of   ̂Y  and   ̂Y Y,2 are determined by X2 and free of
X1. Since the different values of regression and
correlation coefficients are simply due to data metrics,
their meanings should be interpreted similarly. The
simple correlation coefficient has been defined as "a
measure of the degree of closeness of the linear
relationship between two variables" (Snedecor and
Cochran, 1967, p. 173). This statement remains
meaningful in the context of simple regression models
with either raw or standardized scores. A linear
relationship is one in which the variation in Y ,
produced by a specified change in X , is constant. The
“linear relationship” between X  and   ̂Y  in the simple
regression model with the intercept has two
components, constant (determined by the intercept) and
linearly changeable (accounted for by the slope).
Therefore, the slope regression coefficient in a simple
regression model can be interpreted as, "In raw data
metric, the slope b represents the relative weight of X
to account for the linear variability in   ̂Y   that is free
of the unknown extraneous effects represented by the
residual e = Y  -  ̂Y  ."

In other words, bX  represents the linear trend of,
or portion of the linear variation in, the values of   ̂Y
that is not attributed to unknown extraneous effects.
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Table 2. Results and Test Statistics for the Regression Models in Table 1.

Step
Regression Model

(Raw Data)
Regression Model

(Standardized)
SSR
(SST) R2 MSR MSE

F
(p <F)

g   ̂Y  = ag + b1gX1 + b2gX2

= 43.652 + 7.301X1 +2.839X2

  ̂Y  = r1gX1 + r2gX2

= .3329X1 + .5341X2

338.15
(823.77)

.4105 169.07 44.15 3.83
(.05)

h   ̂Y  = ah + bhX1

= 55.606 + 7.775X1

  ̂Y  = rhX1 = .3545X1
103.50

(823.77)
.1256 103.50 60.06 1.72

(.00)

k   ̂Y  = ak + bkX2

= 67.874 + 2.911X2

  ̂Y  = rkX2 = .5476X2
247.03

(823.77)
.2999 247.03 48.06 5.14

(.04)

4   ̂X 1 = a1 + b1,2X2

= 3.317 + .010X2

  ̂X 2 = r2,1X1

= .0404X1

0
(1.71)

.0016 0 0.14 0.02
(.89)

5   ̂X 2 = a2 + b2,1X1

= 4.210 + .167X1

  ̂X 1 = r1,2X2

= .0404X2

0.05
(29.15)

.0016 0.04 2.42 0.02
(.89)

6   ̂Y Y,1 = ah + bh  ̂X 1

= 55.606 + 7.775  ̂X 1

  ̂Y Y,1 = rh  ̂X 1

= .3545  ̂X 1

0.17
(103.50)

.0016 0.17 8.61 0.02
(.89)

7   ̂Y Y,2 = ak + bk  ̂X 2

= 67.874 + 2.911  ̂X 2

  ̂Y Y,2 = rk  ̂X 2

= .5476  ̂X 2

0.40
(247.03)

.0016 0.40 20.55 0.02
(.89)

8   ̂eY,1 = b1gE1

= 7.301E1

  ̂eY,1 = r1gE1

= .3329E1

234.65
(720.27)

.1580 234.65 37.36 6.28
(.03)

9   ̂eY,2 = b2gE2

= 2.839E2

  ̂eY,2 = r2gE2

= .5341E2

91.12
(576.74)

.3258 91.12 37.36 2.44
(.14)

10   ̂Y  = Y  + b1gE1

= 81.764 + 7.301E1

  ̂Y  = r1gE1

= .3329E1

91.12
(823.77)

.1106 91.12 61.05 1.49
(.25)

11   ̂Y  = Y  + b2gE2

= 81.764 + 2.839E2

  ̂Y  = r2gE2

= .5341E2

234.65
(823.77)

.2840 234.65 49.09 4.78
(.05)

12   ̂Y  = ak + bkX2 + b1gE1

= 67.874 + 2.911X2 + 7.301E1

  ̂Y  = rkX2 + r1gE1

= .5476X2 + .3329E1

338.15
(823.77)

.4105 169.07 44.15 3.83
(.05)

13
  ̂Y  = ah + bhX1 + b2gE2

= 55.606 + 7.775X1 + 2.839E2

  ̂Y  = rhX1 + r2gE2

= .3545X1 + .5341E2

338.15
(823.77)

.4105 169.07 44.15 3.83
(.05)

Note. For variables with double subscripts, the first subscript refers to the dependent variable and the second
subscript denotes the regressor.

