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Outlier Lies: An Illustrative Example of Identifying  
Outliers and Applying Robust Models  

 
Karl Ho, University of North Texas 

Jimmie R. Naugher, University of North Texas 
The presence of outliers can contribute to serious deviance in findings of statistical models.  In this study, we illustrate 
how a minor, typographical error in the data could make a standard OLS model “lie” in the estimates and model fit.  We 
propose robust techniques that are insensitive to extreme, outlying cases and provide better predictions.  With 
implementation examples, we demonstrate how robust technique improves estimations over conventional models based 
on normality and outlier-free assumptions. 

he possibility of outliers is an important 
consideration when applying regression statistics 
such as R2 and the Pearson product moment 
correlation coefficient (Huber 1981, Hempel et al 

1986).  We provide an example in this article that 
illustrates how dramatic the influence of only a tiny 
portion of the data can have on the model estimate and 
goodness of fit statistics.  In the following analysis, we 
demonstrate that with two outliers included in a data set of 
48 observations, only 15% of the variation in the 
dependent variable is accounted for by the differences on 
the independent variable (r = .39 and r2 = .15, N=48).  
However, when the two outliers are removed, 48% of the 
variation is accounted for (r = .69 and r2 = .48, N=46). 
 The data are from a survey of metropolitan colleges 
and universities conducted by the Office of University 
Planning at the University of North Texas.  The 
institutions ranged from some with essentially open 
admissions to those with selective admissions criteria.  The 
independent variable is the institution’s average SAT score 
for new freshmen and the dependent variable is the 
institution’s six-year graduation rate.  As expected, there 
was a strong linear relationship between the average SAT 
score for new freshmen and the graduation rates.  
However, only two outliers can hide this fact in terms of r 
and r2 analysis.  There are three purposes to this article: 
• To illustrate how only two outliers can have a dramatic 

influence on r and r2 values. 
• To demonstrate that outliers can be identified by visual 

inspection of the scattergram, provided the difference 
is extreme enough. 

• To point to statistical tools that provide more reliable 
statistical means to identify outliers than visual 
inspection alone. 

 The reported SAT averages ranged from 464 to 1152.  
The reported graduation rates ranged from 12.0% to 
74.4%.  The outliers reported the two lowest average SAT 
scores with relatively high graduation rates, i.e., an SAT of 
464 with a graduation rate of 44.1% (near the middle) and 
an SAT of 598 with a graduation rate of 72.0% (near the 
top).  Institutions were requested to use the total SAT for 
averages, for which 400 is the lowest possible value.  An 
average SAT of 464 or 598 is not believable.  (Probably a 
clerk recorded either the math SAT or verbal SAT instead 
of the total SAT.  Doubling the two reported SAT values 
of 464 and 598 yields values that fit well with the 
graduation rates.) 

 Figure 1 is based on the 48 cases that include the two 
outliers.  The SAT values and graduation rates are plotted 
as a graph and the resulting regression line is plotted.  
Note how the paired values of SAT=464 and graduation 
rate=44.1 and SAT=598 and graduation rate=72.0 are 
isolated in the top left corner of the graph.  The two points 
“lie outside” the general pattern formed by the other cases.  
The R2 is 0.1523. 
 Figure 2 is based on 46 cases, with the two outliers 
excluded.  The SAT values and graduation rates as shown 
in Table 1 are plotted as a graph with the regression line.  
Note how much better the fit of the regression line with 
the two outlying cases discarded (R2 =0.4735). 
 

Identifying and Dealing with Outliers 
 Apart from visual methods, statistical tools for 
identifying regression outliers abound.  The more 
commonly known are Mahalanobis distance and Cook’s 
distance.  The former measures the distance of a case from 
the centroid of the remaining cases where centroid is the 
point created by the means of all variables in a 
multidimensional space.  
 
Mahalonobis distance = (n - 1)( hi – 1/n) 
 
where n is the number of observations and hi is the 
leverage value for ith case derived from the diagonal of the 
hat matrix (X′X)-1X′. 
 Cook’s distance is another influence measure that 
reflects the change in the estimates of regression 
coefficients if the ith case is removed. 
 
