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In this simulation study, the parameter estimates obtained from hierarchical linear modeling (HLM) and multiple 
linear regression (MLR) were examined for differences under different values of the intraclass correlation.  15,000 
data sets were generated for each of ten different ranges of intraclass correlations.  The resulting vectors of 
parameter estimates from both HLM and MLR were subtracted, averaged across 50 data sets and compared to a null 
vector of zeros using Hotelling’s T2 statistic.  Little difference was found between the vectors of parameter estimates 
in any of the intraclass correlation ranges.  
 

ultiple Linear Regression (MLR) and Hierarchical Linear Modeling (HLM) are two statistical 
procedures that can be used to model the relationship between a numerical dependent (i.e., 
response) variable and two or more numerical independent (i.e., predictor) variables.  For an 
algebraic description and comparison of the HLM and MLR models see Mundfrom & Schultz 

(2001).  Although similar in many ways, these two procedures are not identical in how they analyze the 
data and consequently may not produce the same results on any specific set of data.  Raudenbush & Bryk 
(1986) and Goldstein (1987) have suggested that HLM is useful for data-analytic situations that may not 
be adequately handled using the general linear model, of which MLR is a specific case.  Specifically, 
HLM is believed to be, and in fact was designed to be, more accurate in situations involving multi-level 
data, i.e., situations in which data are measured at more than one level.  
 Multi-level data situations are not uncommon, particularly in educational research.  A common 
example involves data measured at both the student level and also at the teacher and/or the school level.  
This hierarchical or nested structure does not appear to be adequately modeled using the general linear 
model framework or more specifically, multiple linear regression.  However, Mundfrom and Schultz 
(2001) found that little difference existed between the predicted values generated using HLM and those 
obtained from MLR when an appropriate MLR model was utilized.  They did find some differences in 
parameter estimates between the two procedures, although in most cases those differences were small.  
Although their findings were obtained from comparing a relatively few actual data sets, the results would 
seem to indicate that MLR may be an appropriate alternative for analyzing multi-level data. 
 

Purpose 
 This study was designed to examine more closely differences among the parameter estimates between 
HLM and MLR.  Littel, Milliken, Stroup, & Wolfinger (1996) show examples of analyses using the 
general linear model produce identical results to ones using an HLM model.  Bryk & Raudenbush (1992) 
on the other hand cite examples in which the analyses using the two procedures produce similar, but 
different results.  One possibility for explaining why in some cases HLM and MLR produce parameter 
estimates that are the same whereas in other instances these estimates differ could be differing 
correlational structures in the data.  Specifically, perhaps the size of the intraclass correlation could be 
affecting the parameter estimates. 
 The intraclass correlation is often described as the proportion of variability in the dependent variable 
that is explained by the group membership (Montgomery, 1997).  In the typical multi-level data structure, 
one or more characteristics are measured on individuals in each of several groups, and one or more 
characteristics are also obtained on these same individuals at the group level.  That is, each individual in 
the same group will have the same value for the group level characteristic(s).  Hence, differences among 
the group-level characteristic(s) can account for some of the variation in the responses, and this variation 
is referred to as the intraclass correlation. Murray (1998) also refers to this quantity as a clustering effect. 
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 It is conceivable that multi-level data in which little or no differences exist among the group-level 
characteristic(s) (i.e., little or no intraclass correlation) will produce parameter estimates that are very 
similar, if not identical, when analyzed using HLM and MLR.  But when the intraclass correlation is 
greater, i.e., larger differences among group-level characteristics, the two analyses will produce parameter 
estimates that exhibit larger differences among them.  The purpose of this study is to compare the 
parameter estimates obtained from HLM with those obtained from MLR on simulated data in which the 
intraclass correlation is systematically varied from small values to larger ones. 
 