Moreover, a + bX  constitutes the value of   ̂Y  with the
maximum value of R2 if it can be assumed that the
influence of the unknown extraneous effects is equally
distributed to all members of the sample. This
assumption can be checked by running the regression
model without the intercept that contains X  and a
dummy variable C of fixed values. As a result, the
same value for b in the original simple regression
equation is reproduced in the multiple regression model
without the intercept. For the regression models in
steps h and k, by letting C = 1 for all subjects, say,
we get

     ̂Y  = ahC + bhX1 = 55.606C + 7.775X1,
           R2 = .9954,  (revised step h)
     ̂Y  = akC + bkX2 = 67.874C + 2.911X1,
             R2 = .9939,  (revised step k)

The values of R2 have been increased dramatically
(as compared to those reported for steps h and k in
Table 2) to reflect the fact that extraneous effects have
been (artificially or statistically) controlled.

Understanding the Partial Regression
      Correlation Coefficient

The residual term in step h is regressed on the
residual term in step 4 to produce the residualized
scores   ̂eY,1 in step 8, representing the portion of
variation in Y  that is free of X2. Analogously, the
residual terms in steps k and 5 are used to yield the
residualized scores   ̂eY,2 in step 9 representing the part
of variation in Y  that is not influenced by X1.
Therefore, b1g (in steps g and 8) denotes the relative
weight of X1 in the raw data metric (or r1g, the simple
correlation between Y  and X1 in terms of standardized
scores) that is free of X2. Analogously, b2g (in steps g
and 9) signifies the relative weight of X2 in raw data
metric (or r2g, the simple correlation between Y  and X2

based on standardized scores) that is free of X1. Since
the partial regression coefficients in step g can be
reclaimed as two simple regression coefficients in
steps 8 and 9, the simple and partial regression
coefficients should be logically defined and explained
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similarly. This is the approach adopted in the
following discussion.

The partial correlation coefficient, say r1,2.3, is
commonly defined as, "the correlation between
variables 1 and 2 in a cross section in individuals all
having the same value of variable 3" (Snedecor and
Cochran, 1967, p. 400). In the regression context, the
partial correlation rY,1 . 2, . . ,  m, say, represents the
portion of the correlation of Y  and X1 which has no
dependence on values of the variables X2, ..., Xm and
extraneous effects. In the same vein of logic, the
partial regression coefficients for X j in a multiple
regression model can be interpreted as, "In raw data
metric, the slope bj represents the relative weight of Xj

to account for the linear variability in   ̂Y   that is free
of the effects due to other regressors in the model and
the unknown extraneous effects."

The effects due to other regressors are estimated by
the residualized scores   ̂eY,j (steps 8 and 9) whereas the
unknown extraneous effects are estimated by the
residual   ̂Y  - Y  (step g). The meaning of this
interpretation is further explained by the two multiple
regression equations in steps 12 and 13. The partial
regression coefficient bk in step 12 represents the
simple regression coefficient (or relative weight) of X2

whereas b1g, the partial regression coefficient in step g,
is actually transformed into an extraneous effect, being
the slope of a residualized variable (E1). A similar
interpretation applies to bh and b2g in step 13. The
transformation of regressors into residual and
residualized variables in the multiple regression models
is not expected to influence the test statistics. Indeed,
as shown in Table 2, R2, the sum of squares, mean
squares, and F of the three models g, 12 and 13 are
identical.

As shown above, had the extraneous effects been
"controlled" by a dummy variable, say C = 1, the
regression model in step g can be reproduced but with
a much greater value of R2.

Impl i cations  of Taking Extraneous
Variables  into Consideration

There are at least three pertinent outcomes rendered
by the recognition of extraneous effects in the
regression model: (i) an understanding of the
limitations in the construct validity of multiple
regression models, (ii) a proper decomposition for the
coefficient of determination (R2), and (iii) an
improvement in the evaluation of estimates of the
regression/correlation coefficients and the overall F
tests.

Construct Validity in Multiple Regression Analysis
The extent to which the regressors can be used to

meaningfully explain and accurately predict values of
the dependent variable represents the construct validity
of the regression model. The analysis so far indicates
that, although the regressors (X1, ..., Xm) are used in

the multiple regressions, the regression slopes and R2

measure the contributions of the residualized scores
(E1, ..., Em) or a mixture between regressors and
residualized scores unless X1, ..., Xm are uncorrelated.
Hence, the construct validity in multiple regression
analysis may be low. The following illustration is
adapted from Winne (1989), given the results in Table
2. From the three basic regression models (in steps g,
h and k), how do the relationships among Y , X1 and
X2 be explained? One may be tempted to arrive at the
following conclusions:

(i) If the entry order was X1 and X2 then X1

accounted for 12.56% of the variability in Y  and X2

accounted for an additional 28.49% of the variability in
Y  (since R2 = .4105 in step g, R2 = .1256 in step h
and .4105 - .1256 = .2849). On the other hand, if the
entry order was X2 and X1 then X2 accounted for
29.99% of the variability in Y  and X1 accounted for
the remaining 11.06% of the variance in Y .

