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The Type I error and power properties of the parametric F test and three nonparametric competitors were compared 
in terms of a 3×4 factorial analysis of covariance layout. The focus of the study was on the test for interaction 
either in the presence and/or absence of main effects. A variety of conditional distributions, sample sizes, levels of 
variate and covariate correlation, and treatment effect sizes were investigated. The Puri and Sen (1969a) test had 
ultra-conservative Type I error rates and power losses when main effect(s) were present. The adjusted rank 
transform (Blair & Sawilowsky, 1990; Salter & Fawcett; 1993) had liberal Type I error rates when sampling was 
from moderate to extremely skewed distributions. The Hettmansperger (1984) chi-square test displayed acceptable 
Type I error rates for all distributions considered when sample sizes were ten or twenty. It is suggested that the 
Hettmansperger (1984) test be considered as an alternative to the parametric F test provided sample sizes are 
relatively equal and at least as large as ten.   
 

he rank transform (RT) procedure was recommended as an alternative to the parametric 
procedure in multiple regression (Iman & Conover, 1979) and factorial analysis of covariance 
(Conover & Iman, 1981, 1982) when the assumption of population normality was violated. The 
steps for hypotheses testing using the RT consists of (a) replacing the raw scores with their 

respective rank order, (b) conducting the classical normal theory tests on the ranks, and (c) referring to the 
usual tables of percentage points. 
 Unfortunately, the parametric F test is not invariant with respect to monotone transformations (such 
as the RT). More specifically, the nonlinear nature of the RT may add (remove) interactions when such 
interactions were absent (present) in the original raw scores. For example, and contrary to the suggestions 
above, it has been demonstrated that the RT fails as a viable alternative to the parametric procedure with 
respect to tests for (a) interaction in factorial ANOVA (Blair, Sawilowsky, & Higgins, 1987; Thompson, 
1991; 1993), (b) parallelism and interaction in factorial ANCOVA (Headrick, 1997; Headrick & 
Sawilowsky, 2000), and (c) additive and nonadditive models in multiple regression (Headrick & Rotou, 
2000). 

However, nonparametric tests can be substantially more powerful than the parametric t or F tests 
when the assumption of normality is violated. For example, the Mann-Whitney U-test has an impressive 
asymptotic relative efficiency of 3 relative to the two independent samples t-test when the population 
sampled from is exponential (Conover, 1999). Thus, nonparametric or distribution free tests should be 
considered when these tests demonstrate both (a) robustness with respect to Type I error and (b) a power 
advantage relative to the parametric test. 
 Sawilowsky (1990) reviewed ten competing tests for interaction in the context of factorial ANOVA 
and ANCOVA. On the basis of Type I error and power properties, three potential competitors to the 
parametric F test remain. These alternative nonparametric tests are: the adjusted RT procedure (Blair & 
Sawilowsky, 1990; Salter & Fawcett, 1993); the Hettmansperger (1984) procedure; and the Puri and Sen 
(1969a) procedure. It should be noted that the Hettmansperger (1984) and Puri and Sen (1969a) 
procedures consider only the total group regression slope. As such, it is assumed that the within group 
regression slopes are equal for these tests. 
 

Purpose of the Study 
 The purpose of the study is to compare and contrast the relative Type I error and power properties of 
the parametric F test and the three aforementioned nonparametric procedures in the context of factorial 
ANCOVA using Monte Carlo techniques. From the results of the Monte Carlo study, a statement will be 
made with respect to the conditions under which any of the nonparametric tests are useful alternatives to 
the parametric F test. Because good nonparametric tests exist for main effects, the focus of this study is 
concerned with the test for interaction in the presence and/or absence of main effects. 

T 
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Methodology 

 A completely randomized balanced design with fixed effects and one covariate was used. The 
structural model representing the design was: 

ijkijjiijkijk XXY εατταβµ ++++−+= )()( ,     (1) 