Method 
 In this simulation study the outcome of interest was the difference between the vector of parameter 
estimates obtained when data are analyzed using both MLR and HLM.  The independent variable was the 
size of the intraclass correlation among the groups.  Our objective was to use ten different values of the 
intraclass correlation: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.  However, because we were unable to 
generate directly data sets with a given intraclass correlation, we were forced to “back into” these values 
by generating data with given correlations and then checking the intraclass correlation.  Trial and error 
and the ability to learn while doing allowed us to become more proficient as the process progressed.  
However, we were unable to fix the intraclass correlation at these specified values and instead were 
forced to settle for intraclass correlations within a small, specified range.  Therefore, the ranges of 
intraclass correlations examined in this study were as follows: < .05, between .05 and .15, between .15 
and .25, and so on through between .85 and .95.  Within each of these intraclass correlation ranges, 
15,000 data sets were generated.   
 The HLM model used in each of these data sets was a simple two-level model with one individual-
level variable and one group-level variable.  This model can be expressed as: 
 

Yij  =  β0j  +  β1j Xij  +  rij ,  
 
where  Yij represents the response for the ith individual in the jth group 
  β0j represents the y-intercept of the regression line for the jth group 
  β1j  represents the slope of the regression line for the jth group 
  Xij  is the measurement on the individual-level variable for the ith individual in the jth group,  
  rij  represents random error associated with the response for the ith individual in the jth group, and  
   j ranges from 1 to J, the number of groups in the data set. 
  In the HLM model, however, the group parameters, β0j and β1j, are not estimated individually from 
the raw individual data, but instead are estimated from a second-level model using group-level data.  This 
model can be expressed as: 

βkj  =  γk0  +  γk1Wj  +  ukj ,   
 

where  βkj  represents the kth parameter for the jth group 
  γk0  represents the y-intercept of the regression line for the kth parameter 
  γk1  represents the slope of the regression line for the kth parameter 
  Wj  represents the measurement on the group-level variable for the jth group, and  
   ukj represents random error associated with the kth parameter for the jth group. 
 

In this model, there are two second-level models, one for the y-intercept, β0j, and one for the slope, β1j:   
 

β0j  =  γ00  +  γ01Wj  +  u0j      and      β1j  =  γ10  +  γ11Wj  +  u1j  . 
 
 The MLR model examined in this study includes both the individual-level variable and the group-
level variable along with their interaction.  This model, with two independent variables and their 
interaction term, can be expressed as:  

Yij  =  β0  +  β1 X1ij  +  β2 X2ij  +  β3 X1ijX2ij  +  eij ,  
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 The number of groups was set to ten with the number of individuals in each group allowed to vary, 
but the mean group size was approximately 50.  Each data set contains 500 observations on the response 
variable, 500 observations on the individual-level variable, and approximately 50 observations in each of 
the ten groups on the group-level variable.  Hence, the parameter estimate vectors for multiple regression 
contained four values, an intercept, a coefficient for the individual-level variable, a coefficient for the 
group-level variable, and a coefficient for the “interaction” between the individual-level variable and the 
group-level variable, [β0 β1 β2 β3]′. For the HLM model, the parameter estimate vectors contained the 
estimates of the second-level fixed effects parameters (often referred to as “gammas”), [γ00 γ10 γ01 γ11]′.   
 Once the 15,000 data sets were produced within each intraclass correlation range, each set was 
analyzed using both a hierarchical linear model and a multiple linear regression model to produce a vector 
of parameter estimates.  All of the analyses were run using SAS, with the MLR analyses performed with 
PROC GLM and PROC MIXED used for the HLM analyses.  Wang (1997) demonstrated the similarities 
in results between multi-level analyses preformed in SAS PROC MIXED and the HLM software (e.g., 
Raudenbush, Bryk, and Congdon, 1999).  For each data set, the parameter estimate vectors from MLR 
and HLM were subtracted to obtain a difference vector.  Consecutive sets of 50 difference vectors were 
grouped together to form mean difference vectors and Hotelling’s T2 statistic was used to determine the 
proportion of mean difference vectors that exceeded an F-critical value at the 5% significance level.     
 

