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Using Partial Residual Plots in Assessing and Improving  
the Construct Validity of Multiple Regression Models 

 
Cam-Loi Huynh, University of Manitoba 

Advantages of partial residual plots over residual plots in regression analysis are discussed and illustrated by 
empirical examples. A variation of partial residual equation is introduced and an effective procedure to use this 
revised form in identifying the proper transformation for achieving linearity and variance stabilization is presented. 
Essentially, the transformed predictors are identified by partial residual plots and introduced into the regression 
model to improve the regression fit. Uses, limitations and strengths of partial residual plots are discussed. 
 

n formulating the multiple regression model, 
researchers often feels strongly that an explanatory 
variable (xj) included in the model influences the 
response (y). But, they are not sure whether it is  

the variable (xj), as they happen to measure it, or some 
function g(xj, that is linearly related to the mean of the 
response. This is often because the jth regression 
coefficient is smaller than expected, statistically 
insignificant, or of the “wrong” sign. Unfortunately, 
estimates of partial regression coefficients and summary 
statistics such as R2, F and t are unable to detect sources 
of the failure to yield good fit (For a good discussion on 
this aspect, see Belsley, Kuh & Welsch, 1980; Cook & 
Weisberg, 1982).  
 The standard recommendation in assessing model-
data fit is to plot residuals (e) and studentized residuals 
(r) against the independent variables (e.g., Cook & 
Weisberg, 1982, Chapter 2; Draper and Smith, 1981, 
Chapter 3). These plots help the researcher in (i) 
detecting outliers, (ii) assessing the presence or absence 
of variance heterogeneity, and (iii) determining if a 
transformation of the explanatory variable is needed or if 
another term (e.g., a quadratic term) needs to be added. 
In addition to providing these information, partial 
residual plots enable the researcher in (iv) assessing the 
importance of xj (in terms of predicting power for y) in 
the presence of all other independent variables and (v) 
evaluating the importance of nonlinearity among the of xj 
variables and choosing the appropriate transformation 
more precisely (Larsen & McCleary, 1972). 
 In this paper, the comparative properties of residuals 
and partial residual plots are discussed and illustrated by 
an empirical example. A variation of partial residuals is 
introduced and an effective procedure to use this revised 
form for improving the fit of multiple regression models 
is presented and examined by means of simulation data. 
Finally, comments on the uses, limitations, and strengths 
of partial residual plots are given. 
  

Empirical Properties of  
Residualsand Partial Residuals 

 In this paper, the lower-case letters x and y and 
upper-case letters X and Y are used to represent vectors 
and matrices of the independent and dependent variables, 
respectively.  
Suppose a researcher considered the regression model 

 
  y = β0 + β1x1 + ... + βkxk + ε' = XAβ + ε'  (1) 

 
(called the "restricted" model), where ε' represents the 
associated (but unknown) residual term, XA is an (n by k 
+ 1) design matrix of the intercept and independent 
variables, and β is a (k + 1) vector of regression 
coefficients. He subsequently added an independent 
variable xq to improve its fit and interpretation of its 
parameters. As a result, the regression model 
 

     y = XAβ + βqxq + ε    (2) 
 
(called the “observed” model), is obtained, where the 
residual term ε is estimated by e. Suppose the outcome 
was found unsatisfactory (e.g., insignificant increase in 
R2, unexpected sign of βq or some nonlinear relationship 
revealed in the plot of the predicted values ŷ against xq). 
Now, the researcher wants to determine the form g(xq) 
such that 
 

     y = XAβ + γg(xq) + ε*   (3) 
 
 (called the “correct” model), where γ denotes the qth 
slope coefficient, would yield a substantially better fit 
than (2).  
The computational formula for sample residuals in the 
fitted regression equation of 
 

