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The purpose of this paper is to provide an answer to the question of the relative effectiveness of the cosine function 
versus a polynomial function in the description and stability of prediction of a specific set of longitudinal data. If the 
data conforms to a known function (such as the cosine function), can we test for that function more effectively (that 
is to say by the stability of the weights upon cross-validation) than using a polynomial function for developing 
prediction equations?  
 

he purpose of this paper presentation is to describe a methodological approach to facilitate the ease 
of the description and prediction of cyclical events. The proposed method will be compared with 
traditional methods for fitting curvilinear relationships, and the potential benefits of the proposed 

method will be outlined. Finally, an example will be provided to demonstrate the method and its 
advantages over traditional curve fitting methods for the description and prediction of cyclical events. 
 

Introduction 
 There are many phenomena with cyclical patterns that are of interest to statisticians, psychologists, 
and epidemiologists. Seasonal Affective Disorder is a clear example of a cyclical phenomena that is of 
growing interest in psychological research for both children and adults (Glod, & Baisden, 1999; Rohan & 
Sigmon, 2000). In turn, Partonen, Piiroinen, Loennqvist, and Jouko (2000) have demonstrated that 
additional psychological symptoms may have a seasonal pattern. Accidental death has also been shown to 
be tied to an annual pattern (Coren, 1996).  On the other hand, there are ready examples of phenomena 
that cycle on a monthly basis. For example, suicide rates have been shown to cycle on a monthly basis 
with suicides being more frequent during the first and second weeks of the month (Phillips & Ryan, 
2000). Clearly, there are numerous additional phenomena that cycle on a monthly or daily basis. 
 In the regression literature, authors have traditionally suggested that these phenomena be predicted by 
curve fitting or log-linear techniques (Cohen & Cohen, 1983; McNeil, Newman, & Kelly, 1996;  
Pedhazur, Pedhazur-Schmelkin, 1991). A model of a cyclical phenomena (Cosine) using a polynomial 
equation will take the general form: 
  
    Model Y =  aoU  +  a1X  +  a2X2  +  Σ(a1+2iX1+2i + a2+2iX2+2i) + Error 
                                                                for i cycles 

 
         X2            X4            X6             
 
 
 
 
 
 
 
           X3            X5            X7             
 
 
 
Figure 1.  General polynomial representation of a cyclical function. 
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 As can be seen in Figure 1, the first cycle requires a model with a 4th degree polynomial, and each 
additional cycle requires an addition of two variables to model. For example, a series of 4 cycles would 
require a model extending to a 10th degree polynomial. If one uses the trigonometric function (cosine), 
this relationship can be modeled with two predictor variables:  
 
       Model Y =  aoU  +  a1COS(X) +  a2X  +  Error 
 
In this presentation, we will outline a method for using trigonometric functions (cosine) to predict cyclical 
phenomena; although this technique is not new, few examples have been provided in the literature. A 
method will be discussed for utilizing the sine or cosine function to predict a cyclical phenomena. In 
order to facilitate this discussion, the method will be anchored to an example: modeling temperature 
based on the time of year.   Using this example, we will outline the general steps necessary to model a 
cyclical phenomena. In turn, the example will be used to demonstrate some of the advantages of the use 
of trigonometric functions in modeling cyclical phenomena.   
 

Method 
 The use of a trigonometric function to model a cyclical phenomena requires the estimation of two 
variables: (1) the period, and (2) the amplitude of the function. The period is the time taken to make one 
complete cycle (a complete oscillation). For the Sine and Cosine functions, the period is measured in 
radians and is equal to 2π. The amplitude, on the other hand, is the displacement (the distance from the 
crest to the trough) of the cycle. 
 
      Period 
 
 
 
 
 
 
 
                        Amplitude 
 
 
 
 
 
 
 
Figure 2. Parameters of a wave function. 
 
 
  One could estimate the period of a cyclical function through either theoretical or empirical means. 
The choice would be driven by the researcher’s question and by whether theory is suggestive of a fixed 
cycle. Some psychological phenomena (e.g. seasonal affective disorder) are clearly linked to an annual 
cycle (period = 1 year). In other cases, one could estimate the period empirically. This can be achieved by 
plotting the dependent measure across time. For this presentation, we plotted temperature readings across 
time. As would be expected, there was a clear cyclical pattern of warmer temperatures in the summer and 
cooler temperatures in the winter.    
  At this point, we had a clear cycle with peaks occurring in July and troughs occurring in January. The 
period for this cycle is 12 months; therefore, all time measurements were divided by 12 and multiplied by 
2π in order to convert the time measurement to a radian scale. 
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        Warmer 

 
 
 
 
 
 

 

         Cooler 

       July      October   January  April   July      October 

               0            1/2π      π               3/2π             2π                 5/2π 
     Time 0    Time 3      Time 6  Time 9       Time 12       Time 15 
Figure 3.  Plotting temperature across time using a radian representation of time. 
 
 Once the period was determined and the time measurements were converted to a radian scale, we 
were able to create a regression model to fit the temperature data: 
 
       Model Y =  aoU  +  a1COS(X) +  a2X  +  Error 
 
 where  Y = Temperature and X = Measurement Time in Radians 
 
The amplitude of the wave is, then, represented by the weight (a1) of the COS(X) variable.  The least 
squares regression solution for this model calculates the amplitude (a1) in such a manner that the error 
sums of squares is minimized. This regression model can then be used with either the whole data set (i.e. 
ten year’s data) or with smaller subsets (e.g. one year’s data) within the whole data set. 
 
