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Problems with Probabilistic Hindsight: A Comparison of 
Methods for Retrospective Statistical Power Analysis  
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Kristine Y. Hogarty, University of South Florida 
In contrast to prospective uses of power analysis, retrospective power analysis provides an estimate of the statistical 
power of a hypothesis test after an investigation has been conducted. The purpose of this research was to 
empirically investigate the bias and sampling errors of three point estimators of retrospective power and the 
confidence band coverage of an interval estimate approach. Monte Carlo methods were used to investigate a broad 
range of research designs and population effect sizes that may be encountered in field research. The results suggest 
that none of the retrospective power estimation techniques were effective across all of the conditions examined. For 
point estimates, the “unbiased” and “median unbiased” estimators showed improved performance relative to the 
plug-in estimator, but these procedures were not completely free from bias except under large sample sizes and 
large effect sizes (as the statistical power approaches unity). Further the RMSE of these estimates suggests large 
amounts of sampling error for all three of the point estimators. The interval estimates showed good confidence band 
coverage under most conditions examined, but the width of the bands suggests that they are relatively uninformative 
except for large sample and large effect size conditions.  
 

tatistical power analysis is useful from both 
prospective and retrospective viewpoints. 
Prospectively, power analysis is used in the 
planning of inquiry, typically to provide an 

estimate of the sample size required to obtain a desired 
level of statistical power under an assumed population 
effect size, experimental design and nominal alpha 
level. In contrast, retrospective uses of power analysis 
involve a consideration of statistical power after 
inquiry has been completed. This important application 
of power analysis is somewhat more complicated than 
the prospective uses. 

 
Two Views on Retrospective Power 

 Recent literature suggests that retrospective power 
analysis is conceptualized in two very different forms. 
Characteristic of one approach, Zumbo and Hubley 
(1998) and Ottenbacher and Maas (1999) present 
Bayesian power estimation techniques directed at 
determining the probability of the null hypothesis 
being false, given that the null has been rejected, that is 
Pr (Ho=false|rejected Ho). While this probability is of 
importance in applied research, it's practical 
applications appear to be limited because of the 
unknown proportions of true and false null hypotheses 
in any field of inquiry (Zumbo & Hubley, 1998). This 
approach also introduces a different formal definition 
of “power” than is typically considered in inferential 
statistics (i.e., power usually represents Pr (Ho will be 
rejected|Ho=false) which is equal to 1 – β). These two 
probabilities are often very different. Because this 
conceptualization of retrospective power is not 
practical, it will not be further addressed here. 

The second approach to retrospective power 
analysis (Gerard, Smith & Weerakkody, 1998; Steiger 
& Fouladi, 1997; Brewer & Sindelar, 1987) aims to 
estimate the statistical power of a hypothesis test after 
the test has been conducted. That is, information 

obtained from a particular study may be used to 
estimate the population effect size, which in turn may 
be used (in concert with the study’s sample size and 
nominal alpha level) to estimate the power under 
which the research was conducted. This approach to 
retrospective power analysis appears to satisfy a 
practical need in applied research and retains the 
familiar formal definition of power (i.e., 1 – β). As 
applied researchers, we have been urged to consider 
the effect sizes associated with our data (e.g., Kirk, 
1996; Harlow, Muliak & Steiger, 1997), in conjunction 
with the reject/fail-to-reject decisions of our hypothesis 
tests. The second approach to retrospective power 
analysis simply extends our use of sample effect sizes 
to provide estimates of power. However, the estimation 
of statistical power based on a sample effect size is 
characterized by considerable controversy. 

 
Estimation Procedures for Retrospective Power 

 Several techniques for the second approach to 
retrospective power analysis have been suggested in 
the literature. Gerard, Smith and Weerakkody (1998) 
describe three statistics (estimates of noncentrality) that 
lead to point estimates of retrospective power: a “plug-
in estimator” (λp), an “unbiased estimator” (λub), and a 
“median unbiased” or “percentile estimator” (λ50) of 
the noncentrality parameter.  