   ŷ = b0 + b1x1 + ... + bkxk + bqxq,  (2′) 
an estimate of the "observed" model (2), is expressed as 

      e = y - ŷ,      (4)  
and the associated partial residuals are defined as 
 

      r = e + bqxq     (5)  
 The equation (5) was first discovered by Ezekiel 
(1924) and reintroduced by Larsen & McCleary (1972). 
Partial residuals are also called the "component-plus 
residuals" by  Wood (1973). 
 Residual and partial residual plots are obtained when 
e and r are plotted against xq, respectively. Besides these 
graphical methods, three other main diagnostic plots for 
explanatory variables are (i) internal and external 
studentized residual plots (Cook & Weisberg, 1982, pp. 
18-20), (ii) added variable plots (Wood, 1973), (iii) 
partial regression leverage plots (first used by Draper & 
Smith, 1966, p. 112; reintroduced by Mosteller & Tukey, 
1977, pp. 344-345  
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and 374-376; and advocated by Sall, 1990). Among 
these five methods, partial residual plots are easier to 
construct and simpler to understand than both added 
variable plots and partial regression leverage plots 
(Atkinson, 1985, p. 73). Moreover, the use of partial 
residual plots enables the researcher to determine more 
precise forms of nonlinear transformation than by 
using other plots (Gunst and Mason, 1980, Chapter 7). 
 If the relationship between xq and y is linear, the 
plot of r against xq should show data points distributed 
along a non-horizontal line. Moreover, its slope 
represents bq in (5). On the contrary, if the relationship 
is nonlinear, the plot should indicate the nature of the 
transformation that is required to demonstrate a linear 
relationship. The following example serves to illustrate 
these properties. 
 Example 1. Knwolton et al. (1980) studied some 
physiological and performance characteristics of 
athletes in the sport of competitive orienteering. In 
particular, they used three variables (x1 = maximal 
aerobic power, x2 = years of experience, x3 = anaerobic 
power and x4 = blood lactate) to predict performance 
(y). For the males sample, the partial residual plots for 
x2, x3, and x4 showed linear trends but the plot for x1 
was indicative of a quadratic relationship (Figure 1, 

Panel a). By introducing the variable x5 as the square of 
x1 into the regression equation, a nearly straight line 
was observed in the partial residual plot of r against x1 
(Figure 1, Panel b). The same findings were found for 
the total sample (males and females) before 
transformation of x1 (Figure 1, Panel c), and after the 
introduction of x1

2 (Figure 1, Panel d). 
 

Theoretical Properties of  
Residuals and Partial Residuals 

 First, it will show that the plot of the residual (e) 
against xq will not generally reveal the shape of the 
function g(xq). Next, the forms of partial residual (r) 
that can reveal g(xq) will be discussed. The sample 
residuals of the fitted model (2) can be rewritten as 
 

     e = (I - H)y,      (6) 
 
where I is the identity matrix of order n, H=X(X'X)-1X 
is an idempotent matrix, and X = (XA xq) is an (n x 
q+1) augmented matrix (for q = k + 1). The expected 
value of the residual term is given as 
 

  E(e) = (I - H)(Xβ + βqg(xq) + ε*)    
     = (I - H)(βqg(xq)     (7) 

 
because (I - H) is orthogonal to both Xβ and ε*. It is 

Figure 1. Plots of Residuals (e) and Partial Residuals (r) Against x1 in Example 1. (Knwolton et al., 1980).
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well known that the sample mean of e for regression 
models with the intercept is zero because 
 

 Σe = 1'(I - H)(estimate of βqg(xq)) = 0,  (8) 
 
since 1'(I - H) = 0 where 1 is a vector of unity. Notice 
that the mean of the residual estimate (ē) is zero 
regardless of the form of g(xq). For simplicity, let g 
denote g(xq). First, in the “ideal” case of g = xq, the 
fitted model (2) is correct, E(e) = 0 and the residual 
plot would display a random pattern around 0. On the 
other hand, if g is any linear combination of the 
columns of XA then E(e) is also zero but the residual 
plot would disclose the form of (I - H)(βqg), not of g. 
Finally, if g is a curvilinear function, say 
     g = βq0 + βq1xq + βq2xq

