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The present paper provides an introductory exposure to different approaches currently available for analyzing data 
generated through repeated measurements of a phenomenon of interest. Even univariate repeated measures data can 
be analyzed by employing univariate or multivariate data analytic strategies. Both univariate and multivariate 
methods can be valuable under certain conditions and when various assumptions are met. The present paper 
examined both univariate and multivariate approaches to analyzing repeated measures data and compared the results 
of these methods with classical ANOVA and multiple regression analyses. A small heuristic data set was utilized to 
make the discussion concrete and to facilitate conceptual understanding of the material.  
 

he primary objective of all scientific research is to gather new information about a phenomenon of 
interest and to convey to other interested parties conclusions in an effort to further the 
accumulation of scientific knowledge. Since science is concerned primarily with repeatable and 

replicable experiments, researchers are required to examine and reduce the influence of random effects 
that might contaminate results and consequently distort conclusions. One manner in which researchers 
have sought to reduce the influence of random effects is to utilize a separate set of individuals for 
different levels of a treatment condition (termed a between-subjects design). The logic employed is that 
any individual differences manifested prior to the implementation of the treatment can be alleviated by 
randomly assigning individuals to only one of the various conditions. This approach has the advantage of 
being less cumbersome to participants but frequently places a strain on the researcher, as it is necessary to 
amass larger numbers of participants for each treatment and control condition so that the random 
assignment mechanism can work effectively to minimize the influence of outliers (Girden, 1992).   
 Another way to control for the influence of individual differences is through the use of the same 
group of individuals measured repeatedly over time, occasions, or conditions (often termed repeated 
measures or within-subjects designs). In this manner each individual serves as his or her own control 
group, and the aberrant influences garnered by one individual on a single measurement will likely be 
manifested by that individual on subsequent measurements as well. Consequently, the influence of 
different levels of the treatment condition, as well as the influence of intrapersonal (within-subjects) and 
interpersonal (between subjects) differences, can be examined. Advantages afforded by this approach 
include a decreased number of participants required to achieve reasonable power against Type II error and 
distorted effects due to outliers (Stevens, 1996). 
 The differences between the two methodologies previously described can be illustrated in a brief 
example. Suppose a pharmaceutical company has developed a new drug for adult depression and desires 
to test the drug on a group of human participants for any potentially harmful side effects. The company, 
having just developed the drug treatment and thus nearly exhausting the financial resources reserved for 
the project, needs to find a cost effective manner in which to test the treatment. One viable alternative, the 
between-subjects approach, would be to gather a large group of individuals and randomly assign 
participants to six different dosage conditions ranging from a placebo treatment (sugar pill) to a 450mg 
treatment of the medication (spaced in 150mg increments). Supposing a minimum number of 20 
participants are required per condition, the drug company would need to recruit a minimum of 120 
individuals to participate in the study.  
 Another potential option would invoke a repeated measures design in exploring the differential 
effects of the drug treatment. In this approach a group of individuals would also be gathered, but each 
individual would receive each of the six levels of the drug treatment in a random order. Again supposing 
a minimum of 20 participants per condition, a total of only 20 participants would be required to complete 
the study. Consequently, the demands on participants is greater in the repeated measures design, but the 
benefits of employing such a design can be both statistically elegant and satisfying for the researcher. 
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 Because employing repeated measures designs can be both practical and powerful in social science 
research (Girden, 1992), it is lamentable that more researchers have not opted to utilize this type of 
design. One reason for the under utilization of this approach is disagreement regarding the appropriate 
analytic technique to use to evaluate results, as either a univariate or multivariate approach can be 
invoked (Algina & Keselman, 1997; Girden, 1992; Keselman, Keselman, & Lix, 1995; Keselman, Lix, & 
Keselman, 1996; Maxwell & Delaney, 1990). As noted by several authors (Algina & Keselman; Edwards, 
1985; Girden; Maxwell & Delaney), each analysis has distinct advantages and disadvantages, and each 
type of analysis will provide a more powerful result under certain conditions and when certain statistical 
assumptions are satisfied. 
 The purpose of the present paper is to examine the similarities and differences in the univariate and 
multivariate analysis of univariate repeated measures data involving repeated measurements of a single 
dependent variable. The discussion will include comparisons with classical ANOVA and multiple 
regression approaches to repeated measures analysis. Power and practicality of the various approaches 
will be illustrated by utilizing a small heuristic data set throughout the paper. 
 

Univariate Approach to Repeated Measures Analysis 
 The univariate approach to repeated measures analysis, often termed a repeated measures ANOVA, 
invokes many concepts also employed in a classical ANOVA analysis in that the sums of squares (SS) is 
partitioned into various constituent components. In repeated measures ANOVA, however, it is possible to 
further partition variation that classical ANOVA simply terms ‘error’ variance. Thus, in an effort to 
understand the advantages afforded by invoking repeated measures designs, it is first necessary to review 
some pertinent components of classical ANOVA. 
 

Mechanics and Logic Underlying Classical ANOVA 
 ANOVA (Fisher, 1925) is a statistical procedure utilized to compare means (k>2) in an effort to 
determine if the means differ from one another (Edwards, 1979). In the most traditional application of 
ANOVA, researchers typically utilize the technique to test the statistical significance of the differences 
among or between groups of means, but ANOVA can also be used to generate variance-accounted-for 
effect sizes as well (Wilcox, 1987). As stated by Shavelson (1988), “The purpose of... ANOVA is to 
compare the means of two or more groups in order to decide whether the observed differences between 
them represent a chance occurrence or a systematic effect” (p. 342). 
 
Classical ANOVA with One Between Factor  
 A construct crucial to understanding ANOVA is the most basic unit of all statistical analysis: 
variance. As stated by Haase and Thompson (1992), “variance is the ‘stuff’ on which all analysis is 
based” (p. 3). Variance is the degree to which the scores are spread out or dissimilar in a data set. As the 
name implies, analysis of variance is concerned primarily with determining the sources of variation 
present within a set of data. 
 The most simplistic manner in which to examine the shared variance or the differences manifested in 
group means is by examining distinct groups on a singular independent variable, commonly referred to as 
a one-way ANOVA. In this context the word “way” (also termed factor) refers to the singular 
independent variable under investigation (it is assumed in ANOVA that only one dependent variable will 
be utilized). Researchers employing the one-way ANOVA technique typically have a group of 
individuals, which has been either naturally or systematically divided into two or more subgroups on a 
singular classification scheme. The objective of using the one-way ANOVA is to determine if the groups 
under investigation are appreciably different from one another by ascertaining what proportion of the total 
dependent variable variance is accounted for by each group.  
 The process of executing a one-way ANOVA involves consulting several statistics utilized in the 
computational process. Among the first statistics derived in this process is (a) the sum of squares total 
(SST) - the total variation in the scores on the dependent variable; (b) the sum of squares between groups 
(SSB) - the variation in the scores on the dependent variable attributed to the independent variable; and (c) 
the sum of squares within groups (SSw) - the variation in the scores on the dependent variable that cannot 
be accounted for by the independent variable. An interesting property of the three SS components is that 
in a balanced design SSB and SSW always sum to SST, as SSB and SSW are partitioned areas of SST. A useful 



Repeated Measures 

Multiple Linear Regression Viewpoints, 2002, Vol. 28(1) 
 

3

metaphor in conceptually understanding SS is to equate SST with an entire pie. The pie is constituted of 
two individual slices, one representing SSB and one representing SSW. Thus, SSB and SSW are always 
perfectly uncorrelated and are completely separate and unique entities. The size of each slice of pie 
corresponds to the proportion of variance accounted for by each SS component.  
 