( i = 1,..., I;  j = 1,..., J; and k = 1,..., n), where I = 3, J = 4, and n = 5, 10, and 20. 
The levels of variate (Yijk ) and covariate ( Xijk ) correlation were ρ = 0, .3, .6, and .9. Note that the 

regression slope coefficient in (1), β , remained constant across groups.  
 The treatment effect patterns modeled in (1) were as follows: 
1. The main effect τ  nonnull, the main effect α  null, and the interaction ( )ατ null: 
 1(a). τ 1  = d ; 
 1(b). d== 21 ττ ; and d−== 43 ττ . 
2. The main effects τ  and α  nonnull, and the interaction ( )ατ  null: 
 2(a). d== 12 ατ ; and d−== 23 ατ ; and 
 2(b). d== 13 ατ ; and d−==== 3421 ατττ . 
3. The ( )ατ interaction nonnull, and the main effects τ and α  null: 
 3(a). d== 3311 )()( ατατ ; and d−== 3113 )()( ατατ ; 
 3(b). d==== 33321411 )()()()( ατατατατ ; and 

d−==== 34311312 )()()()( ατατατατ . 
4. The main effect τ  and the ( )ατ  interaction nonnull, and the main effect α  null: 
 4(a). d=11)(ατ ; and d−=14)(ατ ; 
 4(b). d==== 32311211 )()()()( ατατατατ ; and 

d−==== 34331413 )()()()( ατατατατ . 
5. The main effects τ , α , and ( )ατ  interaction are nonnull: 
 5(a). d== 2421 )()( ατατ ; 
 5(b). d===== 3433321211 )()()()()( ατατατατατ ; and 

d−=== 143113 )()()( ατατατ . 
The treatment effect sizes (d) ranged from d= 0.10σ  to d= 2.00σ, where σ  is the standard deviation of 
the population from which samples were drawn, in increments of 0.10σ. The null case was represented 
when d= 0.00 for all effects. 
 The parametric F statistic was calculated using the OLS sums of squares approach given in Winer, 
Brown, and Michels (1991) for factorial ANCOVA. The F statistic for interaction was then compared to 
the critical value from the usual F tables of percentage points. 
 The adjusted RT (adjRT) statistic was computed as follows: (a) the residuals were obtained from 
conducting a two-way ANOVA on the reduced model that included only the grouping variables; (b) the 
residuals and the covariate were then ranked without respect to group membership; and (c) the usual 
parametric ANCOVA procedure was conducted on the ranked residuals and ranked covariate to obtain the 
test statistic for interaction. This statistic was then compared to same critical F value as the parametric 
test. 
 The Hettmansperger (H) (1984) chi-square statistic was computed as follows: (a) the residuals (RES) 
were obtained from the regression of the variate on the reduced model that included the covariate and the 
grouping variables; (b) the residuals were then ranked (denoted as RRES) without respect to group 



Factorial ANCOVA 

Multiple Linear Regression Viewpoints, 2001, Vol. 27(2) 
 

5

membership; (c) the standardized ranked residuals (SRRES) were obtained according to the following 

equation: 
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(d) the SRRES were then submitted to a two-way ANOVA; (e) the sums of squares for interaction term 
obtained from the ANOVA was then compared to the critical value from a chi-square distribution with 

)1)(1( −− JI degrees of freedom (Hettmansperger, 1984). 
The Puri and Sen (PS) (1969a) chi-square statistic was computed as follows: (a) the variate and 

covariate were ranked irrespective to group membership; (b) the cell means ( YijR , XijR ), column means 

( jYR . , jXR . ), row means ( .YiR , .YiR ), and overall grand means ( ..YR , ..XR ) were then obtained from the 
ranks of the variate and covariate scores; (c) the ij-th difference score was then obtained as follows:  

)()()()( ........ YYiYjYYYijYij RRRRRRRDIFF −−−−−= , and 

)()()()( ........ XXiXjXXXijXij RRRRRRRDIFF −−−−−= ; 
(d) the ij-th residual scores were obtained from subtracting the predicted differences from the observed 
differences as follows: )()( ) XijYXYijij RDIFFRDIFFRES ρ−= , where YXρ  is the total group rank 

correlation coefficient between the variate and covariate; (e) the nL  statistic (Puri & Sen, 1969a) was 

then formulated as: ∑∑=
i j

ijn nRESL 2
11V , where 11V  is the first element on the principal diagonal of 

the inverted variance-covariance matrix ( V ); and (f) the computed value of nL  was subsequently 
compared to the critical value from a chi-square distribution with )1)(1( −− JI degrees of freedom (Puri 
& Sen, 1969a). 
 Nine conditional distributions were simulated with zero means ( 0=µ ), unit variances ( 12 =σ ), and 
varying degrees of γ 1 , γ 2 , 3γ , and 4γ . The distributions approximated in the simulation were: 
1= normal (γ 1 = 0, γ 2 = 0, 3γ = 0, and 4γ = 0), 2=  uniform (γ 1 = 0, γ 2 = 56− , 3γ = 0, and 