The plug-in estimator simply represents the use of 
the sample noncentrality parameter (λp) as if it were the 
same as the population parameter. For the F 
distribution, the sample noncentrality parameter is 
given by 

 
       λp = v1F 
 
where  v1  = numerator degrees of freedom for the 
sample F, and F = obtained sample Fstatistic. 
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The obtained sample noncentrality parameter is then 
used to estimate the statistical power of the test 
   Power = Pr(Fv1, v2,λp ≥ Fv1, v2,1-α  )  
 
where 

1 2, , p
Fν ν λ =  the noncentral F distribution 

with 1ν and 2ν degrees-of-freedom and a 
noncentrality parameter pλ ,  

and 
1 2, ,1Fν ν α− =  the ( )1 α− percentile of central 

F-distribution (i.e., the critical value of F 
with 1ν and 2ν degrees of freedom). 

 The use of pλ is known to produce biased 
estimates of power with a distinct positive bias in 
conditions of low power (Johnson et al., 1995). 
Johnson et al. suggested an alternative estimator 
( ubλ ) intended to reduced the bias inherent in pλ . 
This “unbiased” estimator of noncentrality is given 
by 

    ( )1 2
1

2

2
ub

Fν ν
λ ν

ν
−

= −  

 Although ubλ may provide an unbiased estimate 
of the population noncentrality, estimates of power 
derived from unbiased noncentrality estimates are not 
necessarily unbiased themselves, because power is a 
nonlinear function of noncentrality (Gerard et al., 
1988).  
 A third point estimate of noncentrality was 
suggested by Taylor and Muller (1996). This 
approach (λ50) is reported to underestimate 
noncentrality 50% of the time and overestimate it 
50% of the time (hence, Gerard et al., 1998, refer to 
the method as “median unbiased”). This method 
makes use of the cumulative distribution function of 
F and seeks the value of noncentrality for which the 
obtained value of F in a particular study (i.e., with a 
given 1ν and 2ν ) is expected 50% of the time (see 
Figure 1). Because analytical formulae for solving 
this problem are not available, the value of 

noncentrality must be obtained by numerical methods 
(see, for example, Press, Teukolsky, Vetterling & 
Flannery, 1992). 
In contrast to the point estimates suggested by Gerard 
et al. (1998), Steiger and Fouladi (1997) presented an 
interval estimation approach based on the earlier 
work of Hedges and Olkin (1985). This approach 
provides confidence bands on the noncentrality 
parameter (noncentrality interval estimates) which 
subsequently may be used to obtain confidence bands 
on statistical power. Using logic analogous to that 
used to obtain the λ50 point estimate, the approach 
involves the inversion of percentiles from noncentral 
sampling distributions to obtain confidence bands 
around the noncentrality parameter. That is, instead 
of seeking the value of noncentrality expected 50% 
of the time, a 95% confidence band is obtained by 
seeking the value of noncentrality ( )λ̂  for which  
Pr(Fv1, v2,λ < Fobt) = .025 and the value for which 
Pr(Fv1, v2,λ < Fobt = .975. This provides a confidence 
band for noncentrality, the endpoints of which are 
transformed into the endpoints of a 95% confidence 
band for statistical power.  
Purpose of the Study 
 Neither the point nor the interval estimation 
methods for retrospective power analysis have been 
thoroughly investigated in terms of their operating 
characteristics. The purpose of this research was to 
empirically investigate the bias and standard errors of 
the three point estimators of retrospective power and 
the confidence band coverage of the noncentrality 
interval estimate approach. The investigation covered 
a broad range of research designs and population 
effect sizes that may be encountered in field research. 
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Method 
 A Monte Carlo study was conducted to 
investigate the bias and standard errors of the three 
point estimators of retrospective power, and the 
confidence band coverage of the interval estimation 
technique. Data were simulated from linear models 
and sample effect size estimates were used to obtain 
power estimates. The Monte Carlo study included 
three factors in the design. These factors were (a) the 
experimental design simulated, including one factor 
designs with 2, 4, and 8 levels of the independent 
variable and three factorial designs (2X2, 2X4 and 
3X3), (b) the sample size of the study, with sample 
sizes ranging from 5 to 100 per cell, including equal 
and unequal cell sizes, and (c) population effect 
sizes, with f 2 values (Cohen, 1988) of .01, .02. .15, 
.35 and .50, as well as a null condition (f2 = 0). The 
combination of population effect sizes and sample 
sizes provides conditions with power values ranging 
from α to nearly 1.00. For each sample generated, the 
power of the hypothesis test was estimated using the 
three point estimators and the interval estimate. 
 The Monte Carlo study was conducted using 
SAS/IML version 6.12, running on Windows 95 and 
98 platforms. The RANNOR random number 
generator was used to generate normally distributed 
variables for the observations in each study, and a 
different seed value for the random number generator 
was used in each execution of the program. The 
program code was verified using benchmark datasets. 
 Fifty thousand replications were conducted for 
each condition. The use of 50,000 samples provides 
adequate precision for estimating the relative success 
of the procedures investigated. For example, the 
maximum width of a 95% confidence interval around 
a sample proportion based on 50,000 samples is 
± .0044 (Robey & Barcikowski, 1992). 
 