2, 
then E(e) = (I - H)βq2xq

2. The plot of e against xq 
would indicate that the linearity assumption has been 
violated but the shape of the function g is still 
unknown since the residual plot only reveals the 
function (I - H)βq2xq

2. Partial residual plots have been 
suggested as a more effective device than residual plots 
in detecting the function g (Larsen & McCleary, 1972 
and Wood, 1973). Some theoretical properties of r can 
be explained by means of its expected value, 
 

 E(r) = E(e) + xqE(bq) = (I - H)g + φqxq,  (9) 
 
where φq = E(bq) = (D'D)-1D'g, and D = (I - HA)xq, a 
residual obtained upon fitting xq on the columns of XA, 
where HA = XA(XA'XA)-1XA. If φq = 0, or bq ≈ 0, then 
E(r) = E(e), implying that the “restricted” model (1) is 
tenable and both the residual and partial residual plots 
would indicate the insignificance of xq in predicting y. 
On the other hand, if the "observed" model (2) is 
correct then g = βqxq and φq = βq so that (I - H)g = 0, 
E(r) = 0 and E(r) = βqxq. Then the partial residual plot 
against xq would reveal a linear curve with its slope as 
an estimate of βq. Finally, if g is not a linear 
combination of the columns of XA, the plot of r versus 
xq would indicate the nonlinear form of g (A proof of 
this effect has been shown by Manfield & Conerly, 
1987). 
 

A More Effective Partial Residual Form 
 From the preceding discussion, it becomes clear 
that the standard definition of the partial residual 
would only be indicative of the slope of the function g. 
Suppose that the function g is monotonically 
(non)linear. For a more complete information, it is 
suggested that the intercept term (c) be added so that 
the revised form the partial residual becomes 
 

     r* = c + bqxq + e     (10) 
 
where the values of c are to be determined. If the 
"observed" model (2) is "correct" then the expected 
values of r* would be 
 
     E(r*) = c + βqxq     (11) 

 
which a straight line with intercept c and slope βq. In 

all cases, including when g is a nonlinear function of 
xq, the plot of r* versus xq would reveal estimates of 
both the intercept (c) and slope (βq). It worth noting 
that, if the constant c represents the estimate of 
regression intercept in fitting model (2) then equation 
(8) can be rewritten as 
 
   r* = ȳ  + b1(x1 - x̄1) + ... + bk(xk - x̄k)  

     + bq(xq - x̄q) + e,     (12) 
 
which is the same as equation 2.9 in Larsen and 
McCleary, 1972, p. 785 and equation 1.2 in Mallows, 
1986, p. 313. 

Before data collection, the researcher may not have 
any knowledge about the form of g(xq). When the 
transformed variable w(xq) is used as an estimate of 
g(xq), it results in what will be referred to as the 
"estimated" model 
 

    y = XAβ + γw(xq) + ε*.    (3') 
 

Smith (1972) presented examples of linearizing 
regression equations, such as (3'), by manipulating the 
constant term c. Once a transformed model for y has 
been decided (say, w = exp(y + c)), it requires to plot 
only a few points of w with different values of c for the 
curve that is most linear to be identified. By applying 
Smith (1972)'s technique, it can be shown that  r* is 
superior to r for linearity and variance stabilization 
purposes. The illustration is quite easy for the two 
common forms of w, namely, logarithmic and power 
(or root) transformations. First, consider the 
logarithmic transformation w = log10(xq + c), where c 
> 0, a vector of constant values to be determined. The 
effect of the logarithmic transformation w can be 
described better in terms of the inverse function 10w = 
xq + c for it implies that xq = - c + 10w. The graph of xq 
= - c + 10w, which represents an estimate of g(xq), 
varies continuously from an exponential curve when c 
= 0 to a linear line when c is large. As a strategy, one 
can fit model (3') ŷ = XAβ + γw(xq) = XAβ + γlog10(xq + 
c) repeatedly by increasing the value of c until the 
improvement in R2 becomes insignificant. Secondly, 
consider the power transformation w = xq

