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of Regression Coefficients
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This paper addresses some difficulties concerning the interpretation of the regression coefficients in simple ad
multiple regression models. The root of the problem liesin the fact that the fitted multiple regression equation is the
result of transforming raw data of the independent variables into residualized scores. In the standard interpretation of
the partial regression coefficients, effects of the residual term have not been explicitly differentiated from those of the
regressors. Alternative interpretations of the regression coefficients are proposed. The recognition of residua and
residualized effects plays an important role in the evaluation of the obtained values of the regression coefficients, R?,
the overall F tests and the construct validity of the multiple regression model.

modd, namdy, the dependent variable (Y), a

least one regressor or indegpendent varidble (X,
j =1, ..., m) andthe unknown error term (g) estimated
by the resicud scores (e = Y - Y) which in tumn
represent the extraneous variables, where Y is the
predcted vdue of Y. Typicdly, the regression slope
coefficient in the simple regression modd Y = a + bX
is defined as, "the amount of the dfference in Y
associaed with a oneunit dfference in X" (Howdl,
1997, p. 242), or "The slope of the line equds the
gan in Y associaed with each 1-unit gan in X"
(Dalington, 1990, p.10). On the other hand, each of
the slope codfficients in the multiple regression mocd
Y =a+bX+...+bX,is cdled a patid regression
coefficient “to make dear tha it is the weght to be
goplied to an indegpendent variable (IV) when one or
more specified IVs are dso in the equation” (Cohen &
Cohen, 1983, p. 83). The codfficient b, ] =1, 2,...,
m, is defined as, "the change in the dependent variable
per unit change in the j" indgpendent vaiable,
assuming dl other independent vaiables ae hdd
constant” (Rawlings, 1988, p. 67). Similar dfinitions
are found in severd textbooks on regression andysis.
It will be argued in this paper that the above def-
initions of b and b, should be used with great care to
avoid misleadng interpretation on the effects of X; in
predcting Y for deta andysis. First, some possible
implications of "holdng dl regressors but one con-
stant” in the multiple regression modd are explored
Next, in an atempt to understand the meanings of
regression codfficients, severd ways to obtain ther
estimaes areinvestigated It will be demonstrated that
the indgpendnt vaiables can be opeaiondly
transformed into the residudized terms in the process
of computing the partid regression coefficients. This
leeds to the redization that a regression andysis
transforms the obta ned deta into another deta set caled
the residudized scores while reproducing the same
vadues for the patid regression coeffidents. As a
result, a simple way to deermine the residudized
soores in multiple regression modds is deve oped

T here are three types of vaiables in a regression
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Before proceadng, however, an explanation of the
terms "residud scores’ and "residudized scores' is in
order. The residud term (€) represents the dfference

between Y and Y as aresult of regressing Y aganst
one or more independent variables (X's); denoted as
e/ 1, &, Or e, , for regression modds involving one
or two regressors (where the first subscript represents
the dependent variable and the subseguent subscripts,
the independent variables). A residudized vaidble is
formed when the residud term (€) is used ether as a
regressor (E) or as a dependent vaiables yiddng
predicted vaues (®y; and ®y ;). The residud scores (€)
cgpture the portion of vaidbility in Y, cdled the
"uncontrolled" extraneous effect of the modd, tha is
not accounted for by dl indgpendent vaiables (X's).
On the other hand, the residudized scores of X, say E
(forany j =1, ..., m), represent the residud term when
X; is regressed on dl other independent variables.
Thus, when Y is regressed on the jth residudized
vaiable the resulting regression coefficient represents
only the effet of X; since the effects of other
indgpendent variables in the origind multiple
regression modd have been "partidled out."