Results 
 The results are presented in terms of statistical 
bias and root mean squared error (RMSE) for the 
point estimates of power. Statistical bias of the power 
estimates was estimated as 
 

    
( )

1

ˆ
K

k
kBias

K

θ θ
=

−
=
∑

 

where  k̂θ = power estimate for the kth sample, 
  θ = population power, and 
  K = number of samples simulated. 
This statistic represents the difference between the 
mean sample estimate of power and the true 
population power for the condition examined. 
 RMSE of the power estimates was estimated as 
 

  
( )

2

1

ˆ
K

k
kRMSE

K

θ θ
=

−
=
∑

 
 
This statistic represents the standard deviation of the 
sample estimates in which deviation is computed 
from the population parameter rather than from the 
mean of the sample estimates. 
 For the interval estimates of power, the 
proportion of sample confidence bands that contained 
the parameter were calculated to provide an estimate 
of the accuracy of the bands. Further, the average 
width of the confidence bands for each condition was 
calculated. 
  To conserve space, results are presented for a 
subset of the conditions examined (conditions that 
correspond to Cohen’s, 1988, small, medium and 
large effect sizes in addition to the null condition). 
Complete results are available from the authors. 
  Single Factor Designs. Estimates of statistical 
bias in the point estimates of power for single factor 
designs are presented in Table 1.  Graphs of these 
bias estimates are provided in Figures 2 and 3.  To 
construct the figures, the population effect size, 
sample size and number of groups were translated 
into a population power value which is plotted on the 
abscissa of each figure. For the null condition (f 2 = 
0), in balanced designs, all of the estimates evidenced 
positive bias, with the plug-in estimator presenting 
the greatest amount of bias (reaching as high as 0.37 
for the 8-group design with large samples). Bias 
evidenced by the plug-in estimator, for a small effect 
size, was greatest for designs with larger numbers of 
groups, but the other two estimators did not show 
such a pattern. The bias in all three of the estimators 
was reduced as the population effect size increased 
and many conditions evidenced an underestimate of 
the power (negative bias). For example, with a 
medium effect size (f 2 = .15), the unbiased estimator 
evidenced negative bias large as –0.12, with n = 20 in 
2-group and 4-group designs. With large samples and 
a large effect size, all of the estimators converged to 
the true power (i.e., showing zero bias). 
 For unbalanced designs, the same pattern was 
maintained, but the bias estimates were, in general, 
slightly larger in magnitude. For the null conditions 
and conditions with a small effect size, a positive bias 
was evident in most cases, while all of the estimators 
provided unbiased power estimates for large samples 
and a large effect size. 
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 The root mean squared errors (RMSEs) of these 
point estimates are provided in Table 2.  Graphs of 
these error estimates are provided in Figures 4 and 5.  
These statistics reflect sampling variability in terms 
of squared deviations from the population parameter. 
If a statistic is unbiased, the RMSE is the same as the 
standard error. Because these statistics reflect 
sampling error, in many conditions the RMSEs 
become smaller with larger sample sizes (e.g., for 
conditions with a large effect size). When estimators 
are biased, however, the RMSE may not decrease 
with larger sample sizes. In general the magnitudes 
of the RMSE associated with these point estimates of 
retrospective power are quite large for conditions 
with a small or medium population effect size and 
small sample size. However, with large samples and 
large effect sizes, the sampling error is substantially 
reduced. Further, the magnitude of the RMSE does 
not appear to be systematically larger with 
unbalanced designs. 
 For the interval power estimates, the proportion 
of confidence bands that contained the true value of 
power and the confidence interval width are 
presented in Table 3 and illustrated in Figure 6. For 
balanced designs, the intervals showed 95% coverage 
across all non-null conditions, but performance 
decreased with the unbalanced designs. For the 
unbalanced designs, confidence band coverage 
decreased with increasing effect sizes and increasing 
sample sizes. 
 As with the RMSE for the point estimates, for 
both balanced and unbalanced designs, the average 