4γ = 748 ); 3=Cauchy (γ 1 = 0, γ 2 = 25 , 3γ = 0, and 4γ = 4000 ); 4= double exponential (γ 1 = 0, 
γ 2 = 3 , 3γ = 0, and 4γ = 30 ); 5= logistic (γ 1 = 0, γ 2 = 56 , 3γ = 0, and 4γ = 748 ); 6= chi-square 

8df (γ 1 = 1, γ 2 = 23 , 3γ = 3, and 4γ = 215 ), 7= chi-square 4df (γ 1 = 2 , γ 2 = 4, 3γ = 26 , and 

4γ = 30), 8= chi-square 2df  (γ 1 = 2, γ 2 = 6, 3γ = 24, and 4γ = 120), and 9= chi-square 1 df (γ 1 = 8 , 

γ 2 = 12, 3γ = 248 , and 4γ = 480). The preceding values of γ 1  (coefficient of skew), γ 2  (coefficient 
of kurtosis), 3γ , and 4γ  are the third, fourth, fifth, and sixth standardized cumulants from their associated 
probability density functions with the exception of the Cauchy distribution. Because the moments of a 
Cauchy pdf are infinite, the above values of γ 1 , γ 2 , 3γ , and 4γ  associated with this density were 
selected to yield a symmetric distribution with heavy tail-weight.  
 The steps employed for data generation follow the model developed by Headrick (2000). The 
Headrick (2000) procedure is an extension of the Headrick and Sawilowsky (1999, 2000) procedure for 
simulating multivariate nonnormal distributions. The Headrick (2000) procedure generated the Yijk  and 
Xijk  for the ij-th group in (1) from the use of the following equations: 

dYcYcYcYcYccY ijijkijkijkijkijkijk δ++++++= ∗∗∗∗∗ 5432

543210  , and         (2) 
5432

543210  ∗∗∗∗∗ +++++= ijkijkijkijkijkijk XcXcXcXcXccX , where ∗
ijkY , ∗

ijkX ~ iid N(0,1).  (3) 
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 The resulting Yijk  and Xijk  were distributed with group means of dijδ  and zero (respectively), unit 

variances, the desired values of γ 1 , γ 2 , 3γ , 4γ , and the desired within group correlation (ρ ). In all 
experimental situations, Yijk  and Xijk  followed the same distribution. The value of dijδ  was the shift 

parameter added to the ij-th group for the treatment effect pattern considered. The coefficients 0c , 1c , 

2c , 3c , 4c , and 5c  were determined by simultaneously solving equations 37, 38, 39, 40, 41, and 42 from 

Headrick (2000) for the desired values of γ 1 , γ 2 , 3γ , and 4γ . The values of Yijk
∗  and Xijk

∗  in (2) and (3) 
were generated using the following algorithms:   

        
21     ∗∗∗ −+= ρρ ijkijkijk VZY , and         (4) 

        
21  ∗∗∗ −+= ρρ ijkijkijk WZX ,          (5) 

where the Zijk , Vijk , and Wijk  ~ iid N(0,1). The resulting ∗
ijkY  and ∗

ijkX  were normally distributed with 

zero means, unit variances, and correlated at the intermediate value 
2∗

∗∗
ijkijk XYρ . The intermediate correlation, 

which is different from the desired post-correlation (
ijkijk XYρ ) except under conditional normality, was 

determined by solving equation 26 from Headrick (2000) for the bivariate case for ∗
∗∗XY

ρ . When both 
variables follow the same distribution, equation 26 from Headrick (2000) can be expressed as follows: 
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   (6) 

Values of 0c ,…, 5c , and ∗
∗∗
ijkijk XYρ  were solved for (6) using Mathematica (Version 4.0, 1999). The solution 

values of 0c ,…, 5c , the intermediate correlations (
2∗

∗∗
ijkijk XYρ ), and post-correlations (

ijkijk XYρ ) for the 

conditional distributions considered are compiled in Table 1.  
 The computer used to carry out the Monte Carlo was a Pentium III-based personal computer. All 
programming was done using Lahey Fortran 77 version 3.0 (1994), supplemented with various 
subroutines from RANGEN (Blair 1986). Using the chi-square and F tables of percentage points, the 
proportions of hypotheses rejected were recorded for the four different procedures. The nominal alpha 
level selected was .05. Twenty five thousand repetitions were simulated for each of the 9(type of 
distribution)×4(level of correlation)×21(effect size) ×10(treatment effect pattern) experiments. 
 