Winne (1969) has studed the problems of
construct vaidty in using multiple regression modds.
He indcated that regressors in such modds do not
represent the constructs described by the origind deta
since the partid regression coefficients are computed
for the residudized scores instead However, he dd not
dscuss how these residudized scores can be interpreted
and andyzed Rather, Winne (1969) recommended tha,
"anchor variables not of drect interest in a research
study be messured and corrdated with residudized
vaiables. This supplementary andysis sheds light on
changes to construct vaidty tha must be known
before interpreting multiple regression andyses' (p.
187). On the contrary, it is suggestedin this paper that
the effects of regressors in multiple regression modd's
are interpreted as those of residudized scores, in the
same way as one would interpret partid corrdation
coefficients. Then, the simple regression eguations of
Y on the residudized variables (cdled the "residudized
regression equaions') are studed to shed light on the
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interpretation of the patid regression coefficients in
the conventiond multiple regression eguetion.
Moreover, the coefficient of determination associaed
with the multiple regression modd is explaned in
terms of the semi-partid coefficients of determination
obtained from the above residudized regression
equations. Findly, the residud plots of the multiple
regression modd and those of the residudized
regression equetions (cdled the patid regression
residud plots) ae examined for modd dagnostics.
These steps are recommended not only for identifying
the effects of "controlled' extraneous varidbles
associaed with the patid regression coefficients and
recapture the same R? but dso for obtaning test
statistics (t for the slopes and overdl F for the fit) that
teke into account the influence of the residud and
residudized variables. For the sake of illustration, dl
numericd anayses are based on the data set in Figure
1, Pand A. In the multiple regression under
consideretion, Test Score (Y) is regressed on
Cumulative GPA (X,) and Study Hour (X,).

Limitations of the
Conventional Interpretations
Wha Happens to Patid Regression Coefficients If
Only Vaues of One Regressor Are Changed?

The man dfference in the definitions of simple
and patid regression coefficients given aove lies in
the requirement that dl but one regressors in the
multiple regression modd are "hed constant.” It is
true tha if vaues of the jth regressor X;; in the
multiple regression eguétion for the ith subject (i = 1,
2, ..., n) is changed by a constant wherees the observed
vaues of remaning regressors ae intact then the
predicted vdue Y, for this particular subject is
modfied by an amount of b,. However, if vaues of X;
in the above example are modfied by a fixed constant
for dl subjects then in the resulting regression
equation, only the intercept term (8 will change (i.e,
vauesof Y, anddl slopesb,, ..., b, reman the same
fori =1, ..., n). Although only vaues of a single
regressor have been modfied, one no longer has the
same regression modd  since the intercept term has
changed The following example serves to illustrae
this point.

Based on the data set in Figure 1, Pand A, three
regression modds are considered, the first with the
origind vdues for Y, X, and X, and the remaning
two, with thelinearly transformed values of X; = X, +
5 and X, = X, + 3. As expected the resulting
regression equations have the same slopes but dfferent
intercepts:

Modd 1a Y =a + bX, + b,X,

=43.651 + 7.301X, + 2.839X,, R =.4105,
Modd 2: ¥ =&, + bX; + b,X,

= 7.145+ 7.301X, + 2.839X,, R* =.4105,
Modd 3: ¥ =a, + bX5 + bX,

=-1.373 + 7.301X, + 2.839X,, R* = .4105.
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Figure 1. Data and Test Statistics for
Regression Models 1aand 1b

Panel A: Data Example

ID Y Xy X,
1 735 35 2.4
2 69.0 2.8 25
3 85.5 3.0 55
4 82.0 3.7 3.1
5 90.0 3.9 5.2
6 84.0 3.1 55
7 86.5 3.3 7.1
8 74.5 2.9 3.6
9 71.5 3.1 55
10 75.5 3.6 4.4
11 80.0 4.0 5.1
12 91.8 35 4.2
13 86.5 3.3 7.2
Mean 81.76 3.36 1.50
SD 7.96 0.36 1.50
r,=.3%4 r,=.34 r,,=.34

Panel B: Common Statistics for
Models 1a and 1b

t

Y SE (p<t)
Clintercept | 17.941 2.433
(.0322)

X, 5.082 1.437
(.1786)

X, 1232 2.305
(.0416)

Panel C: Goodness-of-Fit Statistics
for Models 1a and 1b

SSR MSR F

Model (SST) R2  (MSE) (p<F)
1a 33815 041 167.08  3.78

(823.77) (44.15)  (.0547)

1b 9393373 099 31311.24 709.20

(94419.35) (44.15)  (.0001)

Note. IV = Independent variable, SE = Standard error of
the regression coefficient estimae, SSR = Regression
sum of squares, SST = Totd sum of sguares, MSR =
Regression mean sguares, M SE = Error mean square.