width of the confidence bands (Table 3) suggests that 
the bands are relatively uninformative for small 
samples and even for large samples if the effect size 
is small. Only for those conditions with large samples 
and medium and large effect sizes did the width of 
the bands become small enough to be considered 
informative in a practical sense. 
  Factorial Designs. Estimates of statistical bias in 
the point estimates of power for factorial designs are 
presented in Table 4 and illustrated in Figure 7.  
Consideration of bias for factorial designs must 
include an examination of row, column and 
interaction effects.  For the null condition (f 2 = 0), all 
of the estimates evidenced positive bias for all three 
effects, with the plug-in estimator presenting a 
greater amount of bias for both the column and 
interaction effects for the 2 X 4 factorial design 
(approximately .22 across all sample sizes).  The 
greatest amount of statistical bias was seen for the 
interaction effect for 3 X 3 factorial designs 
(reaching .26 for all but the smallest sample size).  A 
similar pattern was evidenced for the smallest effect 
size (f 2 = .02) for all but the largest sample sizes.  
That is, bias in the plug-in estimator, for small effect 
sizes, was greater for column effects with the 2 X 4 
designs and for the interaction effect for both the 2 X 
4 and 3 X 3 factorial designs, but the other two 
estimators did not show such a pattern. Similar to the 
single factor designs, the bias in all three of the 
estimators was reduced as the population effect size 
increased and many conditions evidenced an under-
estimate of power (negative bias).  For example, with 
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Table 1.  Statistical Bias of Three Point Estimates of Retrospective Power in One Factor Designs. 

Balanced Designs 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.11 0.04 0.09  0.11 0.04 0.09  0.11 0.00 0.09  0.07 -0.07 0.05 
 10  0.12 0.05 0.10  0.11 0.04 0.10  0.05 -0.05 0.04  -0.04 -0.14 -0.05

2 20  0.12 0.05 0.10  0.11 0.03 0.09  -0.04 -0.12 -0.04  -0.07 -0.11 -0.07
 50  0.12 0.06 0.10  0.07 -0.02 0.06  -0.06 -0.09 -0.06  0.00 0.00 0.00 
 100  0.12 0.06 0.10  0.00 -0.08 -0.01  -0.01 -0.01 -0.01  0.00 0.00 0.00 

 5  0.19 0.06 0.09  0.20 0.05 0.10  0.20 0.01 0.08  0.12 -0.07 0.01 
 10  0.21 0.06 0.09  0.22 0.06 0.10  0.12 -0.05 0.01  -0.02 -0.13 -0.08