(ii) When all variables are transformed to
standardized scores, an increment of one standard
deviation in X1 is associated with a 33.29% increase in
Y . Similarly, an increment of one standard deviation in
X2 yields an increase in Y  by 53.41 percent.
     Although intuitively meaningful, both of these
statements are wrong with respect to the revised
interpretations of partial regression/correlation
coefficients! In the first statement (i), for the (X1, X2)-
entry order, X2 did not account for the additional
28.49% of the variability in Y  but the residualized
scores E2 did. The statement is correct if X2 is replaced
by E2. This can be seen by following the series of
equations in steps h, 11 and 13 (either raw data or
standardized scores). The last model (step 13) contains
the same values for the slopes and the sum of R2's
reported for the combination of models h and 11.
Similar arguments apply to the (X2, X1)-entry order in
the second part of statement (i) above based on the
results for steps k, 10 and 12. Statement (ii) is wrong
since X1 and X2 are correlated. The statement is correct
by either of the following modifications. First, the
percentages are changed to 35.45% and 54.76% for X1

and X2, respectively (see steps h and k). The pairs
(33.29%, 53.41%) and (35.45%, 54.76%) are quite
close to each other since the correlation between X1

and X2 is quite small (r1,2 = .04). Greater difference is
expected for larger r1,2. Alternatively, X1 and X2 are
replaced by E1 and E2, respectively (see steps 10 and
11).

The mistakes made in statements (i) and (ii)
presage a serious error that materializes when one
attempts to assess the statistical significance of the
slopes and determine the proportional contributions of
the regressors to variations in Y  in multiple regression
models. For these purposes, the results of Table 2
should be obtained and examined in conducting the
statistical evaluation of the standard multiple
regression model. In particular, the regression models
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in steps 10 and 11 in terms of residualized scores
should be used for studying the statistical inference of
the partial regression/correlation coefficients. We
return to this point later. Meanwhile, the following
discussion serves to illustrate how to analyze the
multiple regression model taking into consideration
the effects of residualized scores and extraneous factors.

Decomposition of the Coefficient of Determination
The decomposition of R2 for the multiple

regression model is given by Engelhart (1936) as, say
for m = 3,

R2 = βY,1
2 + βY,2

2 + βY,3
2 + 2βY,1βY,2r1,2

         + 2βY,1βY,3r1,3 + 2βY,2βY,3r2,3,                     (1)

where _Y,j = the standardized partial regression
coefficient of X j and rj,h = the zero-order correlation of
X j and Xh. From this equation, it was argued that the
total variance in Y  is reproduced by the direct variance
(indicated by the betas squared) and shared variance
(denoted by twice the sum of the correlational cross
products) of the regressors. Engelhart (1936) argued
that the shared variance is divided among each of the
regressors in the same proportions as the direct
variance. Chase (1960) modified this equation to be

R2 = (βY,1
2 + βY,1βY,2r1,2 + βY,1βY,3r1,3)

    + (βY,2
2 + βY,1βY,2r1,2 + βY,2βY,3r2,3)

          + (βY,3
2 + βY,1βY,3r1,3 + βY,2βY,3r2,3).            (2)

so that “the total direct and shared variance in the
criterion associated with the ith independent variable is
given by the square of the beta for the ith variable, plus
half of all the covariance terms in formula (1) which
include the beta for the ith variable” (p. 266). The
decomposition of R2 for step g in Table 2 yields:

Direct effect of X1: βY,1
2 = (.3329)2 = .11082,

Direct effect of X2: βY,2
2 = (.5341)2 = .28526,

Shared effect of X1 and X2:
   [βY,1βY,2r1,2= (.3329)(.5341)(.04044) = .00719],
Total effect of X1: .11082 + .00719 = .11802,
Total effect of X2: .28526 + .00719 = .29245,
The multiple coefficient of determination:
   R2 = .11802 + .29245 = .41047.

Although this decomposition reproduces the
multiple coefficient of determination (R2), it is not
useful in determining the contribution of the
residualized variables since the coefficients of
determination in steps 10 and 11 (Table 2) are not
equal to the total effects of X1 and X2, assumed in (2)
as the components of R2. Moreover, the
decomposition (2) "has none of the most important
properties that a "contribution to variance" has when
variables are uncorrelated" (Darlington, 1968, p. 170).
A more appropriate partition of R2 is based on the

semi-partial coefficients of determination. The general
form of the semi-partial coefficient of determination
for the jth residualized variable (R2

Y,j.j*) is R2
Y,j.j* = R2 -

r2
Y,j, for j ≠ j* = 1, ..., m, where R2 = the (multiple)

coefficient of determination of the full model and rYj =
the zero-order correlation of Y  and X j. The semi-partial
coefficients of determination for X1 and X2 in the
example are R2

Y,1.2 = R2 - r2
Y,1 = .4105 - (.3545)2 =

.2849, and R2
Y,2.1 = R2 - r2

Y,2 = .4105 - (.5476)2 =
.1106, respectively. As a result, the coefficient of
determination in the multiple regression model can be
expressed as R2 = {R2

Y,1.2 + R2
Y,2.1 + r2

Y,1 + r2
Y,2}/2.