(Note that & =& - 5b, and a, = @ - 5b; - 3b,.) For
example, given X, = 3.50 and X, = 2.40 for the first
subject then ¥ = 76.02 and e = 2.52 in the three
modds. Typicdly, the same interpretation gpplies to
the partid regression coefficients in these modds, say,
"If X, is heddconstant, then each 1-unit increase in X,

leads to an average incresse in Y of 7.301 units.”
However, if the units of measurement for any
independent variable has been changed, not only a new
regression modd with a dfferent intercept term is
needed but dso the statisticd significance of the
intercept term may dso be dtered (In the three modds
above, t(a) =2.433, p < .03, t(a) = 0.167, p > .870
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andt(a) =-0.032, p > .975, respectively). Apparently,
the standerd interpretation is focussed on the case in
which one wants to compute a predcted vaue Y,
given a cetain vaue of X;;, i =1, 2, ..., n, for eech
subject, one & a time However, the intercept term
should be considered when the scdes of measurement
have been changed for severd, if not dl, subjects.
Hence, the above statement could be modfied as, “For
each observation i, if X,; is hdd constant, then a 1-
unit increese in X,; leads to an incresse in Y ; of
7.301 units. On the other hand, if dl vdues of X, ae
changed by the same constant ¢, then a 1-unit increase
in Xy; leads to an average incresse in ¥, of (43.651 -
7.301c) units.”

The Same Vdues of Patid Regression Coefficients
May Not Yiedthe Same Regression Modds

The adove three regression modds have dfferent
vaues for the intercept teem but otherwise identicd
with respect to the test statistics of t for regression
coefficients as well as overdl F and R? for goodhess of
fit (as reported for Modd 1la in Figure 1, Pand C).
The regression coefficdents in Modd la can be
reproduced by regressing Y on C, X, and X, where C
is adummy variable of constant vdues, say C =1,

Modd 1b: Y =aC + b,X; + bX,

=43.651C + 7.301X,; + 2.839X,, R? =.995.

Although thet tests for the regression coefficients
in Modds laand 1b are identicd (Figure 1, Pand B),
they ae substantidly dfferent with respect to
goodhess-of-fit statistics (Figure 1, Pand C). Modd
la yidds poor fit with smal R® and margindly
significant overdl F. In Modd 1a R? represents the
ratio of sum of sguares of regression (SSR) over the
corrected tota sum of square (SST,). Since Modd 1b
has no intercept term, R? has been reddfined by using
the uncorrected tota sum of square (SST,). As a result,
both its R? and F have increased remarkably! It can be
explaned tha this phenomenon occurs when
extraneous effects indgpendent of the predctors have
been accounted for in the regression modd. Hence the
significance test of the falure to control for the impact
of extraneous variables under the null hypothesis can
be conducted by means of the following F test with
degrees of freedom (g, df,):

_ R¥(Moddl.1b) - R*(Model.1a) - df,

F 2
1- R%(Modél.1b) q

1,

where f, =theresidua degree of freedom in Modd 1b
and q = (the dfference in number of regressors in
Modds 1b and 18 = 1 (Dalington, 1990, pp. 124-
125; Cohen and Cohen, 1983, pp. 145-151). For the
dtaa hand, F = (.9610 - .2652)(11) = 7.653, p <
.00001.
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Different Ways to Obtain Values
of the Regression Coefficients

In an dtempt to enhance the understandng, and
thus improving the interpretations, of simple and
patiad regression coefficients, it is necessay to
investigate severd ways to obtain the same vaues of
these coefficients for a given data set. Some of the
steps presented below have been dscussed dsewhere
(Drgper and Smith, pp. 196-201) but for a dfferent
objective, namdy, the confirmaion of the lesst-
squares results by vaious methods rether than the
dfferencein ther interpretations.

As presented in Table 1, thirteen regression
mode's can be computed on the basis of two predictors
X, and X, (in Figure 1, Pand A). The three modds g,
h and k ae the pivot modds against which dl
remaning modds will be compared For identification
purposes, the subscripts "g", "h" and "k" are atached
to the regression coefficients when necessay. The
predcted vaues ¥ and X;, j =1, 2, in steps h, k, 4
and 5 are used as dependent variables (Yy,, Yy,) or
regressors ( X,, and X,) in steps 6 and 7, respectively.
For the remaning modds (steps 8 to 13), ether the
residud scores (obtained in steps h and k) or Y ae
regressed on the residudized scores (E; obtaned in
steps 4 and 5) and X;. The intercept terms are present
in dl regression modds with raw data, except in steps
8 and 9 where only the residud and residuaized scores
areinvolved

The regression modds in Table 1 were computed
using both rav and standardzed deta with identica
vaiables. All the regression modds with standerd zed
scores must be fitted without the intercept terms (The
computed vaues of the intercegpt terms would be zero
had they been included). The results in Table 2
illustrate tha it is the vaiable type, not the daa
metric, which determines the d ements constituting the
"extraneous variables."