c for - 1 < c < 
1 with  the associated inverse function of xq = w1/c. Its 
graph varies from a hyperbolic curve when c = -1 to an 
exponential curve as c≈ 0, and a line when c = 1. A 
strategy of repeated fitting of model (3') with positive 
values of c, but less than 1, can be applied. It is well-
known that if variances of the columns of the design 
matrix X are increased proportionally to their means 
then one can use square root transformation on the 
columns for variance stabili- zation. On the other hand, 
if variances of the columns are proportional to the 
coefficients of variation (σj/µj, j = 1, 2,..., q) then the 
logarithmic transformation may be used for variance 
stabilization (Drapper & Smith, 1981, pp. 146-148, 
237-240). In all of these cases, if a constant c is added 
to the transformed functions, the accuracy of w as an  
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Table 1. Generated Data for Examples 2 and 3. 
Example 2 (Logarithmic Transformation)  Example 3 (Power Transformation) 

  y     x1    x2 xq     gx    y     x1    x2 xq     gx 
 2.236 -0.836  9.358  9.358  2.236   4.609  2.236 -0.836  0.836 1.128 
 1.381 -0.726  3.979  3.979  1.381   2.979  1.381 -0.726  0.662 1.318 
 0.058 -0.130  1.060  1.060  0.058   2.469  0.058 -0.130  0.595 1.416 
 0.946  1.237  2.575  2.575  0.946   4.223  0.946  1.237  0.986 1.009 
-1.910  0.748  0.148  0.244 -1.410   1.453 -1.910  0.748  0.455 1.696 
 0.393  0.855  1.482  1.482  0.393   3.771  0.393  0.855  0.931 1.049 
 1.157  0.045  3.182  5.246  1.657   3.387  1.157  0.045  0.485 1.624 
 1.304 -0.092  3.685  3.685  1.304   3.654  1.304 -0.092  0.691 1.281 
-0.039 -0.481  0.962  0.962 -0.039   1.935 -0.039 -0.481  0.910 1.065 
 0.570  0.596  1.767  2.914  1.070   5.232  0.570  0.596  0.178 3.176 
-1.015  2.406  0.362  0.597 -0.515   3.569 -1.015  2.406  0.489 1.614 
 1.130 -0.530  3.095  5.102  1.630   3.462  1.130 -0.530  0.371 1.945 
 0.193 -0.793  1.213  1.213  0.193   3.924  0.193 -0.793  0.164 3.356 
-0.953  1.159  0.385  0.385 -0.953   3.799 -0.953  1.159  0.302 2.232 
-0.225  1.077  0.799  1.317  0.275   5.424 -0.225  1.077  0.118 4.176 
 1.289 -0.345  3.631  3.631  1.289   3.121  1.289 -0.345  0.793 1.169 
 0.991  0.717  2.693  2.693  0.991   4.198  0.991  0.717  0.598 1.411 
-0.840  2.042  0.432  0.711 -0.340   5.995 -0.840  2.042  0.105 4.531 
 0.055 -1.304  1.057  1.742  0.555   0.678  0.055 -1.304  0.846 1.118 
-0.379 -0.847  0.684  1.128  0.121   0.875 -0.379 -0.847  0.800 1.161 
-0.320 -1.085  0.726  0.726 -0.320   3.482 -0.320 -1.085  0.237 2.623 
 1.541 -1.706  4.670  7.700  2.041   1.640  1.541 -1.706  0.856 1.110 
 0.639  0.232  1.895  3.125  1.139   2.554  0.639  0.232  0.821 1.141 
-0.989  1.328  0.372  0.613 -0.489   6.158 -0.989  1.328  0.084 5.251 
-0.423  0.165  0.655  0.655 -0.423   5.908 -0.423  0.165  0.003 5.167 
 1.801 -0.179  6.056  6.056  1.801   5.236  1.801 -0.179  0.810 1.152 
-0.274  1.360  0.760  1.254  0.226   3.609 -0.274  1.360  0.400 1.848 
 1.948 -0.466  7.016  7.016  1.948   8.286  1.948 -0.466  0.074 5.721 
 1.046  0.487  2.846  4.692  1.546   9.536  1.046  0.487  0.054 7.069 
 1.371  0.877  3.938  3.938  1.371   4.415  1.371  0.877  0.940 1.042 