4 20  0.22 0.07 0.10  0.22 0.04 0.09  -0.01 -0.12 -0.08  -0.02 -0.04 -0.03
 50  0.22 0.07 0.10  0.17 -0.01 0.04  -0.01 -0.02 -0.02  0.00 0.00 0.00 
 100  0.22 0.07 0.10  0.05 -0.10 -0.05  0.00 0.00 0.00  0.00 0.00 0.00 

 5  0.32 0.07 0.09  0.33 0.06 0.09  0.30 0.01 0.06  0.13 -0.10 -0.05
 10  0.35 0.07 0.09  0.36 0.06 0.09  0.15 -0.09 -0.04  -0.01 -0.08 -0.06

8 20  0.36 0.07 0.09  0.37 0.05 0.08  0.00 -0.09 -0.07  0.00 0.00 0.00 
 50  0.37 0.07 0.10  0.25 -0.04 0.00  0.00 0.00 0.00  0.00 0.00 0.00 
 100  0.37 0.07 0.09  0.06 -0.11 -0.08  0.00 0.00 0.00  0.00 0.00 0.00 

 

Unbalanced Designs 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.11 0.04 0.09  0.11 0.03 0.09  0.06 -0.03 0.04  -0.02 -0.14 -0.04  
 10  0.11 0.05 0.10  0.10 0.03 0.08  -0.03 -0.13 -0.05  -0.18 -0.28 -0.19  

2 20  0.12 0.05 0.10  0.08 0.01 0.06  -0.17 -0.26 -0.18  -0.20 -0.27 -0.20  
 50  0.12 0.05 0.10  0.00 -0.08 -0.01  -0.18 -0.24 -0.19  -0.03 -0.04 -0.03  
 100  0.12 0.06 0.10  -0.11 -0.19 -0.12  -0.04 -0.06 -0.04  0.00 0.00 0.00  

 5  0.20 0.06 0.09  0.21 0.06 0.10  0.24 0.05 0.13  0.19 0.01 0.09  
 10  0.21 0.06 0.10  0.23 0.07 0.11  0.19 0.03 0.09  0.04 -0.04 0.00  

4 20  0.22 0.07 0.10  0.25 0.07 0.12  0.06 -0.03 0.01  0.00 -0.01 -0.01  
 50  0.22 0.07 0.10  0.23 0.05 0.10  0.00 -0.01 0.00  0.00 0.00 0.00  
 100  0.22 0.07 0.10  0.13 0.00 0.04  0.00 0.00 0.00  0.00 0.00 0.00  

 5  0.32 0.07 0.09  0.35 0.08 0.11  0.38 0.10 0.16  0.21 0.06 0.10  
 10  0.35 0.07 0.09  0.40 0.09 0.12  0.23 0.07 0.11  0.02 0.00 0.00  

8 20  0.36 0.07 0.09  0.42 0.11 0.15  0.03 0.00 0.01  0.00 0.00 0.00  
 50  0.37 0.07 0.09  0.34 0.10 0.14  0.00 0.00 0.00  0.00 0.00 0.00  
 100  0.37 0.07 0.10  0.12 0.04 0.05  0.00 0.00 0.00  0.00 0.00 0.00  

Note. Estimates are based on 50,000 samples. 
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Table 2.  RMSE of Three Point Estimates of Retrospective Power in One Factor Designs. 