ANOVA Test Statistic and Decision Process  

The test statistic used in ANOVA to determine if differences are present in the analyzed data is called 
the Fratio or Fcalculated (Fcalc). This statistic is generated by dividing the mean square between (SSB divided 
by the degrees of freedom between (dfB)) by the mean square within (SSW divided by degrees of freedom 
within (dfW)). The resultant Fcalc can be compared to the critical values of the F-distribution (Fcrit) 
contained in most statistical texts, and if the Fcalc supersedes the Fcrit value (located by using the degrees 
of freedom between and the degrees of freedom within) at the specified α level, then the result of the 
analysis is said to be “statistically significant.” A result that is statistically significant implies that given 
the sample size and the specified α level, the researcher has decided to reject the null hypothesis. A 
statistically significant result, however, does not imply that the result is inherently important (Thompson, 
1993; 1996a; 1999a; 1999b). Conversely, an Fcalc that fails to exceed the Fcrit value is subsequently 
considered not statistically significant but is not necessarily regarded as inherently unimportant, as 
statistical significance does not furnish any information to a researcher in regard to result importance 
(Thompson, 1999a, 1999b). 
 Another manner in which to render a decision in ANOVA is through the computation of a statistic 
called eta2, a variance accounted for effect size functionally equivalent to R2. Eta2 is an uncorrected effect 
size (see Snyder & Lawson, 1993 for a full treatment of effect sizes) and is computed by dividing SSB by 
SST. The resultant statistic informs the researcher as to what portion of the variance can be explained with 
knowledge of to which group the participants belonged.  
 
Multiple Between-Subjects Factors in Classical ANOVA  
 In a two-way ANOVA, two independent variables are examined in relation to a singular dependent 
variable. By employing this analysis, it is possible to examine the effects of one or both of the ways on 
the dependent variable as well as the effects of combinations of the ways. By affording researchers the 
ability to examine the effects of a combination of the ways on the dependent variable, ANOVA becomes 
a very powerful tool in discerning the relationships between different variables. 
 As stated previously, ANOVA partitions the variance on the dependent variable into two distinct 
components, SSB and SSW.  Recall from the earlier discussion of the one-way case that each partition is a 
unique and separate portion of the SST. In the two-way case, the SSB portion is further partitioned into two 
components, the SS associated with the main effects and the SS associated with the interaction. For a 
balanced design, each portion of SSW is still considered a separate and unique portion of the SST and will 
never overlap with any other SS partition. A final SS partition splits the SS allotted to the main effects into 
one portion associated with the “A” way main effect and one portion associated with the “B” way main 
effect. Thus, in the factorial two-way case, there are four SS partitions resulting in the components of SSA-

way, SSB-way, SSINTERACTION, and SSW. Consequently, in a balanced design, any information generated by one 
SS component does not render any information about another SS component, as all the SS partitions are 
perfectly uncorrelated (i.e., orthogonal). The only exception to this dynamic is when one partition equals 
SST, because the other partitions must then equal zero.  
 The resultant effect of performing a multi-way classical ANOVA analysis can be either positive or 
negative (Benton, 1991). Two dynamics are at work when discerning the effect of multiple ways on a 
given analysis: the extent to which the SSW and dfW are reduced. Reducing the SSW without altering the 
associated dfW reduces the MSW component and provides a larger Fcalc value. Unfortunately, partitioning 
more variance in classical ANOVA costs the researcher, and the remuneration for partitioning more 
variance is a reduction in the dfW. The effect of reducing the dfW can counteract a reduction of the SSW, as 
reducing the dfW will increase the MSW and will subsequently reduce the Fcalc value. Thus, as in any 
analysis, there is a cost-benefits decision to be rendered when including more than one factor in a 
classical ANOVA. If the newly included factor consumes a substantial portion of SSW without 
appreciably reducing the dfW, the resultant Fcalc value is more likely to be statistically significant.  
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Single Within-Subjects Factor Designs 
 Invoking a single within-subjects factor (e.g., repeated measures) design allows the researcher to 
partition variance on the dependent variable in much the same way as in classical ANOVA. The 
difference is that in a single factor repeated measures design, the total variation is partitioned into that 
component associated with variation due to individual differences in the participants (SSSUB) and variation 
due to differences in the levels of the treatment condition (SSTRT). The remaining variation (typically 
termed SSRES) is often considered an interaction component because it represents variation due to the 
unique combination of the participants and the treatment levels. As noted previously, in classical ANOVA 
with a single between-subjects factor, it was only possible to partition variance into between-groups 
(variation due to differences in groups of participants) and within-groups variation (error). Because 
repeated measures analysis explains more of what classical ANOVA simply terms error, it is possible to 
reduce the MSRES value and subsequently generate a larger Fcalc value with fewer participants (Girden, 
1992). Consequently, repeated measures ANOVA designs tend to be more efficient because fewer 
participants are required to conduct an analysis that may generate more statistical power than classical 
ANOVA (i.e., between-subjects) designs. 
 Classical ANOVA includes individual differences in performance as error (SSW) because with only 
one measurement of each person the variance attributable to each person as a unique individual cannot be 
estimated. In repeated measures analyses, however, the variance due to differences in people can be 
estimated. Thus, in a single within-subjects factor situation, variance is partitioned into between-subjects 
(differences across the different treatment effects), within-subjects (differences due to intrapersonal 
variation), and residual variation. 
 