 
estimator of g(xq) can be improved by determining the 
required values of c. As demonstrated in the following 
examples, the determination of c can be achieved after 
a few trial-and-error attempts.  
 Example 2. The random variables y and x1 were 
generated as standard normal whereas x2 and xq as 
exponential, namely x2 = eY and xq = ey + .5, 
respectively. Their values are reported in Table 1. The 
transformed variable (w) was obtained according to the 
function w = log10(xq + c). The resulting regression 
equations and corresponding R2 are listed in Table 2. 
The largest value of R2 corresponds to c = 0 so that w 
= log10(xq). The improvement in R2 due to the addition 
of xq and then replacing it by w can be tested by the 
method of comparing two nonnested multiple 
regression models (Graybill & Iyer, 1994, pp. 309-
313). In nonnested regression models, there are 
predictors in one model that are not found in the other 
model and there may be some predictors that occur in 
both. The test of the null hypothesis H0: R2

A = R2
B is 

the same as the test of H0: σ2
A = σ2

B, where σ2
A and σ2

B 
are the sum of square of errors (SSE) in the two 

regression models A and B, respectively. If the 100(1 - 
α)% confidence of σB/σA contains the value of 1 then 
the null hypothesis is retained. On the other hand, if the 
upper bound of the confidence interval is less than 1 
then the null hypothesis is rejected in supporting the 
alternative hypothesis that σB < σA, or R2

B > R2
A, which 

in turn implies that model B is better than model A. 
Similar arguments applies, but in favor of model A if 
the lower bound of the confidence interval is larger  
than 1. The confidence intervals reported in Table 3 
indicates that the "estimated" model is statistically 
superior to both the "restricted" and "observed" 
models.  
 Example 3. A regression model similar to the one 
considered in Cook and Weisberg (1994) is studied. 
The variable y was generated according to the function 
 
    y = 1 + x1 + x2 + xq

-0.67 + ε,   (13) 
 
where x1 and x2 were normally distributed, ε was an 
independent normal with mean 0 and variance .025, 
and xq was an uniform random variable. Their derived 
values are reported in Table 1. The transformed 
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Table 2. Effects of Changing c in Logarithmic and 
Power Transformations 
Example 2 Logarithmic Transformation 
Model 1  
(restricted) 

ŷ = -0.476 - 0.129x1 + 0.388x2  
R2 =.800  

Model 2 
(observed) 

ŷ = -0.564 - 0.096x1 + 0.221x2 + 0.168xq 
R2 =.816  

Model 3 (estimated) 
w = Log(xq + c) 

 c = 0.0 ŷ = -0.344 - 0.042x1 + 0.101x2 + 0.815gx 
R2 =.955 

 c = 0.5 ŷ = -0.825 - 0.051x1 + 0.075x2 + 1.121gx 
R2 =.932 

 c = 1.0 ŷ = -1.310 - 0.056x1 + 0.069x2 + 1.348gx 
R2 =.917 

 c = 1.5 ŷ = -1.790 - 0.059x1 + 0.069x2 + 1.542gx 
R2 =.906 

 c = 5.0 ŷ = -4.952 - 0.069x1 + 0.094x2 + 2.556gx 
R2 =.866 

Example 3 Power Transformation 
Model 1  
(restricted) 

ŷ = 5.874 - 0.802x1 + 0.261x2  
R2 =.011  

Model 2 
(observed) 