Approach 1 (Based on Raw Data)

The simple regression coefficients for X; and X,
ae 7.775 (step h) and 2.911 (step k), respectivdy.
Ther patid counterpats ae by ,, by, = 7.301 and
By 21 by =2.839 (step g).

Approach 2 (Based on Standard zed Scores)

For simple regression modds (in steps h and k),
the simple, or zero-order, corrdations of Y and X; are
used insteed of by (i.e, ry; 1, =.3545and 1y, 1, =
.5476). For multiple regression modds, each ry;
denotes the patid corrdaion of Y and X, or the
corrdaion of Y and X;, given that X, has dready
entered the modd (ry;, gy = .3329, and ry,; Iy =
.5341 in step g).
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Table 1. Regression Modd's for Comparing
Regression/Corrd ation Coefficients and R®.

Step Regression Modd s

Y isregressed on X, and X,
Y isregressedon X, (yiddng Yy, ande, )
Y is regressed on X, (yiddng Yy, ande, ,)
X, is regressed on X, (yiddng X, and E,)
X, is regressed on X, (yiddng X, andE,)
¥ (from step h) is regressed on X,

(from step 4)
7| Yy (from step k) is regressed on X,
(from step 5)
8 | ey, (from step h) is regressed on E,
(from step 4) (without the intercept term)
9 |ey, (from step k) is regressed on E,
(from step 5) (without the intercept term)
10 |Y isregressed on E, (from step 4)
11 |Y isregressed on E, (from step 5)
12 |Y isregressed on X, and E; (from step 4)
Y is regressed on X, and E, (from step 5)

o 01~ X TSQ

13

Approach 3 (Based on Pred cted and
Residudized Scores)

The same vdues of the slopecorrdation
coefficients in the simple and multiple regression
modds can adso be obtaned by fitting regression
modds on the basis of predcted (Y) and resicudized
soores. In step 6, by regressing Y., obtainedin step h
on X, in step 4, the simple regression/corrdaion
coefficients in step h ae recovered Similaly, the
results in step k are reproduced in step 7 by regressing
Y., (step k) on X, (step 5). The two partid
regression/corrdation coeffidents in step g ae
reclamed by fitting two simple regression modds in
terms of residuaized scores (&y; and E)) in steps 8 and
9, respectivey.

Identifying the Extraneous Variables in
the Multiple Regression Model
What Are the Residuaized Scores for X;?

A much simple procedure to obtan the
residudized scores for any regressor and show tha its
effect can be messured by the correspondng patid
regression coefficient is described bel ow.

Step (i). Fit X; on the remaining regressors.

X, =a+bX; + ... + b X5+ buX.,
For Modd 1a this is redized by obtaning the
regression equations in steps 4 (for X,) and 5 (for X,)

in Table 2.
Step (ii). Obtain the residuaized scores for X;:

E=X- X forj=12 .., m.
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Thus, in the example, the residud terms obtained
by fitting the regression equations in steps 4 and 5
(Table 2) yidd the residudized scores for X, and X,
respectively.

Step (iii). Reproduce the patid regression
coefficient for X;, by fitting the regression equaions in
steps 8 and 9 (or steps 10 and 11, Table 2).
Alternatively, they can be computed as:

b, = Cov(Y, E)/S*E) = r(Y,EXS(Y)/S(E)},

where E; = the jth residudized varidble, Cov(Y, E) =
covaiance of Y and E;, S*(E;) = sample variance of E,
S(Y) = sample standard deviaion of Y, and r(Y,E) =
the zero-order correlation of Y and E. For the example,
S(Y) =7.9603, S(E,) = .3626, S(E,) = 1.496, r(Y,E,)
= .3325 and r(Y,E,) = .5337. Therefore, the patid
regression coefficients for X, and X, are:

b, = r(Y,E){S(Y)/S(E)} = (.33)(7.96)/.36 = 7.30,
and b, = r(Y,E)/{S(Y)/S(E,)}=(.53)(7.96)/1.49 = 2.84,
respectively.