 
        X2             X4           X6             
 
 
 
 
 
 
 
           X3          X5              X7             
 
      Year 1          Year 2         Year 3… 

 
   Y =  aoU + a1X + a2X2 + a3X3 + a4X4   +  a5X5  +  a6X6      +  a7X7  +  a8X8 + Error 
 
Figure 4.  Polynomial representation of a cyclical function. 
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 In order to model the same phenomena using a polynomial, it is necessary to take into account the 
number of cycles to be modeled when developing a regression equation to fit the data. Each inflection 
point requires the additional of a polynomial in order to be modeled. Therefore, the model needed to fit 
one year’s data would be as follows: 
       Model   Y =  aoU + a1X + a2X2 + a3X3 + a4X4  + Error 
 
 where  Y = Temperature and X = Measurement Time in Radians 
 
Each additional year would require the addition of two polynomials in order to model the inflection points 
in the curve. Ten year’s data would require a model extending to the 22nd power of the time measurement! 
 

Results 
 In order to demonstrate the differences between these modeling methods, both were applied to a 
longitudinal temperature data set. The data for this analysis were collected from a web site maintained by 
Utah Climate Center, Utah State University (http://climate.usu.edu/free/default2.htm).  This web site 
contains weather data for hundreds of sites nationally. The temperature data for this study were taken, 
specifically, from a site in Colorado (Akron – site # 5011403) and consist of daily maximum temperature 
readings for a ten year span beginning January 1, 1980.    
The data were first modeled using a polynomial function and subsequently modeled using the cosine 
function. The analysis began with a sample of data from a single year; and, then, proceeded to a sample 
from five year’s data. Each sample, ten percent of the cases, was drawn randomly from the time range 
sampled. Cross-validations were based on random, matched (ten percent), samples. The results of these 
analyses are in Table 1.  
 In the first year, the polynomial function accounted for slightly more variance than did the cosine 
function. As can be seen in the column of shrunken R-squares, both functions were stable when cross-
validated. At five years, the cosine function accounted for more variance in the temperature data and was 
considerably more stable when cross-validated (12.2% versus 95.9% shrinkage). 
 The problem of shrinkage with the polynomial functions is further exacerbated when one attempts to 
model additional cycles (years) of data. To demonstrate this point, we attempted to model ten years of 
daily maximum temperatures using both polynomial and cosine functions. Again, a ten percent sample of 
the cases, was drawn randomly from the time range (ten years) sampled. Cross-validations were based on 
random, matched (ten percent), samples.   
 To demonstrate the explanatory power of the polynomials, the data was first modeled with only a 
second degree polynomial. Each subsequent model added an additional polynomial to the model until the 
final model included the second to eighth degree polynomials. As can be seen from Table 2, the addition 
of higher order polynomials incrementally adds to the variance accounted for by the model, but these 
models are not stable when cross-validated. In turn, the polynomial models did not account for nearly as 
much variance as did the cosine function, which was also stable when cross-validated. 
 
Table 1. Modeling One and Five Years Data: Polynomials versus Cosine Function 

 
Model 

 
R-square 

Adjusted 
 R-square 

Shrunken  
R-square 

Percent of 
Shrinkage 

Polynomial 
1 year   

 
.7622 

 
.7334 

 
.7367 

 
3.8% 

Polynomial 
5 years  

 
.3044 

 
.2651 

 
.0123 

 
95.9% 

Cosine 
1 year 

 
.7311 

 
.7157 

 
.6951 

 
4.9% 

Cosine 
5 years 

 
.6551 

 
.6514 

 
.5751 

 
12.2% 
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     Table 2. Modeling Ten Years Data: Polynomials versus Cosine Function 
 

Model 
Largest Polynomial in 

the Model 
 

R-square 
Shrunken  
R-square 

Polynomial X2 .0018 .0016 
Polynomial  X3 .0042 .0007 
Polynomial X4 .0072 .0003 
Polynomial X5 .0182 .0005 
Polynomial X6 .0498 .0007 
Polynomial X7 .0508 .0010 
Polynomial X8 .0883 .0007 

Cosine NA .6718 .6537 
Note:  A weight of zero is applied to higher order polynomials (>8th power) when they are modeled. 

Discussion 
  The purpose of this paper was to provide an answer to the question of the relative effectiveness of the 
cosine function versus a polynomial function in the description and stability of prediction of a specific set 
of longitudinal data. With the present data set, the cosine function clearly provided a more stable 
prediction of the maximum daily temperatures in Akron, Colorado between the years of 1980 and 1990. 
The benefit of using a cosine function to predict the temperature scores was particularly evident when 
more than one year of data was modeled. When only one year’s data was modeled, there was a slight 
advantage to using a polynomial model to predict temperature. The polynomial models appear to 
capitalize on unique variance in the sample.  On the other hand, the cosine function appears to be 
relatively stable across samples and time.  Therefore, if the data conforms to a known function, using the 
function to model the data, especially when numerous cycles are to be modeled, would give one a more 
stable prediction and hence greater confidence when generalizing beyond the specific sample used in a 
given study. Currently, we are beginning to work to determine the point at which there is a clear 
advantage for using one method rather than the other.   
 There are times, however, when the two modeling methods could be used in a complementary 
fashion.  If one is unsure as to whether a known function exists within a data set, one could model a small 
interval (2 or 3 cycles) of the data using a polynomial.  If the polynomial model is suggestive of a know 
function (e.g. cosine), one could then model the following intervals using the known function.  In this 
manner, the two modeling methods could be used in conjunction with one and other. 
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