ŷ =12.038 + 0.465x1 - 0.251x2 + 12.696xq 
R2 =.176  

Model 3 (estimated)  w =xqc 
 c = -2.00 ŷ = 3.199 + 1.046x1 + 1.207x2 + 0.0004gx 

R2 =.974 
 c = -0.67 ŷ = 1.048 + 1.087x1 + 0.841x2 + 0.999gx 

R2 =.998 
 c = -0.30 ŷ = -9.923 + 1.183x1 + 0.238x2 + 9.902gx 

R2 =.923 
c =  0.30 ŷ = 28.237 + 0.858x1 - 0.453x2 - 29.896gx 

R2 =.426 
 c =  0.70 ŷ = 14.971 + 0.587x1 - 0.351x2 - 15.977gx 

R2 =.240 
 
variable was determined to be w = xq

c. As expected, 
the largest value of R2 was found associated with c = 
-0.67. The improvement in R2 for the three regression 
models, "restricted" (x1, x2), "observed" (x1, x2, xq) and 
"estimated" (x1, x2, w), were tested by the method of 
comparing two nonnested multiple regression models. 
The resulting confidence intervals in Table 3 indicate 
that the "estimated" model is statistically superior to 
the other models.  
 

Procedure to Detect the Function g(xq) 
 As a first step, the transform variable w (of the 
function g(xq)) can be determined by examining the 
plots of residuals (e) and partial residuals (r, in 
equation 6) against xq. Next, xq is substituted by w in 
computing a fit for the initial "estimated" model. The 
significance of the improvement in R2 can be assessed 
by the method of comparing two nonnested multiple 
regression models. The formula for w may be modified 
by examining the plots of expected residuals (E(e)) and 
partial residuals (E(r*)) against xq. The computational 
formulas for these expected values are given by 

Table 3. Steps in Computing the Two-Sided 
Confidence Intervals for σB/ σA using the Bonferroni 
Method (α = 0.05). 
Step Example 2 (Logarithmic Transformation) 
(1) The 97.5% 2-sided confidence interval for σA 

in the “observed”model 
(LA = .354 , UA = .669)  
where  LA = {SSE(A)/χ2

1-α/4;n-3-1}0.5 
   = {5.624/44.762}0.5,  
 and UA = {SSE(A)/χ2

α/4;n-3-1}0.5  
   = {5.624/12.567}0.5 

(2) The 97.5% 2-sided confidence interval for σB 
in the “estimated” (LB = .176, UB = .332)  
where  LB = {SSE(B)/χ2

1-α/4;n-3-1}
0.5  

   = {.385/44.762}0.5  
  and  UB = {SSE(B)/χ2

α/4;n-3-1}
0.5  

   = {1.385/12.567}0.5  
(3) The 95% 2-sided confidence interval for 

σB/ σA: (LB/UA = .263, UB/LA = .938) 
Step Example 3 (Power Transformation) 
(1) The 97.5% 2-sided confidence interval for σA 

in the “observed”model 
(LA = 6.817 , UA = 12.866)  
where  LA = {SSE(A)/χ2

1-α/4;n-3-1}0.5 
   = {2080.255/44.762}0.5,  
 and UA = {SSE(A)/χ2

α/4;n-3-1}0.5  
   = {2080.255/12.567}0.5 

(2) The 97.5% 2-sided confidence interval for σB 
in the “estimated” (LB = .367, UB = .693)  
where  LB = {SSE(B)/χ2

1-α/4;n-3-1}
0.5  

   = {6.028/44.762}0.5  
  and  UB = {SSE(B)/χ2

α/4;n-3-1}
0.5  

   = {6.028/12.567}0.5  
(3) The 95% 2-sided confidence interval for 

σB/ σA: (LB/UA = .029, UB/LA = .102) 
 
    E(e) = [I - xq(xq'xq)-1xq']g,   (14) 

     E(r*) = c + E(e) + φqxq,     
 
where φqxq = xq(W'W)-1W'g = xq(xq'xq)-1xq'g so that 
 

E(r*) = c + [I - xq(xq'xq)-1xq']xq(xq'xq)-1xq'g   
+ xq(xq'xq)-1xq'g 

   = c + g - xqg + xqg = c + g.    (15) 
 