Understand ng the Simple Regression
Corrdaion Coefficient

So fa, the regression and corrdaion coefficients
in asimple regression modd play the same roles. The
same vdues of simple regression/corrdetion
coefficients are reproduced in steps h and 6 (Table 2)
because the predcted vaues of Y and Y., in these
equaions are determined by X, independently of X,.
Andogously, the regression/corrdaion coefficients in
steps k and 7 are identicd since the rdevant predcted
vaues of ¥ and Y, are determined by X, and free of
X;. Since the dfferent vdues of regression and
corrdaion coefficients are simply due to data metrics,
their meanings should be interpreted similaly. The
simple corrdaion coefficient has been defined as "a
messure of the degree of doseness of the linear
rdeionship between two variables' (Snedecor and
Cochran, 1967, p. 173). This staement remans
meaningful in the context of simple regression modds
with ethe raw or standardized scores. A linesr
rdaionship is one in which the vaiaion in Y,
produced by a specified change in X, is constant. The
“linear rdaionship” between X and Y in the simple
regression modd with the intercept has two
components, constant (determined by the intercept) and
linearly changesble (accounted for by the slope).
Therefore, the slope regression coefficient in a simple
regression modd can be intepreted as, "In rawv dita
metric, the slope b represents the rdaive weght of X

to account for the linear variability in Y that is free
of the unknown extraneous effects represented by the
resicud e=Y -Y .

In other words, bX represents the linear trend of,

or portion of the linear variation in, the vaues of Y
tha is not atributed to unknown extraneous effects.
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Table 2. Results and Test Statistics for the Regression Models in Table 1.

Regression Model Regression Model SSR F

Step (Raw Data) (Standardized) (SST) R2 | MSR MSE (p<F)
g ¥ =g+ byX, + byX, ¥ =1 X, + 1%, 33815 .4105[169.07 44.15 3.83
=43.652 + 7.301X, +2.839X, | =.3329X, + .5341X, | (823.77) (.05)

h ¥ =a +bX, ¢ =rx,=.3545%, | 10350 .1256|103.50 60.06 1.72
= 55.606 + 7.775X, (823.77) (:00)

k ¥ =a+bX, ¥ =rX,=.5476X, | 247.03 .2999(247.03 4806 5.14
= 67.874 + 2.911X, (823.77) (.09

4 X, =a + by,X, X, =1, X, 0 0016 O 014 0.02
=3.317 + .010X, =.0404X, (1.71) (-89)

5 X.=a +b, X . =r. X 005 .0016| 004 242 002
4210 + 160X, = |0404X, (29.15) (:89)

6 Yyi=a+b X, Yyi=tosa 017 .0016| 017 861 0.02
= 55.606 + 7.775 X, =.3545 X, (103.50) (:89)

7 Yvo=a+bX, Vvo=tiso 040 .0016| 040 2055 0.02
= 67.874 + 2.911 X, = 5476 X, (247.03) (:89)

8 21 =byE By =g 234.65 .1580(234.65 37.36 6.28
=7.301E, = .3329E, (720.27) (.03)

9 By, = by, By, =I5 91.12 .3258| 91.12 37.36 2.44
=2.839E, = .5341E, (576.74) (.14)

10 ¥ =Y +byE ¥ =rE 91.12 .1106| 91.12 61.05 1.49
=81.764 + 7.301E, = .3329E, (823.77) (-29)

11 ¥ =Y +b,E ¥ =1,E, 234.65 .2840(234.65 49.09 4.78
=81.764 + 2.839E, = .5341E, (823.77) (:05)

12 ¥ =g+ bX, + byE, Y =0X, + 1, 33815 .4105|169.07 44.15 3.83
=67.874 + 2.911X, + 7.301E, | =.5476X,+ .3329E, | (823.77) (:05)

¥ =g+ bX, + bF, Y =0X, + 6, 33815 .4105|169.07 44.15 3.83

13 | =55.606 + 7.775X, + 2.839E, | =.3545X, + .5341E, | (823.77) (.05)

Note. For variables with double subscripts, the first subscript refers to the dependent variable and the second

subscript denotes the regressor.