Results 
  The parameter estimate vectors from both HLM and MLR analyses on each of the 15,000 data sets 
showed remarkable similarity when compared with each other.  Once the parameter estimate vectors were 
obtained and subtracted to form difference vectors, the average difference vectors were compared to a 
null hypothesis of a zero vector which would be indicative of no difference between HLM and MLR in 
terms of the parameter estimates.  These mean difference vectors were tested using Hotelling’s T2 
statistic.  If this null hypothesis were true, we would expect to find about 5% of the mean difference 
vectors differing from the zero vector, simply by chance variation.  Larger percentages of the mean 
difference vectors differing from the zero vector would indicate that HLM and MLR produce parameter 
estimates, which differ significantly from one another.  
 For each of the ten intraclass correlation ranges, the results are displayed separately in Table 1.  
Notice that none of the intraclass correlation ranges had F-approximations that approach the expected 5% 
Type I error criteria.  Only when the intraclass correlation exceeded 0.65 did the percentage of F’s 
exceeding the 5% critical value surpass even 1%.  In fact, these pairs of parameter estimates are so similar 
to each other that in more than half of the intraclass correlation ranges studied, less than 1% of the mean 
difference vectors differed significantly from each other.  There appears to be little evidence in these data 
that the size of the intraclass correlation has any influence upon the difference between the parameter 
estimates from HLM and MLR. 
 

Discussion 
 In this study, numerous data sets were generated and analyzed to investigate the effect, if any, that the 
intraclass correlation has on the parameter estimates of multiple linear regression as compared to those 
from hierarchical linear modeling.  Previous work had indicated that in some cases these estimates were 
very similar, if not identical, and that in other cases, the parameter estimates from these two procedures 
were quite different.  It was conjectured that in those data that produced different estimates of the 
parameters, perhaps it was a larger intraclass correlation that could account for these estimates differing.   
These results would seem to indicate that it is not the size of the intraclass correlation that is responsible 
for differences in parameter estimates between HLM and MLR.  There can be no doubt that in some 
instances these estimates do indeed differ.  Why they differ in some cases and not in others is still a 
question that needs answering.  It would appear, however, that the intraclass correlation could be 
eliminated from the list of possible explanations for these differences. 
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Table 1.  Percentages of Calculated  
F-Values Beyond the 5% F-critical value. 

Intraclass 
Correlation 

Range 

Percentage of F’s 
beyond the 5% 
F Critical Value 

0.00-<0.05 0.9 
0.05-<0.15 0.3 
0.15-<0.25 0.9 
0.25-<0.35 0.6 
0.35-<0.45 0.0 
0.45-<0.55 0.0 
0.55-<0.65 0.0 
0.65-<0.75 1.3 
0.75-<0.85 1.3 
0.85-<0.95 1.1 

 

 It should be noted that the MLR model that 
was compared to HLM in this study is the model 
that contains the interaction term between the 
individual-level variable and the group-level 
variable.  Previous work by Mundfrom and 
Schultz (2001) indicated that the simpler MLR 
model without interactions was not an adequate 
competitor to HLM in terms of similar predicted 
values or parameter estimates.  Also, in this study, 
only the simplest full multi-level model was 
investigated. It could still be the case that more 
complex multi-level models may show more 
influence due to the size of the intraclass 
correlation in terms of differences between 
parameter estimates from HLM and MLR. It 
should also be noted that HLM has been shown to 
provide better, more accurate (i.e., larger) esti-
mates of standard errors of parameter estimates 

 
than does multiple regression.  Indeed, it is this characteristic of HLM that provides its premier advantage 
in the analysis of multi-level data.  This study did not compare standard errors of the two techniques. 
 This study did not assume a balanced design (i.e., equal sample sizes per group) although further 
research on the effect of unbalanced designs on the respective parameter estimates may be warranted.  
Similarly, the role of heterogeneous variances in the comparison of these parameter estimates may also be 
worthy of further investigation. 
 Finally, it is not the intent of this study to imply that hierarchical linear modeling is in any way 
inadequate or inappropriate for use in analyzing data, particularly multi-level data.  The intent here is 
simply to investigate differences and similarities between the results obtained when these two procedures 
are used with the same multi-level data sets, and to see if reasons can be identified as to why, or in what 
situations, these procedures produce different outcomes.   
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