Carry-Over, Latency Effects and Counterbalancing  
 As stated previously, repeated measures designs require the same group of participants to be 
measured on multiple occasions. It has been recognized in the social sciences that the order of 
presentation of stimuli can sometimes have a differential effect on participants’ responses as some 
experiments involve repeated exposure to the same task (Girden, 1992; Keppel, 1991; Keppel & Saufley, 
1980; Keppel & Zedeck, 1989; Stevens, 1996). As such, carry-over and latency effects are common 
problems in repeated measures research. A latency effect refers to a situation in which the effect of a 
treatment is not evident until a subsequent level of the treatment is introduced. A latency effect may 
predispose a researcher to erroneously contend that the administered treatment had little to no effect on 
the monitored behavior when, in actuality, the effect of the treatment was not evidenced until an 
additional condition had been implemented. Similarly, a carry-over effect refers to the influence of a 
previous level of treatment on the observed behavior in a subsequent level of the same treatment 
condition.  
 Carry-over and latency effects tend to skew results by influencing the responses of participants and 
can be both positive or negative in nature. A strategy termed counterbalancing is frequently employed in 
repeated measures research to help combat carry-over and latency effects. Counterbalancing involves 
presenting levels of a treatment condition so that each level occurs equally often at each stage of practice 
and so that each level precedes another level as many times as it follows the level. When treatment 
administrations are counterbalanced, it is possible for a researcher to discern if certain combinations of 
treatment levels adversely affected the observed results.  
 Counterbalancing the presentation of treatment stimuli in repeated measures designs is critical to the 
generation of data that accurately represents the effect of a given treatment on the behavior of interest. 
The following paradigm can be invoked when determining the presentation order of the stimuli provided 
there are an even number of treatment levels and the number of participants is some multiple of the 
number of conditions:  

1, 2, n, 3, n-1, 4, n-2, 5, n-3, 6, n-4, etc. 
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Table 1. Counterbalancing Order for Design with Six Treatment Conditions 
   Trial Number   
Person One Two Three Four Five Six 

A 1 2 6 3 5 4 
B 2 3 1 4 6 5 
C 3 4 2 5 1 6 
D 4 5 3 6 2 1 
E 5 6 4 1 3 2 
F 6 1 5 2 4 3 

 Note. Each number (1-6) indicates which level of the treatment the participant would receive on each 
corresponding trial.  

 
 If six treatment levels were to be administered in a given study, the first participant would be presented 
the treatments levels in the order of 1, 2, 6, 3, 5, 4. To derive the order of presentation for the second 
participant, it would be necessary to add a 1 to each of the numbers in the preceding order:  
 
       2=(1+1), 3=(1+2), 1≡  (1+6 reduces to 1), 4=(1+3), 6=(1+5) 5=(1+4). 
 
Using this generation rule, the completed order of presentation for five participants when administered 
five treatment conditions is presented in Table 1. 
 Notice that each treatment condition is presented before and after every other treatment condition. In 
the case that there is an odd number of levels of the treatment condition, the first order of presentation is 
derived as previously illustrated but the second order is computed by reversing the sequence of the first 
presentation. For example, if there were three levels of treatment to be administered, the first order of 
presentation would be 1, 2, 3 and the second order of presentation 3, 2, 1. The third order of stimuli 
presentation would be 1≡  (1+3, reduces to 1), 3=(1+2) and 2=(1+1). This procedure would be repeated 
until all of the participants were assigned stimuli presentation orders. The examples presented here 
conform to the criteria delineated by Girden (1992), as each treatment level occurs equally often at each 
stage of practice and precedes as many times as it follows a level. 
 The concept of counterbalancing, although important and necessary in repeated measures analyses, 
cannot always remedy some of the problems experienced in employing repeated measures designs. In 
some instances the order of presentation of the stimuli is essentially irrelevant in that after the stimuli are 
presented on the first occasion the participant might be able to demonstrate a substantial practice effect on 
later trials, which skews the responses on the dependent variable. Consider, for example, a researcher 
teaching undergraduate students the names of five important psychologists, and then examining the 
effects of differential drug treatments on memory recall. Many, if not all, of the participants may 
successfully commit the names to memory on the first trial and will then be able to recite them after each 
of the treatments regardless of the order of presentation. Counterbalancing is important in generating 
accurate data in repeated measures designs, but often even a good correction method cannot repair a poor 
research design.   
 
SS Partitions and the Test Statistic  
 The remainder of the present paper uses a singular heuristic example to examine the various statistical 
and conceptual properties of univariate and multivariate approaches to repeated measures analyses. 
Consider the following situation: A pharmaceutical company has developed a new prototypical drug that 
is purported to alleviate depressive symptomalogy in human adults. In a bid to gain FDA approval of the 
drug so that the treatment can be disseminated in the public sector, the company tested the medication on 
a small sample of human participants. The drug was presented in each of four dosage levels (0mg, 150mg, 
300mg and 450mg) to each of five individuals. The different levels of treatment were counterbalanced 
across participants, and each additional level was given only after a sufficient time had passed to allow 
traces of the previous treatment to exit the participants’ systems. After each dosage had an opportunity to 
take effect, the participants were administered a depression inventory (i.e., dependent variable) to assess  
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Table 2. Hypothetical Data Matrix for Medication Dosage Study 
 Trial Number   

Subject 0mg 150mg 300mg 450mg Sum Mean(Yi) 
1 1 10 14 18 43 10.75 
2 3 6 15 19 43 10.75 
3 3 8 11 20 42 10.50 
4 4 8 13 16 41 10.25 
5 5 9 13 18 45 11.25 
ΣYj 16 41 66 91 214  

Mean(Yj) 3.2 8.2 13.2 18.2  10.70 
 Note. Scores on the hypothetical depression inventory range from 0 ‘critically depressed’ to 25 ‘not 
depressed’.  
 
their level of depression (ranging from 0 ‘critically depressed’ to 25 ‘not depressed’). After the 
conclusion of the last treatment, a data matrix was compiled and examined using a single within-subject 
factor (drug treatment) repeated measures analysis. These hypothetical data are presented in Table 2.     
 The first step in completing the repeated measures ANOVA is to partition the variance on the 
dependent variable. As mentioned earlier, the variance will be decomposed into three main components: 
A portion associated with the differences in the participants (SSSUB); a component associated with 
differences in the treatment conditions or intervals (SSTRT); and a portion associated with error variance 
and the effects of individual participant differences across treatment conditions (SSRES). Thus, the 
decomposition of the total variation on the dependent variable can be described in the equation: 
         SST = SSSUB + SSTRT + SSRES  . 
 The SST component represents the sum of the squared deviation of each dependent variable score 
from the grand mean. SSSUB is computed by summing the squared deviations of each subject mean from 
the grand mean. SSTRT represents the sum of the squared deviations of the treatment means from the grand 
mean. Finally, SSRES is computed by subtracting SSSUB and SSTRT from SST. Thus, for the present example, 
the equation can be written: 
         660.20 = 2.20 + 625.00 + 33.00.  
 The next step is to compute the appropriate degrees of freedom for each source of variation. The 
formulas for the df calculations are presented in Table 3. As noted earlier, the residual term is considered 
an interaction effect (subjects by treatment intervals) and thus the df for this component is calculated by 
multiplying the df for subjects (dfSUB) by the df for treatment intervals (dfTRT). After calculating the 
appropriate df, the mean squares, Fcalc, eta2, and omega2 values are calculated. Notice that the only Fcalc 
value that is computed is the value corresponding to the treatment interval source of variation because it is 
usually of primary interest.  
 The results of the repeated measures ANOVA on the example data are very favorable. The different 
treatment conditions accounted for 94.67% of the total variation on the depression scores and rendered a 
statistically significant result at the α = .05 level. Additionally, there was very little variation in the 
performance of individual participants when averaged across conditions as illustrated by the very small 
SS value for the between subjects source of variation (2.20). Based on the effect size and statistical 
significance of these results, the pharmaceutical company can report that different dosages of the anti-
depression medication produced a decrease in the overall depression scores of the participants involved in 
the study.       
 A comparison of the results in the repeated measures ANOVA with the results generated by a 
classical ANOVA of the same set of data produces an interesting topic for discussion. In order to invoke a 
classical ANOVA with this data, it would be necessary to measure each individual only once as classical 
ANOVA examines effects between subjects; consequently, 20 participants would be required to complete 
the exact same study.   In the classical ANOVA approach rather than each participant receiving all four  
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Table 3. Summary Table for Repeated Measures ANOVA with Table 2 Data. 
Source SS df MS Fcalc eta2 omega2 