Balanced Designs 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.20 0.13 0.19  0.22 0.14 0.20  0.28 0.22 0.27  0.30 0.28 0.29 
 10  0.20 0.13 0.19  0.22 0.17 0.22  0.29 0.28 0.29  0.27 0.33 0.28 

2 20  0.19 0.14 0.19  0.24 0.20 0.24  0.28 0.33 0.29  0.18 0.23 0.18 
 50  0.19 0.14 0.19  0.27 0.26 0.28  0.16 0.20 0.16  0.02 0.02 0.02 
 100  0.19 0.14 0.19  0.29 0.31 0.29  0.03 0.04 0.03  0.00 0.00 0.00 

 5  0.26 0.14 0.18  0.28 0.16 0.20  0.32 0.23 0.27  0.28 0.30 0.29 
 10  0.27 0.15 0.18  0.30 0.18 0.22  0.28 0.30 0.29  0.18 0.29 0.24 

4 20  0.28 0.15 0.19  0.32 0.21 0.25  0.19 0.29 0.26  0.05 0.10 0.08 
 50  0.28 0.15 0.18  0.30 0.27 0.28  0.04 0.07 0.06  0.00 0.00 0.00 
 100  0.28 0.15 0.18  0.24 0.31 0.29  0.00 0.00 0.00  0.00 0.00 0.00 

 5  0.38 0.15 0.18  0.39 0.17 0.20  0.38 0.26 0.28  0.22 0.31 0.28 
 10  0.40 0.16 0.18  0.42 0.20 0.23  0.23 0.30 0.28  0.06 0.17 0.15 

8 20  0.41 0.16 0.18  0.43 0.24 0.26  0.08 0.19 0.17  0.00 0.01 0.01 
 50  0.42 0.16 0.18  0.32 0.29 0.29  0.00 0.01 0.01  0.00 0.00 0.00 
 100  0.42 0.16 0.18  0.14 0.27 0.25  0.00 0.00 0.00  0.00 0.00 0.00 

 

Unbalanced Designs 
 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.20 0.13 0.19  0.21 0.13 0.20  0.24 0.19 0.24  0.28 0.28 0.28  
 10  0.19 0.13 0.19  0.21 0.15 0.20  0.27 0.28 0.27  0.34 0.41 0.35  

2 20  0.19 0.14 0.19  0.22 0.18 0.22  0.33 0.40 0.34  0.31 0.38 0.32  
 50  0.19 0.14 0.19  0.24 0.24 0.25  0.29 0.35 0.29  0.07 0.09 0.07  
 100  0.19 0.14 0.19  0.30 0.34 0.31  0.10 0.13 0.10  0.00 0.01 0.00  

 5  0.27 0.14 0.18  0.29 0.16 0.21  0.35 0.26 0.30  0.31 0.30 0.30  
 10  0.28 0.15 0.19  0.32 0.19 0.23  0.31 0.30 0.30  0.14 0.21 0.18  

4 20  0.28 0.15 0.18  0.34 0.24 0.27  0.16 0.23 0.20  0.02 0.05 0.04  
 50  0.28 0.15 0.18  0.34 0.29 0.31  0.02 0.03 0.02  0.00 0.00 0.00  
 100  0.28 0.15 0.18  0.25 0.28 0.27  0.00 0.00 0.00  0.00 0.00 0.00  

 5  0.38 0.15 0.18  0.41 0.19 0.22  0.44 0.30 0.33  0.25 0.25 0.25  
 10  0.40 0.16 0.18  0.45 0.22 0.25  0.27 0.26 0.26  0.03 0.06 0.05  

8 20  0.41 0.16 0.18  0.48 0.28 0.30  0.04 0.08 0.07  0.00 0.00 0.00  
 50  0.42 0.16 0.18  0.38 0.31 0.31  0.00 0.00 0.00  0.00 0.00 0.00  
 100  0.42 0.16 0.18  0.14 0.17 0.16  0.00 0.00 0.00  0.00 0.00 0.00  