Results 
Adequacy of the Monte Carlo 
For each repetition, separate values of ρij  and γ 1ij

, γ 2ij
, 

ij3γ , and 
ij4γ  for the variate and covariate for 

each of the IJ groups were computed. Average values of ρij ( ρ.. ), γ 1ij
(γ 1..), γ 2ij

(γ 2..), ij3γ ( ..3γ ), and 

ij4γ ( ..4γ ) were obtained by averaging the ρij , γ 1ij
, γ 2ij

, 
ij3γ , and 

ij4γ  across the IJ groups. The values 

of ρ.. , γ 1.. , γ 2.. , ..3γ , and ..4γ  were subsequently averaged across 25,000 (replications) × 21 (effect 
size) situations in the first treatment effect pattern for each conditional distribution. The average values of 
γ 1.. , γ 2.. , ..3γ , and ..4γ  were then further averaged across the four levels of correlation. The overall  
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Table 1. Values of constants ( 0c ,…, 5c ) used in equation (3), population correlations (
ijkijk XYρ ), and 

intermediate correlations (
2∗

∗∗XY
ρ ) to simulate and correlate the desired conditional distributions (Dist).  

Dist        0c  1c  2c  3c  4c  5c  
ijkijk XYρ  2∗

∗∗XY
ρ  

   1 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 .00 .000000 
       .30 .300000 
       .60 .700000 
       .90 .900000 

   2 0.000000 1.347438 0.000000 -0.140177 0.000000 0.001808 .00 .000000 
       .30 .326197 
       .60 .634118 
       .90 .913613 

   3 0.000000 0.306093 0.000000 0.184686 0.000000 0.001132 .00 .000000 
       .30 .374236 
       .60 .683980 
       .90 .929263 

   4 0.000000 0.727709 0.000000 0.096303 0.000000 -0.002232 .00 .000000 
       .30 .309371 
       .60 .612882 
       .90 .905531 

   5 0.000000 0.879467 0.000000 0.040845 0.000000 -0.000405 .00 .000000 
       .30 .302233 
       .60 .603260 
       .90 .901368 

   6 -0.163968 0.950794 0.165391 0.007345 -0.000474 0.000014 .00 .000000 
       .30 .311431 
       .60 .612677 
       .90 .904625 

   7 -0.227508 0.900716 0.231610 0.015466 -0.001367 0.000055 .00 .000000 
       .30 .322263 
       .60 .624030 
       .90 .908552 

   8 -0.307740 0.800560 0.318764 0.033500 -0.003675 0.000159 .00 .000000 
       .30 .341958 
       .60 .643339 
       .90 .914879 

   9 -0.397725 0.621071 0.416907 0.068431 -0.006394 0.000044 .00 .000000 
       .30 .376853 
       .60 .673908 
       .90 .924127 

averages of γ 1 , γ 2 , 3γ , 4γ , and ρ  are listed in Table 2 and Table 3, respectively. Inspection of Tables 
2 and 3 indicate that the Headrick (2000) procedure produced excellent agreement between γ 1 , γ 2 , 3γ , 

4γ , and ρ  and the population parameters considered. 
 The Type I error and power analyses are compiled in Tables 4 through 13. The column entries from 
left to right denote (a) the test statistic, (b) the standardized treatment effect size “d”, and (c) the 
proportion of rejections for the four different tests of interaction under the various levels of variate and 
covariate correlation and the other parameters considered. 
 
Type I Error 
 Normal Distribution: The Type I error rates for the competing procedures are compiled in Tables 4, 6, 
and 8, for n=5, 10, 20, and treatment pattern 2(b). This particular effect pattern is reported because the 
commonly used rank transform test statistic (Conover & Iman, 1981) under these circumstances is not  
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Table 2. Average values of 1γ ( 1γ ), 2γ ( 2γ ), 3γ ( 3γ ), and 4γ ( 4γ ) simulated by the Headrick (2000) 
procedure. The average values ( 1γ , 2γ , 3γ , 4γ ) listed below were based on a sample size is n=20. 
Distribution Population parameter ( 1γ , 2γ , 3γ , 4γ ) 

