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In statistical models involving one dependent variable (DV) and two or more independent variables (IVs), an 
interaction occurs when the effect of one IV on the DV is different at different levels of another IV.  The existence 
of an interaction makes interpretation of the model more complicated, but failing to include important interactions in 
the model can give misleading results.  In this paper, we describe how visually examining interactions between two 
IVs in ordinary least squares regression and in logistic regression can aid comprehension of the interaction, and we 
present a tool to make such examination easier. 
 

n modeling the relationship between a dependent variable (DV), Y, and a set of independent 
variables (IVs), X1, X2, ….Xk, if the DV is continuous and we are using ordinary least squares 
regression we have: 

          0 1 1 2 2 ... k kY X X Xβ β β β ε= + + + + +    
         (1) 
When the DV is dichotomous, OLS regression is inappropriate; probably the most common alternative is 
using logistic regression  (Hosmer & Lemeshow, 2000) where we have  
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where π(x) is the conditional mean of Y given X. Given that Y is dichotomous, this is the same as the 
probability that Y = 1 (assuming that Y is coded 0, 1), or the probability of a ‘success’ if Y is coded 
‘failure/success’.  The portion before the equals sign is known as the logit. Equivalently, we can model 
π(x) directly as 
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Models (1.1) and (1.2), and, more generally, any of the class of generalized linear models (McCullagh & 
Nelder, 1989), assume (among other things) that the effect of each Xi (i = 1, 2, …, k) on Y is the same, 
regardless of the value of the other Xj (j = 1, 2, …, k; i ≠ j); that is, that there is no interaction.  We may 
suspect that this is not the case.  Earlier research may have found interactive effects; or we may have 
other substantive reasons for suspecting interactions.  For example, if we are examining the likelihood of 
being HIV positive based on a person’s sex and sexual identity, we would include an interaction between 
the two, since the effect of being homosexual is greater for males than for females. This is usually done 
by adding an interaction term to the equation.  While there are many possible ways to construct such a 
term, the most usual, and simplest, is to multiply the two IVs that we think may be involved by each 
other, and add that term (Harrell, 2001). For now, let us suppose (for simplicity) that our model contains 
only two independent variables: X1 and X2.  Set X3 = X1X2 and add it to the model, 
        0 1 1 2 2 3 3Y X X Xβ β β β= + + +   ,             (4) 
which allows for an interaction.   
  While many researchers recognize the importance of evaluating interactions, interpreting interactions 
is often difficult and sometimes counterintuitive.  This can be so for at least two reasons. First, because 
the parameter for interaction is multiplied by both IVs, what appears to be a small coefficient can actually 
be highly meaningful, especially if one of the IVs is large.  Second, when the signs of the parameters on 
the interaction term and the IVs are not all the same, the effect of a change in one of the IVs on the DV 
may not be readily apparent.   
  The use of graphics can facilitate the interpretation and presentation of interactions; indeed, graphics 
can facilitate interpretation of the results of logistic regression even in the absence of interactions (Long, 
1997).  While many guides to model building, variable selection, and significance testing are available 
(e.g. Harrell (2001), this is not the case for graphical methods of interpreting interactions. In this paper, 
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we therefore present some graphical methods for displaying and interpreting interactions between two 
independent variables, at least one of which is continuous.  We provide methods for both continuous and 
dichotomous DVs. These graphs allow the user to examine the effect of a change in the IVs on the DV 
directly, without any computations. While these methods are not novel, they are under-utilized, and we 
are unaware of any source, which describes all of the methods described below, or their application 
specifically to interaction. These methods all involve plotting curves; for ordinary least squares 
regression, each of these curves is derived from a relatively simple equation; for logistic regression, the 
curves are considerably more complex. Graphs of this type have two types of uses: First, they may aid 
one’s own analysis of data. Second, they may allow easier presentation of these findings to others. 
 

Data 
  Data for this paper are drawn from the Drug Use and HIV Risk Among Youth (DUHRAY) project. 
DUHRAY involved a probability survey of 18-24 year old household-recruited youth in Bushwick, a 
low-income minority neighborhood in Brooklyn, New York with a population of approximately 100,000 
in 1995.  It sampled two groups of Bushwick-resident young adults: (1) a population-representative 
multistage household probability sample; (2) a targeted sample (Watters & Biernacki, 1989) of youth who 
use heroin, cocaine, crack, or inject drugs.  Details of the sampling plan are available elsewhere (Flom et 
al., 2001). 
 

Graphical Methods 
  The best method of interpreting interactions depends on the nature of the variables involved in the 
model.  Specifically, it depends on whether the DV and IVs are dichotomous or continuous.  In this 
section, we first present methods for a variety of types of models with two IVs, where at least one of the 
IVs is continuous.  When both IVs are dichotomous, graphical methods are not necessary, and 
crosstabulations can be very useful. This is so because, in a 2 x 2 crosstabulation, it is relatively 
straightforward to determine main effects and interactions by hand calculation.  We then present some 
possible extensions to cases where there are more than two IVs.   
 