  Cook = (h x deleted residual square) 
      (k x residual mean square) 
 
 Figure 3 vividly depicts the outlying observations of 
the 47th and 48th cases, which Mahalanobis distances are 
6.052 and 12.104, respectively, indicating a departure 
from other cases.  Cook’s distances for the two cases are 
1.039 and 0.664, as compared with the others falling 
below 0.2. 
 To circumvent effects of outlying observations, one 
could remove those cases from the sample, but this 
sacrifices important information about the outliers.  
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Table 1. SAT scores and  
     Graduation Rate (GRADRATE) 
 

Case  SAT GRADRA 
1 1152.00 74.40 
2 1121.00 69.00 
3 1099.00 69.00 
4 1069.00 39.00 
5 1060.00 68.00 
6 1050.00 53.50 
7 1044.00 34.00 
8 1028.00 41.80 
9 1027.00 49.00 

10 1026.00 30.00 
11 1025.00 47.00 
12 1019.00 69.00 
13 1009.00 46.00 
14 1006.00 50.00 
15 1004.00 48.00 
16 1000.00 27.00 
17 1000.00 45.00 
18  998.00 64.00 
19  980.00 53.00 
20  977.00 34.00 
21  968.00 32.00 
22  958.00 45.00 
23  953.00 46.00 
24  927.00 47.00 
25  921.00 28.00 
26  919.00 44.00 
27  918.00 36.00 
28  917.00 46.50 
29  900.00 50.00 
30  892.00 51.00 
31  890.00 29.00 
32  885.00 25.40 
33  876.00 31.00 
34  873.00 44.00 
35  866.00 41.00 
36  857.00 23.00 
37  855.00 39.00 
38  846.00 37.00 
39  831.00 23.00 
40  809.00 32.00 
41  806.00 12.00 
42  799.00 27.00 
43  795.00 42.40 
44  777.00 41.00 
45  760.00 23.00 
46  677.00 17.00 
47  598.00 72.00 
48  464.00 44.10 

 
Deletion of outliers should not be contemplated when the 
number of cases is substantial.  A more positive treatment 
is to apply Robust Regression techniques that minimize 
influence of outliers for model estimation. 
 

 

 
 

 
 
 One of the Robust Regression modeling techniques is 
based on an MM-estimate computational strategy 
introduced by Yohai, Stahel and Zamar (1991).  The 
Robust MM Regression method generates highly  
robust estimates with minimized influence of the outlying 
cases. 
 Table 2 lists the model estimates and goodness of fit of 
the OLS model and Robust MM model using only the 
SAT score the predict the graduation rate.  Notice that the 
intercept is not statistically significant in the former model.  
While keeping the two outlying 

R2 = .1523 

Reported Average SAT 
Figure 1. Outliers In: Scattergram of Average 
SAT and Graduation Rate.  

Reported Average SAT 
Figure 2. Outliers Out: Scattergram of Average 
SAT and Graduation Rate.  

R2 = .4735 
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Figure 3. Mahalanobis Distinaces and Cook’s Distances. 
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Figure 4. Comparing Densities of Residuals between Robust MM-estimator and Least Square 
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Figure 5.  Comparing OLS and Various Robust Estimators 
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Table 2. Comparison of OLS and Robust Models 
 
 
OLS 

 
Value 

Standard 
Error 

 
t value

 
Pr(>|t|) 

(Intercept) 1.9170 14.2486 0.135 .893564
   SAT 0.0440 0.0153 2.875 .006098

LS Fit : 0.1523    

Robust MM     
(Intercept) -48.2586 16.8244 -2.868 .006209
   SAT 0.0960 0.0178 5.382 .000002
LS Fit : 0.3151    
 
cases, namely the 47th and 48th, the Robust MM model 
does not assume any "manual error” in the data entry 
but discounts their high influence in modeling the data.  
The model fit is improved by more than 100 percent. 
 Figure 4 illustrates how the density of residuals of 
the robust model is compared to that of the OLS which 
has bumps on both sides.  Comparatively, the robust 
estimate is well-centered at zero and pushes the outliers 
farther away to the right.  
 There are other Robust estimators like Minimum 
Absolute Residual (L1) Regression, Least Trimmed 
Squares (LTS), M-estimation(RREG) and Robust Sim- 

ple Regression by Biweight (Bisquare).  Figure 5 
demonstrates the relative fit of these robust models  
compared to OLS. These models can all be 
implemented using available functions in the  S-PLUS 
2000 statistical software package (Mathsoft Data 
Analysis Products Division,  1999). 
 In conclusion, this article gives a simple illustration 
of implementing robust models over conventional OLS 
in the presence of outliers.  We demonstrated how 
outliers can be identified with simple tools and how to 
deal with data plagued with outlying cases using robust 
modeling techniques. 
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accomplishment these days.  They were blessed with 
four children, Jeremy, Max II, Miranda, and Johanna, 
who are as brilliant, creative, and talented as their dad.  
Max Martin was my dear friend for almost 20 years.  I 
had the utmost respect and admiration for him both 
professionally and personally.  I am a better person for 
having known him and I will miss him deeply.  Max, 
from all of us, “Well done, my friend.  Well done.” 
 

Nancy K. Martin 
Associate Dean for Undergraduate Studies 

College of Education & Human Development 
The University of Texas at San Antonio 