1 1γ = 0 2γ = 0 3γ = 0 4γ = 0 
Variate (Y) 1γ = 0.000124 2γ = -0.000284 3γ = 0.001073 4γ = -0.001339 
Covariate (X) 1γ = -0.000084 2γ = 0.000452 3γ = 0.000795 4γ = 0.002845 

2 1γ = 0 2γ = 56−  3γ = 0 4γ = 748  
Variate (Y) 1γ = 0.000005 2γ = -1.200004 3γ = 0.0000238 4γ = 6.857894 
Covariate (X) 1γ = 0.000039 2γ = -1.200163 3γ = 0.0001685 4γ = 6.853492 

3 1γ = 0 2γ = 25 3γ = 0 4γ = 4000 
Variate (Y) 1γ = -0.001318 2γ = 24.975520 3γ = -.3386690 4γ = 3958.22114 
Covariate (X) 1γ = 0.000290 2γ = 24.941770 3γ = -0.799517 4γ = 3988.30400 

4 1γ = 0 2γ = 3 3γ = 0 4γ = 30 
Variate (Y) 1γ = 0.000342 2γ = 2.999848 3γ = 0.014447 4γ = 30.010830 
Covariate (X) 1γ = 0.000032 2γ = 3.000327 3γ = 0.004328 4γ = 30.006732 

5 1γ = 0 2γ = 56  3γ = 0 4γ = 748  
Variate (Y) 1γ = 0.000224 2γ = 1.199900 3γ = .004258 4γ = 6.846827 
Covariate (X) 1γ = 0.000034 2γ = 1.200087 3γ = .001478 4γ = 6.858595 

6 1γ = 1 2γ = 23  3γ = 3 4γ = 215  
Variate (Y) 1γ = 1.000071 2γ = 1.500197 3γ = 3.001597 4γ = 7.496629 
Covariate (X) 1γ = 0.999992 2γ = 1.500053 3γ = 3.005218 4γ = 7.538564 

7 
1γ = 2  2γ = 3 

3γ = 26  4γ = 30 
Variate (Y) 1γ = 1.414330 2γ = 3.000764 3γ = 8.489000 4γ = 29.978800 
Covariate (X) 1γ = 1.413904 2γ = 3.001067 3γ = 8.484897 4γ = 30.004765 

8 1γ = 2 2γ = 6 3γ = 24 4γ = 120 
Variate (Y) 1γ = 2.000254 2γ = 6.002129 3γ = 24.008980 4γ = 119.868700 
Covariate (X) 1γ = 1.999989 2γ = 6.000573 3γ = 24.010045 4γ = 120.158647 

9 
1γ = 8  2γ = 12 

3γ = 248  4γ = 480 
Variate (Y) 1γ = 2.828878 2γ = 12.003800 3γ = 67.884840 4γ = 479.035600 
Covariate (X) 1γ = 2.827901 2γ = 12.000050 3γ = 67.885672 4γ = 480.001874 
 
asymptotically chi-squared (Thompson, 1991, 1993) and is liberal for even small samples (Headrick, 
1997; Headrick & Sawilowsky, 2000). 
As expected, the parametric F test maintained Type I error rates close to nominal alpha and were within 
the closed interval of 25000/)1(96.1 ααα −± . This occurred across all treatment conditions, sample 
sizes, and levels of variate/covariate correlation. 
 The adjRT also generated acceptable Type I error rates. Inspection of Tables 4, 6, and 8 indicates that 
the Type I error rates were similar to the parametric F test.  With respect to the H test, inspection of 
Tables 6 and 8 indicates that this test maintained appropriate Type I error rates for sample sizes of n=10 
and n=20. However, for n=5, inspection of Table 4 indicates that the H test generated liberal Type I 
error rates. For example, with an effect size of d=0.80, the Type I error rates were approximately .060 
across all levels of variate/covariate correlation. 
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Table 3. Average values of variate and covariate correlation (ρ ) simulated by the Headrick (2000) 
procedure. The value ρ  denotes the population correlation. The average values ( ρ ) listed below were 
based on a sample size is n=20. 