Subjects 2.20 n-1 =  4 0.55    
Intervals (TRT) 625.00 k-1 =  3 208.3

3 
75.76 0.9467 0.9144 

Residual 33.00 (n-1)(k-1) = 12 2.75    
Total 660.20 (n)(k)-1 =19     

 Note. n = number of Subjects, k = number of Treatment Intervals.  
    omega2 =  (SSTRT - ((k-1)MSRES))/( SST + MSSUB + (nMSRES). 
 
levels of treatment, each individual would be randomly assigned one level of treatment.   Consequently, it 
is only possible to examine the differences between the levels of treatment and not the differences 
between individual participants. Thus, the variance on the dependent variable is partitioned into one less 
component in classical ANOVA than in the repeated measures analysis.  
 The results of the four level one-way ANOVA on the example data are presented in Table 4. Notice 
that the SSRES (error) is larger in the classical ANOVA analysis (i.e., SSW) because there is one less 
variance partition. Also note that the dfRES is smaller in the repeated measures ANOVA than in the 
classical ANOVA. Because only 2.20 SS units were accounted for by the inclusion of this source of 
variation in the repeated measures analysis and the cost of examining that piece of information was 3 df 
from a small number of 20 total observations, employing a repeated measures analysis in this case could 
have been detrimental to the outcome of the study in terms of statistical significance due. Even though 
both results are statistically significant at the α = .05 level, the Fcalc value is much larger in the classical 
ANOVA analysis. All things being equal, larger Fcalc values will lead to a better chance of obtaining 
statistical significance, if the researcher is concerned with doing so.  
 Notice, however, that the variance accounted for by the treatment component (94.67%) remains 
identical in each analysis. In a real world setting with actual data and a larger sample size, the distinction 
between these two approaches would be more pronounced, and the power of utilizing a repeated measures 
approach could be illustrated more convincingly. Remember, however, that very similar results were 
generated in both analyses, but the repeated measures approach only utilized five participants total 
compared to the 20 individuals required to complete the classical ANOVA analysis.  

 
Assumptions in Univariate Repeated Measures Analysis 

 Invoking a repeated measures ANOVA, however, does not come without several difficulties and 
considerations. As stated by Girden (1992, p. 13), 

. . . several assumptions . . . were recognized by R.A. Fisher in the 1940’s but were not 
demonstrated until the 1950’s . . . with the result that many earlier studies involving repeated 
measures may have reached erroneous conclusions regarding the effect(s) of the independent 
variable(s).  

It is difficult to understand why researchers and statisticians did not better explore and develop the 
statistical assumptions of repeated measures designs (i.e., compound symmetry and sphericity) earlier in 
the history of their use. Repeated measures were being used shortly after the development of ANOVA in 
1925, and countermeasures were developed to contend with treatment carry-over, latency and practice 
effects long before Box (1954) articulated the problem of departures from compound symmetry.  
 
Compound Symmetry  
 The term, repeated measurements, implies that each individual is measured on more than one 
occasion. Consequently, Box (1954) contended that the assumption of compound symmetry, which states 
that it is necessary for the variances and covariances of different treatment levels to be equal, must be 
satisfied for the results of the repeated measures analysis to be valid. The observations generated by each 
individual are independent of the observations produced by any other participant, but each individual’s 
score on a treatment level is often linearly dependent on or correlated with the previous scores.             
The degree of correlation between a given individual’s scores over the treatment conditions affects the  
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Table 4. Results of Four-Level One-Way ANOVA with Table 2 Data. 
Source       SS        df MS Fcalc eta2 

Between 625.00 k-1 =  3 208.3
3 

94.70 .9467 

Residual (Within) 35.20 k(n-1) = 16 2.20   
Total 660.20 (n)(k)-1 =19    

 
statistical significance of the repeated measures result because the MSRES will decrease as the degree of 
correlation between the observations increases (thus leading to a smaller MSTRT and a smaller Fcalc value). 
 It is important, therefore, to examine the degree of covariation among each pair of treatment scores 
(Algina & Keselman, 1997; Girden, 1992; Maxwell & Delaney, 1990), as these scores must be equal 
when invoking an analysis that computes an Fcalc value (MSTRT / MSRES) with (k-1) and (k-1)(n-1) df. Prior 
to Box (1954), researchers and statisticians focused solely on the equality of the variances (homogeneity 
of variance assumption) and ignored any influence that unequal covariances might render on the results of 
a repeated measures analysis. If the covariance between two sets of scores is defined as    

COVxy = ∑ (X - X )(Y - Y )/(n-1) , 
then the formula for the covariation of a set of scores with itself could be written as 

∑ (X - X )(X - X )/(n-1) .  
The latter of the two formulas is the formula for the variance of a set of scores, thus indicating that 
variance is nothing more than the degree of covariation of a set of scores with itself. Thus, Box (1954) 
noted that examining the equality of variances in repeated measures analyses was only half of the larger 
issue; because variance can be defined as the covariation of a set of scores with itself, it is necessary to 
also examine the equality of covariances of all pairs of the treatment levels as well.  
 The assumption of compound symmetry derives its name from a matrix that contains information 
about both variances and covariances of a set of scores. For a given set of scores, the variance of each set 
of scores and the covariances between all possible pairs of the scores can be arranged in a single matrix 
termed a variance-covariance matrix. This is a special matrix of rank k, where k indicates the number of 
treatment levels in the single within factor repeated measures analysis. The variances of the k treatment 
levels are presented on the main diagonal of the matrix and the covariances between each pair of 
treatment levels are presented on the off diagonals. A variance covariance matrix that exhibits equal 
variances and equal covariances is said to demonstrate compound symmetry.       
 