Moreover, a+ bX constitutes the vaue of ¥ with the
maximum vaue of R? if it can be assumed that the
influence of the unknown extraneous effects is equdly
dstributed to dl membes of the sample This
assumption can be checked by running the regression
modd without the intercept that contans X and a
dummy vaiable C of fixed vadues. As a result, the
same vdue for b in the origind simple regression
equation is reproduced in the multiple regression modd
without the intercept. For the regression modds in
steps h and k, by letting C = 1 for dl subjects, say,
we get

Y =3, + bX, =55.606C + 7.775X,,

R? =.9954, (revisedstep h)
Y =3C + bX, = 67.874C + 2.911X,,
R? =.9939, (revised step k)

The vaues of R? have been increased dramatically
(as compared to those reported for steps h and k in
Table 2) to reflect the fact that extraneous effects have
been (atificidly or stetisticdly) controlled
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Understand ng the Partid Regression

Corrdation Coefficient

The residud term in step h is regressed on the
residud term in step 4 to produce the residudized
scores By, in step 8, representing the portion of
vaidion in Y that is free of X,. Andogously, the
residua terms in steps k and 5 are used to yidd the
residualized scores &y, in step 9 representing the part
of vaiaion in Y tha is not influenced by X,.
Therefore, by, (in steps g and 8) denotes the rdaive
weight of X, in the raw data metric (or ry, the simple
corrdaion between Y and X, in terms of standerd zed
scores) that is free of X,. Andogously, b, (in steps g
and 9) signifies the rdative weight of X, in raw dita
metric (or r,,, the simple corrd aion between Y and X,
based on standard zed scores) that is free of X,. Since
the patid regression coefficents in step g can be
reclamed as two simple regression codfficients in
steps 8 and 9, the simple and partid regression
coefficients should be logicaly defined and explained
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similaly. This is the goproach adopted in the
following dscussion.

The patid corrdaion codficient, say r,,5 IS
commonly defined as, "the corrdaion between
vaiables 1 and 2 in a cross section in indviduds dl
having the same vadue of vaiable 3" (Snedecor and
Cochran, 1967, p. 400). In the regression context, the
patid corrdaion ry, 5 say, represents the
portion of the corrdation of Y and X, which has no
Oependence on vaues of the variables X, ..., X, and
extraneous effects. In the same vein of Iogic, the
patid regression coefficients for X; in a multiple
regression modd can be intepreted as, "In raw data
metric, the slope by represents the relaive weight of X;

to account for the linear vaiability in Y tha is free
of the effects due to other regressors in the modd and
the unknown extraneous effects."

The effects due to other regressors are estimated by
the residualized scores &, ; (steps 8 and 9) wheress the
unknown extraneous effects ae estimaed by the
residud Y - Y (step g). The meming of this
interpretation is further explained by the two multiple
regression equaions in steps 12 and 13. The patid
regression coefficient b, in step 12 represents the
simple regression coefficient (or reaive weight) of X,
wheress b,,, the patid regression coefficient in step g,
is actudly transformed into an extraneous effect, being
the slope of a residudized vaiable (E;). A similar
interpretation gpplies to b, and b,, in step 13. The
transformation of regressors into residud and
residudized variables in the multiple regression modds
is not expected to influence the test statistics. Indeed,
as shown in Table 2, R? the sum of squares, mean
squares, and F of the three modds g, 12 and 13 ae
identicd.

As shown above, had the extraneous effects been
"controlled' by a dummy vaiable say C = 1, the
regression modd in step g can be reproduced but with
amuch greater vaue of R?,

Implications of Taking Extraneous
Variables into Consideration

There are a lesst three pertinent outcomes rendered
by the recognition of extraneous effects in the
regression modd: (i) an undastandng of the
limitations in the construct vdidty of multiple
regression modds, (ii) a proper decomposition for the
coefficient of degerminaion (R?», and (iii) an
improvement in the evduetion of estimates of the
regression/corrdation coefficents and the overd!l F
tests.