Continuous DV, One Continuous and One Dichotomous IV 
  In a regression model having a single DV and a single IV, a scatterplot of the IV and the DV is often 
useful.  When we add a dichotomous IV to the model, we can make a scatterplot with two lines, one for 
each level of the dichotomous IV. 
  Example 1: In DUHRAY, we created a variable for peer objection to drug use (DROBJ), based on a 
factor analysis of five questions, each of which asked what proportion of your friends would object if you 
used a particular drug.  The five drugs were marijuana, cocaine, heroin, crack, and injected drugs.  We 
also asked about recalled childhood misbehavior, using a scale based on one devised by Windle ( 1993). 
We then modeled peer objection to drug use as a function of childhood misbehavior and sex (1 for male, 
2 for female), using ordinary least squares regression, and including an interaction term.  The estimated 
equation was 
       DROBJ = -0.14 - 0.0038 Win + 0.91 SEX - 0.036 SEX*Win        (5) 
This yields Figure 1, from which it can be seen that, while objection to drug use decreases as reported 
childhood misbehavior increases, it does so faster for women than for men. Also, while women, on 
average, reported more objection to drug use than men did, (the mean for men was -0.10, SD = 0.97; for 
women mean = 0.15, SD = 1.00) the opposite was true when there was a lot of reported misbehavior. If 
there were no interaction, the lines would be parallel. 
 
Dichotomous DV, One Continuous and One Dichotomous IV 
  Example 2: If the DV is dichotomous, we simply use the results of logistic regression rather than OLS 
regression to create a graphical display. For example, we modeled using hard drugs (HD)  (cocaine, 
heroin, crack, and/or injected drugs) in the last year (yes=1, no=0) as a function of sex (male = 1, female 
= 2) and childhood misbehavior (win).  The estimated equation was:      
                              (6) 
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Figure 1: Objection to drugs as a function of sex and childhood misbehavior
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Figure 2: Probability of hard drug use as function of  Windle, and sex
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Figure 3: Objection to drugs as function of age (X) and Windle
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Figure 4: Objection to drugs as function of and Windle (X) and age
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This yields Figure 2.  If there were no interaction, the two curves would be parallel.  As is, we can see 
signs of a moderate interaction. Although the likelihood of having used hard drugs increases with 
childhood misbehavior for both males and females, it increases faster for females.   
 
Continuous DV, Two continuous IVs 
  When both IVs are continuous, there is no statistical reason for deciding which IV to put on the X-
axis. There may be substantive reasons for choosing one, but we may need two plots to get a full sense of 
the interaction.  One plot will have one IV on the X axis; the other plot will have the other.   Also, in this 
case, we need to use more than two lines on the scatterplot.  The exact number of lines depends on the 
distribution of each variable, but three is often a good compromise between comprehensibility and 
completeness.  More lines can clutter the page, and fewer lines give an incomplete picture of the changes 
in the relationship.  We need to pick representative values of each IV.  One possible set of choices (used 
below) is the 25th, 50th, and the 75th percentiles. 
For example, we modeled peer objection to drug use as a function of age and childhood misbehavior.  
The estimated equation was: 
     DROBJ =  -1.48 + .12*AGE + 1.24*Windle -.063*AGE*Windle         (7) 
First, we let age be the X variable, and pick the three values of Windle at the 25th, 50th, and 75th 
percentiles.  This yields Figure 3 from which it can be seen that, while objection to drug use decreases as 
age increases, it does so much faster for those who reported more childhood misbehavior.   
  On the other hand, if we let Windle be the X variable, and choose values of age at the 25th, 50th, and 
75th percentiles, we get Figure 4, from which it can be seen that the relationship between childhood 
misbehavior and peer objection to drug use is stronger for older subjects. 
 
Dichotomous DV, Two Continuous IVs 
  If the DV is dichotomous, we again modify the above procedure by using logistic regression. We 
modeled the probability of having used hard drugs in the last year (HD), by age and childhood 
misbehavior.  The estimated equation was: 

        ( )
5.33 .41* .44* .027* *

5.33 .41* .44* .027* *1
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e
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           (8) 

With age on the X axis, this yields Figure 5.  This indicates that the relationship between age and drug use 
is stronger for subjects with higher levels of childhood misbehavior (because the slope of the line for 
Windle = 25 is greater than that for lower values of Windle). If there were no interaction, the lines would 
be parallel. 
  Similarly, if we put misbehavior on the X axis, and make separate lines for different ages scores, we 
get Figure 6.  This implies that the relationship between childhood misbehavior and peer objection to drug 
use is stronger for older subjects. 
 

Discussion and Conclusions 
  In this paper, we have presented a tool for displaying the effects of interactions involving two 
independent variables.  While this tool is not innovative, making it more widely known and more easily 
implemented will, we believe, increase understanding about the nature of an interaction.  In addition, it 
has the potential to clarify how changes in various parameters in logistic and ordinary least squares 
regression affect the relationship between a dependent variable and two independent variables. 
  While most statistical software (including SPSS, S-Plus, R, or SAS-Graph would allows production 
of charts similar to those produced in this paper, the graphics presented here were developed in Microsoft 
EXCEL.  Because this software is readily available, allows the user to adjust figures and immediately see 
the results, and requires no programming skill, utilizing the graphics approach developed here with 
Microsoft EXCEL will be possible for many data analysts.  It should be noted that Excel was not used to 
calculate the equations, but only to plot the results. 
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Figure 5: Probability of hard drug use as function of age (X), and Windle
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Figure 6: Probability of hard drug use as function of age and Windle(X)
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