Violating Compound Symmetry  
 In addition to indicating that the equality of covariances between pairs of the treatment conditions 
must be considered, Box (1954) noted other important considerations as well.  Box effectively 
demonstrated that if an Fcalc value does not originate from an F-distribution with (k-1) and (k-1)(n-1) df, 
then it is not a part of that F-distribution. Box contended, therefore, that such an Fcalc value belongs to an 
F-distribution that is corrected by a factor called epsilon (ε) and which results in ε(k-1) and ε(k-1)(n-1) 
degrees of freedom. He further noted that the correction factor invoked by the epsilon value is more 
severe as the covariances become more unequal and is approximately equal to 1.0 when the equality of 
covariances is demonstrated.  
 The implication on the statistical significance of a given Fcalc value can be profound when the epsilon 
correction factor is severe. Consider the following example: A researcher performs the univariate 
ANOVA for a single within-subjects factor and generates an Fcalc value of 3.15 after performing all 
relevant calculations. The researcher then consults a table of critical values from the F-distribution to 
determine if the result is statistically significant. Upon examination, the researcher learns that the Fcrit 
value for the study, F(4, 19) at the α = .05 level, is 2.90. The researcher then revels in the limelight of a 
statistically significant result generated by varying the treatment conditions.  
 This result, however, is only valid provided that the variances and covariances of the treatment levels 
are equal. If the variances and covariances between treatment levels in the example study are not equal, 
then the researcher must alter the df with which to evaluate the statistical significance of the Fcalc value by 
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a factor of epsilon. If the epsilon value is equal to .5, the new df for the Fcalc would be .5(4) and .5(19); 
thus, when accounting for the correction factor, the df of 2 and 10 must be used. When the Fcrit value 
using these df is examined, the researcher is dismayed to learn that the corrected Fcrit value is 4.10, thus 
rendering the Fcalc value of 3.15 no longer statistically significant at α = .05. The conceptual point here is 
that when epsilon provides a severe correction for the inequality of variances and covariances, the df for 
the Fcrit value can be radically affected. Consequently, researchers may use inappropriate df that generate 
a Fcrit value that is smaller than it should be and by which a researcher may reject a null hypothesis when 
it should not be rejected.  
 Box (1954) demonstrated that the upper bound for the epsilon correction is 1.0 which indicates that 
the epsilon corrected df are exactly equal to the F-distribution df. At this extreme a correction factor is not 
invoked and erroneous conclusions are avoided. Geisser and Greenhouse (1958) determined the lower 
bound for the epsilon correction factor by positing that the lower bound of epsilon was equal to 1/(k-1). In 
the previous example with five treatment levels administered to five subjects, the lower bound of epsilon 
would have been 1/(4-1) or .33. At this extreme the most severe correction would be invoked, and the df 
for Fcrit would be exactly one third of their original magnitude.  
 
Sphericity  
 Research conducted after Box’s (1954) work on compound symmetry indicated that although 
compound symmetry is important to consider in repeated measures analyses, it is not a necessary 
condition for conducting them (Girden, 1992). Sphericity (sometimes called circularity) is considered a 
necessary and sufficient condition to conduct repeated measures analyses (Huynh & Feldt, 1970; Rouanet 
& Lepine, 1970). Sphericity is the degree to which variances in the differences between pairs of treatment 
scores are equal. The notion of sphericity is a more flexible assumption and subsumes compound 
symmetry as a special case. That is, the variances of differences between treatment levels would be equal 
when the variances and covariances were all equal. 
 To satisfy the assumption of sphericity, the variances of the differences in all pairs of treatment 
combinations must be homogeneous (e.g., the variance of level 1 and 2 must equal the variance of level 2 
and 3, etc). The variance of a difference between two treatment conditions (1 and 2) can be defined as  

σ2
(Y1 - Y2) = σ2

1  +  σ2
2  -  2σ12 

where σ2
1 is the variance of on a set of scores, σ2

2 is the variance of another set of scores, and σ12 is the 
covariance of the two sets of scores. 
 Assessing the equality of variances of differences in the treatment levels can be illustrated using the 
heuristic example data presented in Table 2. Table 5 contains the variances and covariances for each of 
the treatment levels. By invoking the formula described above for the variance of a difference between 
treatment levels, it is possible to compute the variance of the difference between treatment levels 1 (0mg) 
and 2 (150mg). The variance of the difference would be 

 σ2
(Y1 - Y2)   = 2.1998 + 2.1998 + 2(-.5500) = 3.2996.  

Because the variances and covariances of each of the treatment levels are exactly equal in this example, 
all of the variances of difference would be equal to 3.2996. The assumption of sphericity, therefore, 
would be satisfied in this example. This example has the additional feature of being compound 
symmetrical, as all of the variances and covariances are exactly equal.     
 Another way to assess the sphericity of a data set is to examine the matrix of orthonormal contrasts 
(Stevens, 1996). If the multivariate identity     

C′∑C = σ2I 
where C is a matrix of (k-1) orthonormal contrasts, C′ is the transpose of C, ∑ is the variance-covariance 
matrix and σ2I is an identity matrix (with equal variances on the main diagonal and zeros on the off 
diagonal) is true, the assumption of sphericity is satisfied. The first step in assessing sphericity in this 
manner is to create a set of orthogonal contrast variables. One set of orthogonal contrast variables for the 
example data are presented in Table 6. Notice that there are three contrast variables present corresponding 
to the (k-1) contrasts possible. The contrast variables are then normalized by invoking a multiplicative 
constant such that the sum of the squared transformed coefficients in a given contrast is equal to 1.0. This 
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Table 5. Correlation and Variance-     Table 6. Orthogonal    Table 7. Orthonormal  
  Covariance Matrix for Table 2 Data      Contrast Variables.       Contrast Matrix C. 
Tx 0mg 150mg 300mg 450mg  Tx C1 C2 C3  Tx C1 C2 C3
1 2.20 -0.55 -0.55 -0.55  1 1 1 1  1 .707 .408 .289
2 -0.55 2.20 -0.55 -0.55  2 -1 1 1  2 -.707 .408 .289
3 -0.25 -0.25 2.20 -0.55  3 0 -2 1  3 0 -.816 .289
4 -0.25 -0.25 -0.25 2.20  4 0 0 -3  4 0 0 -.866

Note. Variances are on the main          Note. Tx = treatment level; C1 = contrast variable 1;  
  diagonal. Correlations are below and        C2 = contrast variable 2; C3 = contrast variable 3 
  Covariances are above the main diagonal. 
 
is accomplished by first squaring the coefficients in the contrast and dividing by the derived number. For 
example, the second contrast variable contains the contrast coefficients of 1, 1, and -2. It is necessary to 
first square each coefficient, (1)2 + (1)2 + (-2)2 = 6.00, and then to divide each coefficient by the result, 
1/√6, 1/√6, and (-2/√6). This procedure would be repeated until all contrasts are transformed. The 
orthonormalized variables are placed in a matrix as presented in Table 7. The product of the equation, 
C′∑C = σ2I, is then computed to determine if the assumption of sphericity is met (Stevens, 1996).     
 