 
Note. Estimates are based on 50,000 samples. 
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a medium effect size (f 2 = .15), the unbiased 
estimator evidenced negative bias of –0.10, for the 
column, row, and interaction effects with n = 10 for 
all factorial designs. Once again, with large samples 
and large effect sizes, all of the estimators converged 
to the true power (i.e., showing zero bias).  For the 2 
X 2 factorial designs (in which each effect is tested 
with a single degree of freedom), trends in bias were 
similar for all of the power estimates across all effect 
sizes. However, for the 2 X 4 factorial designs, more 
striking similarities were witnessed for the column 
and interaction effects (each tested with three degrees 
of freedom).  While maintaining a similar pattern, in 
general, the bias estimates were slightly smaller for 
the row effects than for the column and interaction 
effects.  
 The root mean squared errors (RMSEs) of the 
point estimates are provided in Table 5 and 
illustrated in Figure 8.  An examination of these 
statistics revealed a considerable amount of error 
associated with small effect sizes and small samples 
for all effects examined (i.e. row, column and 
interaction effects).  Substantially less error was 
evidenced when medium and large effect sizes were 
paired with larger sample sizes.  Additionally, the 
magnitude of the RMSE did not appear to differ 
systematically across the row, column, or interaction 
effects.  
 For the interval power estimates, the proportion 
of confidence bands that contained the true value of 
power are presented in Table 6. For all effects, the 
intervals showed 95% coverage across all conditions.  
In general, the average width of confidence bands 
(Table 6) suggests that these bands are relatively 
uninformative, that is they provide very little 
information on true power for small samples and 
small effect sizes.  Only when medium or large effect 
sizes were paired with large samples sizes, did the 

width of the bands become small enough to be 
considered useful.  
 

Discussion 
The results suggest that none of the retrospective 

power estimation techniques evaluated were effective 
across the conditions examined. For point estimates, 
the “unbiased” and “median unbiased” estimators 
showed improved performance relative to the plug-in 
estimator, but these procedures were not completely 
free from bias except under large sample sizes and 
large effect sizes (as the statistical power approaches 
unity). Further, the sampling error in these estimates, 
reflected in the RMSE, suggests large sampling 
deviations for all three of the point estimators. These 
sampling deviations are greatly reduced with large 
sample estimates of retrospective power. 
The confidence band approach suggested by Steiger 
and Fouladi (1997) provided excellent coverage of 
the parameter across most of the conditions 
examined. The coverage problems observed under 
extreme conditions (i.e., f 2 = 0 for both balanced and 
unbalanced designs, and f 2 = .35 with large sample, 
unbalanced designs) represent research contexts in 
which power is either zero or very close to one. The 
calculation of a one-sided confidence interval (e.g., "I 
am 95% sure that the power is greater than .986") 
rather than a two-sided band should improve the 
performance of the confidence bands and may be 
more useful than a two-sided interval at these 
extremes. 
 The coverage results obtained from the 
confidence band approach suggest that the method 
appears to be a wise choice (because it is unbiased). 
However, the width of the resulting confidence bands 
that provide such excellent coverage were typically 
so broad that they provided little information about 
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the true power of the study. Only with relatively 
large samples (e.g., n = 100 per cell for one-factor 
designs) and large effect sizes did the band width 
become small enough that it appears to be useful for 
research applications. As with the RMSE associated 
with the point estimates, the width of these 
confidence bands reflects the large amount of 
sampling error that appears to be inherent in 
retrospective power analysis. For researchers who 
have the luxury of working with very large samples, 
these bands appear to be the best approach to power 
analyses. 
 Although prospective power analysis is of critical 
importance in the planning of empirical 
investigations, retrospective power analysis is 
important for both the interpretation of research 
results and the planning of subsequent studies, hence 
it is a logical extension of the substantive 
interpretation of sample effect sizes. However, 
retrospective power analysis has received little 
attention in the research methods literature. Our 
results suggest that the currently available methods 
for retrospective power analysis evidence severe 
limitations (except for studies with large sample 
sizes) in terms of statistical bias and large sampling 
errors. Such results highlight the magnitude of the 
caveats that should be employed when researchers 
use retrospective power estimates. Additionally, 
these results suggest that improved methods of 
estimation appear to be necessary to supply 
researchers with an important tool that can be trusted 
to provide unbiased and precise estimates of 
retrospective power across conditions typically 
encountered in applied research. 
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