Effects of Extraneous Variables on Statistical Inference
In analyzing the goodness of fit of the multiple

regression model, the researcher would get a clearer
understanding of the role played by partial regression
coefficients by fitting the conventional (step g) and
residualized versions (steps 10 and 11). The model in
step g has the advantage that the regressors are
expressed in terms of the original unit of
measurement. Hence, with a reasonable R2, it can be
used for predicting Y . However, in assessing the
contributions of the regressors to variations in Y , the
regression coefficients of the residualized scores in
steps 10 and 11 are more meaningful and should be
used.

For the multiple regression model in step g, the
slope of X2 is statistically significant at α  = .05 [t(b2)
= 2.305, p < .05] whereas that of X1 is not [t(b1) =
1.437, p > .18]. However, the significance of X2 may
be misleading in light of the overall F statistic (p >
.05, Table 2). On the other hand, the regression
models of Y  using the residualized variables in steps
10 and 11 facilitate the evaluation of the statistical
inference on the regressors in the multiple regression
model (step g). Evidently, both E1 and E2 are not
statistically significant (p > .25 and .05, respectively
in Table 2). Whereas the multi-dimensional graph of Y
against X 's that also contains the regression line for
the multiple model in step g is hard to draw, the
regression lines of the residualized variables can be
easily depicted since the simple models 10 and 11
involve only single regressors (E1 or E2) and their
intercept term is equal to the sample mean of Y . The
plot of the regression line for step 10, say, is the same
as the plot of Y  on X1 at given values of X2 (as
illustrated by Mullet, 1972) but with much less effort.

Conclus ions
It is suggested that the partial regression

coefficient bj represent the effect of the jth residualized
variable which is computed as the difference between
X j and its predicted values obtained by regressing X j on
all other independent variables in the multiple
regression model. The revised interpretations of the
regression coefficients are based not only on the
mathematical properties of the regression equation but
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also on the sources of the values reported by such an
equation. The proposed interpretations of simple and
partial regression coefficients reflect the same
meanings conveyed by their corresponding correlation
coefficients. The consideration of residualized effects in
regression analysis leads to explanations that are more
uniform in terminologies for both simple and partial
regression coefficients. Moreover, it enables a
recognition of low construct validity in regression
modelling and sheds light on how to analyze the test

References
Darlington, R. B. (1968). Multiple regression in

psychological research and practice. Psychological
Bulletin, 69, 161-182.

Darlington, R. B. (1990). Regression and linear
models. New York: McGraw-Hill.

Cohen, J. & Cohen, P. (1983). Applied multiple
regression/correlation analysis for the behavioral
sciences (2nd ed.). Hillsdale, NJ: Lawrence
Erlbaum.

Howell, D. C. (1997). Statistical methods for
Psychology (4th ed.). Belmont, CA: Duxbury.

Mullet, G. M. (1972). A graphical illustration of
simple (total) and partial regression. The American
Statistician, 26, 25-27.

Rawlings, J. O. (1988). Applied regression analysis.
A research tool. Pacific Grove, CA: Brooks/Cole.

statistics in fitting regression models. In the simple
regression model, due to the lack of residualized
variables, the simple regression coefficient for X j

measures its effect in predicting Y  without recognizing
extraneous variables. On the other hand, the partial
regression coefficient for X j measures its contribution
in predicting Y  when the extraneous effects to X j

generated by all other regressors have been explicitly
accounted for. In all regression models, the remaining
effects of the extraneous variables are represented by
the residual term (e).

Snedecor, G. W. & Cochran W. G. (1967). Statistical
methods (6th ed.). Ames, IA: The Iowa State
University Press.

Winne, P. H. (1983). Distortions of construct validity
in multiple regression analysis. Canadian Journal of
Behavioral Science, 15(3), 187-202.

This research was partially supported by a grant from
Social Sciences and Humanities Research Council of
Canada (SSHRC No. 410-98-1239).

Correspondence should be addressed to
Cam-Loi Huyhn
Department of Psychology
University of Manitoba
Winnipeg, Manitoba, Canada  R3T 2N2
Email:  Huynh@cc.umanitoba.edu.

Multiple Linear Regression Viewpoints
needs your submissions.
See the inside Back cover for
submission details and for
information on how to join the
MLR: GLM SIG and get MLRV.

or check out our website at
h t t p : / / w w w . c o e . u n t . e d u / s c h u m a c k e r / m l r v . h t m