Violating the Assumption of Sphericity.  
 Violating the assumption of sphericity can have the same grievous consequences as violating the 
assumption of compound symmetry. If the variances of the differences in levels of the treatment 
conditions are not equal, the df for the Fcalc value will be smaller than normal by a value of ε. Thus, just as 
violating compound symmetry caused the Fcrit value to increase in magnitude, so too, does violating the 
assumption of sphericity. If sphericity is not examined, the unwary researcher will tend to reject the null 
hypothesis more often than it should be rejected resulting in higher Type I error rates (Stevens, 1996). 
 
Correcting for Violations in the Sphericity Assumption 
 Adjusted Degrees of Freedom. Correcting for a violation in the sphericity assumption involves the 
computation of the epsilon parameter previously described. As noted earlier, Box (1954) defined the 
upperbound of epsilon to 1.0, and Geisser and Greenhouse (1958) calculated the lower bound of epsilon 
to be 1/(k-1), where k is the number of treatments utilized in the study. To find the actual value of epsilon, 
the following formula generated by Greenhouse and Geisser (1959) must be invoked,  

2 2 2
**

2 2 2 2
**

( )
( 1)( 2 )

ii

ij i

k s s
k s k s k s

ε −
=

− − +∑∑ ∑
 

 

where 2
iis  is the mean of entries on the main diagonal of the variance-covariance matrix, **s  is the mean 

of all entries in the variance-covariance matrix, ijs  is the ijth  entry of the variance-covariance matrix and 

is  is the mean of all entries in the row i. The calculation of epsilon can be illustrated using the example 
data in Table 2. The calculations 

2 2

2

4 (2.2000 0.1375)
(3)(22.9900 (8)(0.075625) (16)(0.1375 ))

ε −
=

− +
 

 
result in an ε value of 1.0. This value indicates that the sphericity assumption is perfectly met in the 
example data and that no corrections to the degrees of freedom are required. To determine if the result is 
statistically significant, the researcher would simply use the same degrees of freedom as calculated when 
constructing the summary table. 
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Table 8. Hypothetical Data Matrix for Worst Case of Violating Sphericity Assumption. 
   Trial Number   

Subject 0mg 150mg 300mg 450mg Sum Mean(Yi) 
1 1 10 15 20 46 10.50 
2 2 6 11 16 35  8.75 
3 3 7 12 17 39  9.75 
4 4 8 13 18 43 10.75 
5 5 9 14 19 47 11.75 
ΣYj 15 40 65 90 210  

Mean(Yj) 3.0 8.0 13.0 18.0  10.70 
 
 Consider an example in which the epsilon value invokes the greatest possible correction factor on the 
degrees of freedom used to determine Fcrit. If the example data in Table 2 are changed only slightly to 
resemble the data in Table 8, the results of the repeated measures analysis are radically different.  The 
correction factor invoked in the Table 8 data is ε = .33 or the minimum value possible in a design with 
four treatment levels (1/k-1) because the scores are linearly dependent and completely violate the 
sphericity assumption. Rather than using (k-1)=3 and (k-1)(n-1)=12 degrees of freedom to arrive at an Fcrit 
value of 3.49 (α = .05), each value would be corrected by the value of ε. Thus, the new degrees of 
freedom for the Fcrit value would be 1 and 4 and would render an Fcrit value of 7.71 (α = .05). The results 
in the present study would still be statistically significant, but in situations where the Fcalc value is only 
slightly larger than the uncorrected Fcrit value, even a small correction by epsilon can alter the results from 
statistically significant to not statistically significant. This comparison allows the power of a repeated 
measures design to be illustrated: If ε is equal to 1.0, the repeated measures ANOVA demonstrates the 
power equivalent to (nxk) participants. Consequently, fewer participants can be utilized without 
compromising sufficient power to reject the null hypothesis.       
 
 Estimates of Epsilon. There are several estimates of ε currently available, and each has its own 
distinct advantages and disadvantages (Maxwell & Delaney, 1990; Stevens, 1996). The most commonly 
employed indices of ε are the Greenhouse-Geisser ε (Greenhouse & Geisser, 1959) and the Huynh-Feldt ε 
(Huynh & Feldt, 1970). Because both ε values are computed in most statistical software packages, it is 
important to understand the particular bias that each estimate produces.  
 When there is only one sample, as with the present example, the Greenhouse-Geisser and Huynh-
Feldt estimates are identical. However, for more two or more independent groups (i.e., split-plot design), 
the Greenhouse-Geisser ε tends to underestimate the true value of epsilon across the range of values, but 
the underestimation is even more pronounced as epsilon approaches 1.0. Consequently, the Greenhouse-
Geisser ε will produce a very conservative estimate of the df utilized to obtain the Fcrit value which may 
result in not rejecting the null hypothesis as often as might be indicated by the data. Conversely, the 
Huynh-Feldt ε produces an overestimation of the true value of ε and may result in a smaller Fcrit value 
than is indicated by the data. Thus, when using the Huynh-Feldt ε, researchers may reject the null 
hypothesis more often than they should. Because the two most popular estimates of ε produce biased 
results, authors have recommended averaging the two indices as a more accurate estimate of ε 
(Barcikowski & Robey, 1984; Girden, 1992; Stevens, 1996). If one must be chosen over the other, 
however, it is always somewhat safer to utilize the Greenhouse-Geisser ε as it produces a more 
conservative correction factor.     
 
 Guidelines. Guidelines have been presented to facilitate the correct interpretation of univariate 
repeated measures analyses (Greenhouse & Geisser, 1959). Due to the advent of statistical software that 
readily and painlessly computes many different estimates of ε, these guidelines have limited pragmatic 
value but warrant brief consideration. As provided by Girden (1992, p. 21) the steps are as follows: 

1.  Compare the obtained [Fcalc] with the tabled value corresponding to [k-1] and [k-1][n-1] 
df. If it is not greater than this most liberal value, stop at this point.  It will not be 
significant when degrees of freedom are reduced. 
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2.  If the obtained [Fcalc] is significantly higher than the most liberal value, enter the table 
with 1 and [n-1] df.  If the obtained F is greater than this most conservative value, it is 
significant. Stop at this point. 

3.  If the obtained [Fcalc] is higher than the tabled value for df = [k-1] and [k-1][n-1], but 
lower than the tables value for df = 1 and [n-1], then the ε adjustment should be applied. 

It is not possible in the present example to illustrate this dynamic because the ε value of the data set is 1.0, 
but interested readers can examine the analysis of the data set in Girden (1992) for a good example of a 
situation where these guidelines might prove helpful.  
 