Construct Vdidty in Multiple Regression Andysis
The extent to which the regressors can be used to
meaningfully explain and accuratdy predct vaues of
the dependent variable represents the construct vaidty
of the regression modd. The andysis so far indcaes
that, dthough the regressors (X, ..., X, ae used in
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the multiple regressions, the regression slopes and R?
messure the contributions of the residudized scores
(E;, ..., E,) or a mixture between regressors and
residudized scores unless X, ..., X,, ae uncorrd aed
Hence the construct vdidty in multiple regression
andysis may be low. The following illustration is
adepted from Winne (1989), given the results in Table
2. From the three basic regression modds (in steps g,
h and k), how do the rdaionships among Y, X; and
X, be explaned? One may be tempted to arive a the
following conclusions:

(i) If the entry order was X; and X, then X;
accounted for 12.56% of the variability in Y and X,
accounted for an addtiona 28.49% of the varigbility in
Y (since R? = .4105 in step g, R? = .1256 in step h
and .4105 - .1256 = .2849). On the other hand, if the
entry ordxr was X, and X; then X, accounted for
29.99% of the variability in Y and X, accounted for
the remaining 11.06% of the variancein Y.

(i) When dl vaidles ae transformed to
standardzed scores, an increment of one standad
deviaion in X, is associaed with a 33.29% incresse in
Y. Similaly, an increment of one standard deviation in
X, yidds anincreasein Y by 53.41 percent.

Although intuitivdy meaningful, both of these
statements are wrong with respect to the revised
interpretations of  patid  regression/corrdetion
coefficients! In thefirst statement (i), for the (X;, X,)-
entry order, X, dd not account for the addtiond
28.49% of the vaiability in Y but the residudized
scores E, dd The statement is correct if X, is replaced
by E,. This can be seen by following the series of
equaions in steps h, 11 and 13 (dther raw deta or
standard zed scores). The last modd (step 13) contains
the same vaues for the slopes and the sum of R”s
reported for the combinaion of modds h and 11.
Similar aguments apply to the (X,, X,)-entry order in
the second part of statement (i) above based on the
results for steps k, 10 and 12. Statement (ii) is wrong
since X, and X, are corrd ated. The statement is correct
by ether of the following modficaions. First, the
percentages are changed to 35.45% and 54.76% for X,
and X,, respectivey (see steps h and k). The pairs
(33.29%, 53.41%) and (35.45%, 54.76%) ae quite
cose to each other since the corrdation between X,
and X, is quite smdl (r;, = .04). Greaier dfference is
expected for larger ry,. Altenaivdy, X; and X, ae
replaced by E; and E,, respectivdy (see steps 10 and
11).

The mistakes made in staements (i) and (ii)
presage a serious eror tha mateidizes when one
atempts to assess the statistica significance of the
slopes and determine the proportiond contributions of
the regressors to variaionsin Y in multiple regression
models. For these purposes, the results of Table 2
should be obtained and examined in conducting the
stetisticd evduation of the standard multiple
regression modd. In paticular, the regression modds
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in steps 10 and 11 in terms of residudized scores
should be used for studying the statistica inference of
the patid regression/corrdation coefficents. We
return to this point laer. Meanwhile, the following
dscussion saves to illustrae how to andyze the
multiple regression modd teking into consideraion
the effects of residudized scores and extraneous factors.

Decomposition of the Coefficient of Determination

The decomposition of R? for the multiple
regression modd is given by Engdhart (1936) as, say
form=3,

R? = Bv,lz + Bv,zz + Bv,sz + 2B,1By 1

+ 2B 1By als + 2By 2Byl @
where _,; = the standadzed patid regression

coeffident of X; and r, , = the zero-order correlaion of
X; and X,. From this eguation, it was argued that the
tota vaiancein Y is reproduced by the drect variance
(indcated by the betas squared) and shared variance
(denoted by twice the sum of the corrdaiond cross
products) of the regressors. Engdhat (1936) argued
that the shared variance is dvided among each of the
regressors in the same proportions as the drect
variance. Chase (1960) modfied this equation to be

R? = (B,+* + BBtz + BraBraris)
+ (B2" + BrabBy iz + BeoBrsrzs)
+ (Bs + ByaBraria t Brobyara)- @

so that “the totd drect and shared variance in the
ariterion assodiated with the i indgpendent variable is
given by the square of the betafor thei™ variable, plus
haf of dl the covariance terms in formula (1) which
indude the beta for the i" varidbleg® (p. 266). The
decomposition of R? for step g in Table 2 yidds:

Direct effect of X;: B,,* = (.3329)* =.11082,
Direct effect of X,: B, ,° = (.5341)* = .28526,
Shared effect of X, and X,

[B¢ 1By ot1 2= (:3329)(.5341)(.04044) = .00719],
Totd effect of X,: .11082 + .00719 =.11802,
Totd effect of X,: .28526 + .00719 = .29245,
The multiple coefficient of determination:

R? =.11802 + .29245 = .41047.