The modification of w would be continued until the 
plot of E(r*) shows a nearly linear curve with a slope  
steeper (positively or negatively) than that in the plot 
of E(e). The implementation of this procedure for the 
two preceding examples are studied below. 
 Example 2. The reason why the sample mean of 
residuals are equal to 0 can be seen from the fact that 
values of e are balanced out on both sides of zero 
(Figure 2, Panel a). On the other hand, values of partial 
residuals (r) clearly indicate a steady positive trend as 
xq increases (Figure 2, Panel b). It implies that xq has a 
positively exponential distribution and the required 
transformation for linearizing its values would be a 
logarithmic function. The next step is to regress y on  
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x1, x2 and w, where w = log10(xq + c), with different 
values of c. By comparing the resulting R2 and/or 
conducting the test of two nonnested regression 
models, one will know (at least statistically) if the 
"estimated" model is an improvement over the 
"observed" model. But how do we know that the model 
with the largest R2 among those fitted would be 
acceptable or "correct" given the fact that R2 can 
increase with an entry of even irrelevant independent 
variable into the regression model? The answer is 
found by observing the plots of the expected values 
E(e) and E(r*) against xq (Figure 2, Panel c) for the 
chosen "estimated" model. Whereas the plot of E(e) 
reflects the nonlinearity nature of xq, that of E(r*) 
shows a linear line with relatively steeper slope 
representing the strength of w in predicting y. In short, 
when the transformation is correctly determined, the 
resulting regression model would render largest R2 and 
a graph of E(r*) with steepest-sloped curve. 
 Example 3. Even though the sample mean of 
residuals are equal to 0, this fact does not lend support 
to the tenability of the assumption of random error in 
the "observed" model. In Figure 3, Panel a, although 
most residual values lie below zero, they are cancelled 
out by the existence of a very large residual outlier. On 
the contrary, the partial residuals (r) clearly indicate a 
monotonic downward trend as xq increases (Figure 3, 
Panel b). Therefore, g(xq) is deemed a negatively-
sloped function so that the required transformation 
would be an inverted function (or negative root) of the 
form w = xq

c, where c < 0. By comparing the resulting 

R2 and conducting the test of two nonnested regression 
models, a satisfactory model can be identified with c . -
.70. In this case, even if the true model is unknown, we 
still know that the model with the largest R2 among 
those fitted would be "correct." This is because the plot 
of the expected values E(r*) against xq shows an 
approximately linear line whereas the plot of E(e) 
against xq is clearly nonlinear (Figure 3, Panel c).  
 

Discussion 
 Two uses of partial residual plots have been shown 
in the three examples discussed above. In Example 1, 
the objective is to improve the regression fit by 
introducing xq

2 as an additional predictor of y. This 
strategy is applied mainly for meeting statistical 
assumptions of regression models (In this case, the 
linear relationship between y and its predictors). In 
Examples 2 and 3, the construct validity of xq in 
predicting y can be improved by identifying w, an 
operational definition of the unknown function g(xq). 
The improvement in the resulting model serves not 
only to satisfy statistical assumptions but also to 
facilitate the model interpretation. This can be 
explained further from the fact that, even when all 
statistical assumptions are deemed satisfactory, 
multiple regression models still have construct validity 
problems (Winne, 1983). Huynh (2000) indicated that 
the effects of regressors in multiple regression models 
do not represent those of the constructs described by 
the original data since partial regression coefficients 
are actually computed for the residualized scores  

Figure 2. Plots of Residuals (e) and Partial Residuals (r*) and Their Expected Values (E(e) and E(r*)) 
Against xq in Example 2
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Figure 3. Plots of Residuals (e) and Partial Residuals (r) and Their Expected Values (E(e) and E(r*))  
Against xq in Example 3. 
 
instead. The residualized score of the jth predictor (xj) 
represents the residual term when xj is regressed on the 
remaining predictors in the original multiple regression 
model. Therefore, in place of xj, the relevant question 
is how the construct g(xj) can be reintroduced into the 
multiple regression. The procedure of examining 
partial residuals would be helpful for this purpose. 
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