Another Univariate Approach to Repeated Measures Analysis 
 As mentioned previously, it is possible to employ multiple regression analysis to examine the effects 
of repeated measures data. A brief treatment of this analytic technique is presented here, and interested 
readers are referred to Edwards (1985) for a more detailed discussion. 
 To utilize this approach it is necessary to first construct k contrasts (where k represents the number of 
treatment levels) in which each contrast variable represents a separate effect. In the example data set four 
treatment conditions were utilized; thus, four orthogonal contrasts should be created.  The first three 
contrasts represent linear, quadratic and cubic trends in the data. [Any orthogonal trends could be used, 
but polynomial orthogonal trends are arbitrarily used here.] The final contrast employed is a sum vector 
that adds the responses of each participant over all four treatments. The orthogonal contrast matrix is 
presented in Table 9. 
 After the contrast matrix is generated, each contrast variable can be entered into the multiple 
regression equation in a hierarchical manner to determine the unique variance accounted for by each 
contrast. The results of the multiple regression analysis on the example data are presented in Table 10. 
Notice that the linear contrast variable (C1) accounts for the same variance that is associated with the 
effects of the treatments (the interval component of the repeated measures ANOVA) in that the SS units 
and the R2 values in the multiple regression analysis are exactly equal to the SS and eta2 values in the 
summary tables for the repeated measures ANOVA presented in Table 3 and the classical ANOVA results 
presented in Table 4.  The only other contrast variable to generate noteworthy consideration is the 
contrast variable C4, as the SS and R2 values for this contrast directly correspond to the SS and eta2 values 
for the between subjects source of variation in the repeated measures ANOVA. Thus, the multiple 
regression approach generates results identical to the repeated measures ANOVA by utilizing a series of 
orthogonal contrast variables. Because all three of these methods (classical ANOVA, repeated measures 
ANOVA and multiple regression) generated the exact same SS partitions with the example data, the 
conceptual unity of the three approaches has been illustrated. 
 

Multivariate Approach to Repeated Measures Analysis 
 The preceding portion of the paper was spent solely on examining the different univariate approaches 
to repeated measures analysis. A single factor repeated measures design, however, can be analyzed by 
using a multivariate approach. The multivariate approach, Multivariate Analysis of Variance 
(MANOVA), invokes a different sort of logic in completing the analysis. Rather than treating several 
measurements over time as a single dependent variable repeatedly measured, the multivariate approach 
treats the repeated measurements as separate dependent variables generated by one individual. Thus, in 
the example that has been used consistently throughout the paper, the multivariate approach would 
conceptually consider each of the four measures of depression as a separate dependent variable.  
 There are both advantages and disadvantages to conducting repeated measures analyses via the 
multivariate approach. One advantage of conducting this type of analysis is that the measurements are 
allowed to have any correlational structure (unlike in repeated measures ANOVA). That is, the sphericity 
assumption becomes unnecessary. This approach may more closely honor a given researcher’s reality, 
provided that the researcher believes measurements to be correlated in a real world situation. In repeated 
measures ANOVA, the dependence among measures was considered to be of fixed form, and the 
researcher was penalized for analyzing data that did not exhibit equal correlations between measurements. 
In the multivariate approach, sphericity is not a consideration because each measurement is deemed a 
separate and unique dependent variable. 
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        Table 9. Orthogonal Contrasts for Regression Analysis of Example Data in Table 2. 
Subject Dose C1 C2 C3 C4 Y  

1 0 -3 1 -1 43 1  
2 0 -3 1 -1 43 3  
3 0 -3 1 -1 42 3  
4 0 -3 1 -1 41 4  
5 0 -3 1 -1 45 5  

1 150 -1 -1 3 43 10  
2 150 -1 -1 3 43 6  
3 150 -1 -1 3 42 8  
4 150 -1 -1 3 41 8  
5 150 -1 -1 3 45 9  

1 300 1 -1 -3 43 14  
2 300 1 -1 -3 43 15  
3 300 1 -1 -3 42 11  
4 300 1 -1 -3 41 13  
5 300 1 -1 -3 45 13  

1 450 3 1 1 43 18  
2 450 3 1 1 43 19  
3 450 3 1 1 42 20  
4 450 3 1 1 41 16  
5 450 3 1 1 45 18  

   Note. C1 = contrast variable 1 (linear trend), C2 = contrast variable 2 (quadratic trend),  
            C3 = contrast variable 3 (cubic trend), C4 = sum vector, and Y = the dependent variable score. 
 
 Although discarding the sphericity assumption may sound enticing to even the most seasoned 
researcher, there are disadvantages to employing the multivariate approach to analyze repeated measures 
data. The primary disadvantage to utilizing the repeated measures approach is that statistical significance 
is difficult to obtain. Because the multivariate approach presumes that each measurement by an individual 
participant is a separate dependent variable, the advantage of repeatedly measuring participants is 
forfeited (i.e., a smaller number of participants necessary to generate results similar to classical ANOVA). 
Consequently, sample size issues become a paramount consideration, and a sample size that was 
sufficient to demonstrate an effect in a repeated measures ANOVA may be too small to demonstrate a 
similar effect using the multivariate approach.      
 The multivariate approach can be utilized in one of two ways: (a) by either transforming the score set 
into (k-1) difference variables and then analyzing the new variable set or (b) by creating a matrix of 
orthogonal or orthonormal coefficients, weighting each score by the corresponding coefficient, and 
analyzing the new matrix. Either method will generate identical results (Stevens, 1996), and there is no 
clear advantage to employing either method. The only stipulation in using either method is that only (k-1) 
new variables are created.  The new matrix (either the differenced matrix or the transformed orthonormal 
matrix) is then analyzed using Hotelling’s T2 calculated by:  
 

T2 = n/(n-1)[(C′M)′ (C′∑C)-1 (C′M)] , 
 

where ∑-1 is the inverse of the variance-covariance matrix, M is a column vector of means and C is a 
matrix of (k-1) orthogonal, orthonormal, or difference contrasts, C′ is the transpose of C. The calculated 
value of T2 for the example data is 56.8181. This value can easily be transformed into an Fcalc by invoking 
the formula: 

 Fcalc = T2 (n - k + 1)/(k - 1) , 
 
where n is the number of participants and k is the number of treatment conditions.  In this example, the  
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Table 10. Results of Multiple Regression Analysis with Table 2 Data. 
Source SS df MS Fcalc R R2 