  Distribution 
n ρ  1 2 3 4 5 6 7 8 9 

20 .00 .000 .000 -.001 .000 .000 .000 .001 .000 -.000 
 .30 .300 .299 .300 .301 .300 .299 .300 .300 .301 
 .60 .600 .601 .602 .599 .600 .598 .600 .599 .600 
 .90 .900 .899 .901 .900 .900 .901 .899 .900 .900 

 
 The PS test became conservative when either one or both main effects were present. Ceteris paribus, 
the stronger the nonnull main effect(s) the more conservative the Type I error rates became. These 
conservative Type I error rates occurred across all levels of variate and covariate correlation. For 
example, with an effect size of d=0.80, inspection of Table 4 indicates that the Type I error rates were 
.001, .000, and .000 across the three levels of variate/covariate correlation. The PS procedure maintained 
Type I error rates close to nominal alpha only when both main effects were null. 
 
 Nonnormal Distributions: Type I error rates are compiled in Tables 10 and 12 for some of the 
nonnormal distributions considered. The approximate distributions reported in these tables are the chi-
square 1df and Cauchy. These distributions are reported because previous empirical investigations 
demonstrated that Type I error inflations associated with the rank transform test statistic (Conover & 
Iman, 1981) were most severe under extreme departures from normality (Headrick, 1997; Headrick & 
Sawilowsky, 2000).  
 The parametric F test was slightly conservative under the nonnormal conditional distributions 
reported. For example, with an effect size of d=1.30, variate/covariate correlation of r= .30, an 
inspection of Table 12 indicates that the Type I error rate was .040 when the conditional distribution was 
approximate Cauchy. 
 The adjRT generated inflated Type I error rates when the conditional distribution considered was 
skewed (e.g., chi-square 1df or 2df). For example, with an effect size of d=0.80, a variate/covariate 
correlation of r= .90, inspection of Table 10 indicates that the Type 1 error rate for the adjRT was .076. In 
general, increases in skew i.e., chi-square 4df, chi-square 2df, chi-square 1df were associated with 
increases in Type I error inflation for the adjRT. 
 The H test maintained appropriate Type I error rates for all nonnormal conditional distributions 
considered when sample sizes were n=10 and n=20. When samples were n=5, the H test generated 
liberal Type I error rates. The inflated Type I error rates were similar to those error rates generated under 
conditional normality. 
 As with the standard normal case, the PS test generated ultra-conservative Type I error rates when 
main effects were present. For example, with an effect size d=0.80 and a variate/covariate correlation of 
r= .60, inspection of Table 12 indicates that the Type I error rate was .000. This occurred for all 
nonnormal distributions considered in this study. 
 
Power Analysis 
 Normal Distribution: Power analyses for the competing procedures are compiled in Tables 5, 7, and 
9, for n=5, 10, 20, and treatment pattern 5(a). This effect pattern is reported because under these 
conditions the usual rank transform statistic has been demonstrated to display severe power losses 
(Headrick, 1997; Headrick & Sawilowsky, 2000). 
As expected, the F test displayed a power advantage over the three nonparametric competitors when the 
conditional distribution was standard normal. Specifically, the F test was substantially more powerful 
than the PS test when both main effects became increasingly nonnull. Although the F test was more 
powerful than the H test when sample sizes were n=10 and n=20, the H test held a slight power 
advantage over the adjRT. When sample sizes were n=5, inspection of Table 5 indicates that the H test  
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Table 4. Type I error results for the test of interaction. The sampling distribution was standard normal. 
The sample size was n=5. Both main effects were nonnull. The Type I error rates were based on 25,000 
repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .051 .052 .050 
adjRT  .052 .053 .051 
H  .057 .060 .060 
PS  .023 .020 .004 
F 0.80 .050 .051 .050 
adjRT  .052 .053 .049 
H  .059 .056 .058 
PS  .001 .000 .000 
F 1.30 .052 .047 .052 
adjRT  .052 .050 .051 
H  .059 .060 .061 
PS  .000 .000 .000 

 
Table 5. Power analysis for the test of interaction when sampling was from a standard normal 
distribution. The sample size was n= 5. Both main effects were nonnull. The rejection rates were based on 
25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .062 .067 .110 
adjRT  .062 .066 .100 
H  .069 .077 .121 
PS  .055 .056 .081 
F 0.80 .145 .202 .622 
adjRT  .143 .187 .531 
H  .159 .217 .632 
PS  .106 .132 .315 
F 1.30 .359 .507 .983 
adjRT  .349 .473 .954 
H  .372 .517 .983 
PS  .211 .272 .272 