Although this decomposition reproduces the
multiple coefficient of determination (R?), it is not
useful in determining the contribution of the
residudized vaidbles since the coeffidents of
determination in steps 10 and 11 (Table 2) are not
equd to the totd effects of X; and X,, assumed in (2)
as the ocomponents of R% Moreover, the
decomposition (2) "has none of the most important
properties that a "contribution to vaiance' has when
variables are uncorrdated’ (Darlington, 1968, p. 170).
A more gppropriae patition of R? is based on the
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semi-patid coefficients of determinaion. The generd
form of the semi-patid coefficient of determination
for the ™ resicudized varieble (R .) isR?,; » = R* -
r’y;, forj #j* =1, ..., m, where R* = the (multiple)
coefficient of determination of the full modd and ry; =
the zero-order corration of Y and X;. The semi-partid
coefficients of daerminaion for X; and X, in the
example ae R%, ,, = R? - r3,; = .4105 - (.3545)* =
2849, and R%,,, = R® - 1%, = .4105 - (.5476)" =
.1106, respectively. As a result, the coefficient of
determination in the multiple regression modd can be
expressed as R? = {R?% 1, + R% 5, + Py + Py ;}/2.

Effects of Extraneous Variables on Statisticd Inference

In andyzing the goodness of fit of the multiple
regression modd, the researcher would get a dearer
understandng of the role played by patid regression
coefficients by fitting the conventionad (step g) and
residudized versions (steps 10 and 11). The modd in
step g has the advantage tha the regressors ae
expressed in tems of the origind unit of
messurement. Hence, with a reasonable R?, it can be
used for predcting Y. However, in assessing the
contributions of the regressors to vaiaions in Y, the
regression coefficients of the residudized scores in
steps 10 and 11 are more meaningful and should be
used

For the multiple regression modd in step g, the
slope of X, is sttisticdly significant a a = .05 [t(b,)
= 2.305, p < .05] whereas that of X; is not [t(b,) =
1.437, p > .18]. However, the significance of X, may
be misleading in light of the overd| F statistic (p >
.05, Table 2). On the othe hand, the regression
modds of Y using the residudized variables in steps
10 and 11 fadilitate the evduaion of the statisticd
inference on the regressors in the multiple regression
mode (step g). Evidently, both E; and E, ae not
staisticdly significant (p > .25 and .05, respectivey
in Table 2). Whereas the multi-dmensiond graph of Y
aganst X's tha dso contains the regression line for
the multiple modd in step g is had to daw, the
regression lines of the residudized varidbles can be
essily depicted since the simple modds 10 and 11
involve only single regressors (E, or E,) and their
intercept term is equd to the sample meaen of Y. The
plot of the regression line for step 10, say, is the same
& the plot of Y on X, a given vdues of X, (as
illustrated by Mullet, 1972) but with much less ffort.

Conclusions

It is suggested tha the patid regression
coefficient by represent the effect of the j'" resicuaized
vaiable which is computed as the dfference between
X; andits pred cted val ues obtained by regressing X; on
dl other independent vaiables in the multiple
regression modd. The revised interpretations of the
regression codfficients are based not only on the
mathematicd properties of the regression eguation but
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aso on the sources of the vaues reported by such an
equaion. The proposed interpretations of simple and
patid regression coefficients reflect the same
meanings conveyed by their correspondng corrdation
coefficients. The consideration of residudized effects in
regression anaysis leads to explanaions tha are more
uniform in terminologies for both simple and patid
regression coefficients. Moreover, it endbles a
recognition of low construct vdidty in regression
moddling and sheds light on how to andyze the test

Regression Coefficients

staistics in fitting regression modds. In the simple
regression modd, due to the lack of residudized
vaiables, the simple regression coefficient for X;
measures its effect in predcting Y without recognizing
extraneous vaiables. On the other hand the partid
regression coefficient for X; measures its contribution
in predcting Y when the extraneous effects to X;
generaed by dl other regressors have been explicitly
accounted for. In dl regression modd's, the remaining
effects of the extraneous variables are represented by
theresidud term (e).
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