C1 625.00 1 625.00 94.70 .9730 .9467 
C2 0.00 1 0.00    0 0 0 
C3 0.00 1 0.00    0 0 0 
Residual 35.20 18 1.96    
C1 625.00 1 625.00 227.27 .9730 .9467 
C2 0.00 1 0.00 0.00 0 0 
C3 0.00 1 0.00 0.00 0 0 
C4 2.20 4 0.55 0.36 .0580 .0033 
Residual 33.00 12 2.75    
Total 660.20      

 
computation is performed [Fcalc = 56.8181(5 - 4 + 1)/(4 - 1) ] and the transformed value of Fcalc is equal to 
37.879. The statistical significance of the Fcalc value can be evaluated by using (k-1) and (n-k+1) degrees 
of freedom. For this example, the Fcrit value is F(3,2) = 99.164 at the α = .01 level. In contrast to the 
results of the univariate ANOVA, this result is not statistically significant primarily due to a radically 
smaller dfRES than in the univariate repeated measures ANOVA analysis.  
 Another reason statistical significance was not obtained by using the multivariate approach is that the 
sample size appears smaller. Because the ε value was 1.0 in the example data, the repeated measures 
ANOVA demonstrated the power equivalent of 20 participants (five participants measured on four 
occasions) whereas the multivariate approach presumed only five individuals measured on four occasions 
with four different dependent variables. The divergence in these two outcomes illustrates that the 
multivariate approach to repeated measures analysis is a more conservative method of analyzing effects 
and may not indicate statistically significant results even when other analytic methods do. 
 

Are Univariate or Multivariate Methods Superior? 
 Repeated measures designs offer a number of advantages to social science researchers, one of which 
is the economy of research participants included in the study. As noted previously, the total size of the 
sample is decreased in the repeated measures case because the logic employed in the research design is 
different. That is, in a repeated measures design, participants serve as their own controls to eliminate the 
effects of individual participant error, thus necessitating a fewer number of participants. However, the 
advantages of the using the repeated measures design does not come without a cost. Disadvantages of this 
strategy include the introduction of carry-over, latency, and general practice effects, none of which can be 
fully removed from a given study (Keppel, 1991).  
 In regards to the analysis of repeated measures data, statisticians and researchers have debated 
whether univariate or multivariate approaches to repeated measures analyses are preferable with no clear 
consensus emerging from the discussions (Algina & Keselman, 1997; Barcikowski & Robey, 1984; 
Stevens, 1996). There are situations in which a univariate repeated measures ANOVA would be the most 
effective method of analyzing the data (e.g., if the sphericity assumption is satisfied and/or the between 
subjects and interval variance partitions account for the majority of the variance on the dependent 
variable) and other situations in which a multivariate approach would provide more favorable results 
(e.g., when the sphericity assumption is severely violated and/or when there is more variation in the 
treatment intervals than between the participants). Authors have recommended that both analyses be 
performed, because one or the other may be more powerful depending on the characteristics of the data 
(Barcikowski & Robey, 1984). This raises the question of which of the two analyses should be reported, 
and common sense indicates that if both analyses are completed, then this fact should be acknowledged to 
the consumers of the research. Most recently, however, the logic of employing both analytic strategies in 
the same analysis has been questioned (Keselman, Keselman, & Lix, 1995).  
 An important caveat must be noted. Multivariate methods were described earlier as offering an 
alternative to the univariate approach to analyzing repeated measures data and by which the sphericity 
assumption was not relevant. Although this comment is literally true, it is only accurate if the assumption 
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of multivariate normality is met. Multivariate normality is the degree to which all linear combinations of 
several variables are normal (Henson, 1999). Further, simply ascertaining that variables are univariate and 
bivariate normal is not adequate to ensure that the system of variables is multivariate normally distributed. 
Rather, it is necessary to determine that each variable is normally distributed about fixed variables on all 
other variables.  
 Failing to assess multivariate normality can have deleterious consequences on statistical analyses, 
including those conducted with repeated measures designs. As noted by Marascuilo and Levin (1983, p. 
203), “multivariate normality’s impact and role . . . are basic to the inference procedures of multivariate 
analysis.” Similarly, Thompson (1996b, p. 4) noted that, “Although multivariate normality is not required 
to estimate most multivariate parameters (e.g., function coefficients, structure coefficients), even in these 
cases the distributions of the variables must be reasonably comparable.” Consequently, multivariate 
normality is an assumption that must be satisfied to ensure the accuracy and correct interpretation of 
multivariate results.  
 When multivariate normality has been met, however, the actual α level of the study is mathematically 
guaranteed to equal the preset α at the beginning of the study (Maxwell & Delaney, 1990). Consequently, 
if the multivariate normality assumption is not met, the α rate for the entire study will rarely equal the 
preset α level and may run as high as 10-20% (Tanguma, 1999). It is on this basis that Maxwell and 
Delaney recommended the use of the multivariate approach to repeated measures analysis if it is the 
researcher’s desire is to avoid falsely rejecting the null hypothesis.  
 Higher-than-preset α rates are often a concern when the sphericity assumption is violated as well 
because many researchers do not adjust the degrees of freedom accordingly and completely overlook this 
very important statistical assumption. Even when sphericity is examined, there are only two options for 
adjusting for its violation: (a) adjust the degrees of freedom by a value of epsilon; or (b) use the 
multivariate approach. If the former is chosen as the method of choice, the results are only approximate 
because the epsilon value is an estimated correction factor.    
 Thus, the following general rules are posited based on the conjecture presented in previous research: 
(a) if sphericity is not violated, the univariate methods tend to be more powerful than the multivariate 
methods; (b) if sphericity is violated, neither method (univariate versus multivariate) tends to be 
preferable to the other, although a multivariate method can be used providing the variables are 
multivariate normal; and (c) if the size of the sample is substantially greater than the number of levels in 
the repeated variable, then the multivariate methods are preferred and tend to produce better results. 
 

Summary and Conclusions 
 The present paper explored the analysis of univariate repeated measures designs by using both 
univariate and multivariate approaches. The univariate tests examined generated desirable results when 
certain statistical assumptions in the data were satisfied. The multivariate approach to repeated measures 
analysis was found to generate results generally free from the statistical assumptions in the univariate case 
but which tended to be a more conservative estimate of the effects. Both types of analyses were found to 
be valuable when certain situations were presented and when various assumptions were met.  
 If the assumption of sphericity is violated, the researcher is always able to employ the multivariate 
analysis as sphericity is not a required assumption in this approach. However, the multivariate method 
presumes that multivariate normality has been met, which is often not the case. The univariate approach is 
often more powerful than the multivariate approach when score variances are homogeneous as the dfRES is 
larger for the univariate test than for Hotelling's T2. If the data are characterized by extreme variability, 
small effects of the treatment conditions may be hidden in the univariate data but elucidated by the 
multivariate approach. In situations where both the sphericity and normality assumptions are violated, 
multivariate rank-based procedures have been shown to control Type I errors and provide more statistical 
power than parametric procedures (Agresti & Pendergast, 1986; Beasley, in press). The bottom line, 
therefore, is that common analytic sense should guide practice, and researchers should critically examine 
their data to determine the most appropriate analytic strategy.   
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