 
was rejecting at a higher rate than F test. For example, with an effect size of d= 0.80, a variate/covariate 
correlation of r= .30, inspection of Table 5 indicates that the H test had a rejection rate of .16 while the F 
test was rejecting at a rate of .145. This higher rejection rate is attributed to the liberal nature of the Type I 
error rates that were associated with the H test when n= 5. 
 Nonnormal Distributions: In general, when departures from normality were small (e.g., approximate 
logistic) to moderate (e.g., approximate chi-square 8df) the F test rejected at rates slightly less than the 
Hettmansperger and adjRT procedures. The power advantages in favor of either the H or adjRT tests were 
contingent on the conditional distribution considered and the other parameters being simulated. It should 
be noted that the power advantages in favor either the H test or adjRT test were marginal. On the other 
hand, when the conditional distribution was approximate uniform the parametric F test held a slight 
advantage over the nonparametric procedures. 
When the conditional distributions were extremely skewed and/or heavy tailed, both the adjRT and H 
tests held large power advantages over the F test. Further, when the adjRT test generated reasonable Type 
I error rates, the adjRT displayed some power advantages over the other competing nonparametric 
procedures. For example, inspection of Table 13 indicates that when the conditional distribution was 
approximate Cauchy, an effect size of d= 0.80, and a variate/covariate correlation of r= .60, the adjRT  
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Table 6. Type I error results for the test of interaction. The sampling distribution was standard normal. 
The sample size was n= 10. Both main effects were nonnull. The Type I error rates were based on 25,000 
repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .053 .052 .049 
adjRT  .054 .051 .049 
H  .052 .055 .053 
PS  .027 .019 .003 
F 0.80 .050 .050 .050 
adjRT  .051 .049 .051 
H  .053 .052 .053 
PS  .006 .001 .000 
F 1.30 .050 .048 .050 
adjRT  .051 .048 .051 
H  .054 .051 .054 
PS  .000 .000 .000 

 
Table 7. Power analysis for the test of interaction when sampling was from a standard normal 
distribution. The sample size was n= 10. Both main effects were nonnull. The rejection rates were based 
on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .078 .088 .208 
adjRT  .077 .087 .179 
H  .076 .089 .201 
PS  .069 .077 .155 
F 0.80 .294 .418 .951 
adjRT  .284 .386 .911 
H  .288 .402 .943 
PS  .232 .306 .779 
F 1.30 .715 .879 1.000 
adjRT  .693 .848 .999 
H  .697 .863 1.000 
PS  .531 .683 .987 

 
was rejecting at a rate of .942 whereas the H test was rejecting at a rate of .844. Power comparisons 
between these two tests were not considered where the adjRT generated liberal Type error rates (e.g., 
approximate chi-square 2df or chi-square 1df). When the conditional distributions were approximately 
chi-square 2df or chi-square 1df, the H test was a much more powerful than the parametric F. For 
example, when sampling was from an approximate chi-square distribution 1df, d= 0.80, a 
variate/covariate correlation of r= .30, inspection of Table 11 indicates that the H test was rejecting at a 
rate of .731 while the F test was rejecting at a rate of only .326. 
 The PS procedure held a power advantage over the H and adjRT tests only when both main effects 
were either weak or null. Otherwise, the PS test statistic had the problem of power loss when juxtaposed 
to either the H or the adjRT tests as the magnitude of the main effect(s) increased. For example, when 
sampling was from an approximate chi-square distribution 1df, d= 0.30, a variate/covariate correlation of 
r= .30, inspection of Table 11 indicates that the PS test was rejecting at a rate of .182 while the H test was 
rejecting at a rate of .148. However, when the effect size increased from d= .30 to d= 0.80, the H test was 
rejecting at a rate of .731 while the PS was rejecting at a rate of only .524. This pattern of power loss 
associated with the PS test was consistent across all nonnormal distributions considered in this study. 
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Table 8. Type I error results for the test of interaction. The sampling distribution was standard normal. 
The sample size was n= 20. Both main effects were nonnull. The Type I error rates were based on 25,000 
repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .050 .050 .049 
adjRT  .050 .050 .050 
H  .051 .052 .050 
PS  .028 .019 .003 
F 0.80 .051 .049 .052 
adjRT  .052 .052 .051 
H  .052 .052 .052 
PS  .001 .000 .000 
F 1.30 .050 .050 .050 
adjRT  .050 .049 .048 
H  .052 .051 .052 
PS  .000 .000 .000 

 
Table 9. Power analysis for the test of interaction when sampling was from a standard normal 
distribution. The sample size was n= 20. Both main effects were nonnull. The rejection rates were based 
on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .109 .133 .410 
adjRT  .105 .127 .360 
H  .105 .131 .393 
PS  .099 .119 .328 
F 0.80 .596 .775 1.000 
adjRT  .569 .734 1.000 
H  .573 .754 1.000 
PS  .505 .661 .994 
F 1.30 .976 .998 1.000 
adjRT  .968 .996 1.000 
H  .969 .997 1.000 
PS  .920 .978 1.000 

 
Discussion 

 The PS test is computationally arduous. Further, the results of this study indicate that this test had the 
problems of ultra-conservative Type I error rates and power loss when main effects were nonnull. 
Toothaker and Newman (1994) found similar results with respect to the PS test in the context of factorial 
ANOVA. Thus, it is recommended that this procedure not be considered as a viable alternative to the 
parametric F test in factorial ANCOVA. 
 It is possible to base the PS statistic on normal or expected normal scores instead of the ranks (Puri & 
Sen, 1969a). And, this might correct the problem of ultra-conservative Type I error rates. However, 
additional nonlinear transformations present the problem with respect to the correct interpretation of the 
statistical results in terms of the original metric. 

The adjRT is arguably the simplest of the three nonparametric procedures to compute. However, 
because the adjRT has the problem of liberal Type I error rates when the distributions possess moderate to 
extreme skewness, it is also recommended that the adjRT procedure not be used in place of the parametric 
F test. 
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Table 10. Type I error results for the test of interaction. The sampling distribution was an approximate 
chi-square distribution with 1degree of freedom. The sample size was n= 10. Both main effects were 
nonnull. The Type I error rates were based on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .046 .043 .045 
adjRT  .069 .068 .075 
H  .053 .048 .048 
PS  .010 .006 .001 
F 0.80 .044 .047 .047 
adjRT  .067 .072 .076 
H  .051 .050 .049 
PS  .004 .001 .000 
F 1.30 .045 .046 .046 
adjRT  .070 .070 .073 
H  .052 .049 .049 
PS  .000 .000 .000 

 
 
Table 11. Power analysis for the test of interaction when sampling was from was an approximate chi-
square distribution with 1degree of freedom. The sample size was n= 10. Both main effects were nonnull. 
The rejection rates were based on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .075 .086 .221 
adjRT  .197 .262 .679 
H  .148 .182 .522 
PS  .182 .243 .597 
F 0.80 .326 .462 .947 
adjRT  .815 .926 .999 
H  .731 .838 .999 
PS  .524 .672 .973 
F 1.30 .739 .881 .999 
adjRT  .991 .999 1.000 
H  .981 .995 1.000 
PS  .762 .885 .998 

 
 
 The H chi-square test maintained appropriate Type I error rates for all conditional distributions 
considered in this study when sample sizes were at least as large as n= 10. Thus, the H test could be 
considered as an alternative to the parametric F test for interaction provided the within group sample sizes 
are relatively equal and at least as large as n= 10. This recommendation is made in view of the large 
power advantage that the H test had over the F test when the conditional distributions were contaminated 
with outliers and/or possessed extreme skewness.  
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Table 12. Type I error results for the test of interaction. The sampling distribution was an approximate 
Cauchy distribution. The sample size was n= 10. Both main effects were nonnull. The Type I error rates 
were based on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .043 .045 .044 
adjRT  .054 .053 .058 
H  .046 .050 .050 
PS  .008 .005 .001 
F 0.80 .044 .044 .046 
adjRT  .053 .055 .056 
H  .045 .048 .048 
PS  .000 .000 .000 
F 1.30 .040 .044 .045 
adjRT  .053 .052 .056 
H  .045 .047 .048 
PS  .000 .000 .000 

 
Table 13. Power analysis for the test of interaction when sampling was from was an approximate Cauchy 
distribution. The sample size was n= 10. Both main effects were nonnull. The rejection rates were based 
on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .075 .096 .244 
adjRT  .163 .235 .699 
H  .130 .173 .495 
PS  .155 .220 .632 
F 0.80 .346 .489 .946 
adjRT  .801 .942 1.00 
H  .712 .844 .999 
PS  .563 .754 .993 
F 1.30 .750 .884 .999 
adjRT  .993 .999 1.00 
H  .981 .996 1.00 
PS  .804 .934 .999 
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