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This study investigated the effectiveness of ten missing data treatments within the context of a two-predictor 
multiple regression analysis with nonrandomly missing data. Five distinct types of missing data treatments were 
examined: deletion (both listwise and pairwise methods), deterministic imputation (with imputations based on the 
sample mean, simple regression and multiple regression), stochastic imputation (mean, simple regression and 
multiple regression), maximum likelihood estimation (ML) and multiple imputation (MI). Design factors included 
in the study were sample size, total proportion of missing data, and the proportion of missing data occurring in the 
upper stratum of each predictor. The success of each method was evaluated based on the sample estimate of R2 and 
each standardized regression coefficient. Results suggest that the stochastic multiple regression imputation 
procedure evidenced the best performance in providing unbiased estimates of the parameters of interest. 
Deterministic imputation approaches and the stochastic mean imputation approach resulted in large amounts of bias 
in the estimates.   
 

t is not uncommon for missing data to occur on one or more variables within an empirical 
investigation. Missing data may adversely affect data analyses, interpretations and conclusions. 
Collins, Schafer, and Kam (2001) indicate that missing data may potentially bias parameter 
estimates, inflate Type I and Type II error rates, and influence the performance of confidence bands. 

Further, because a loss of data is almost always associated with a loss of information, concerns arise with 
regard to reductions of statistical power. Unfortunately, researchers’ recommendations for managing 
missing data are not in complete agreement resulting in conceptual difficulties and computational 
challenges (Guertin, 1968; Beale & Little, 1975; Gleason & Staelin, 1975; Frane, 1976; Kim & Curry, 
1977; Santos 1981; Basilevsky, Sabourin, Hum, & Anderson, 1985; Raymond & Roberts, 1987; Schafer 
& Graham, 2002). Many studies that have examined missing data treatments are not comparable due to 
the various methods used, the stratification categories (number of variables, sample size, proportion of 
missing data, and degree of multicollinearity), and the criteria that measure effectiveness of the missing 
data treatment (Anderson, Basilevsky, & Hum, 1983). Further, Schafer and Graham (2002) argue that the 
treatment of missing values cannot be properly evaluated apart from the modeling, estimation, or testing 
procedure in which it is rooted. Before proceeding with an examination of the extant literature, a 
consideration of some missing data terminology is warranted. 
 

Missing Data Terminology 
 Contemporary discussion of missing data and their treatment can often be confusing and at times may 
appear somewhat counterintuitive. For example, the term ignorable, introduced by Little and Rubin 
(1987) was not intended to convey a message that a particular aspect of missing data could be ignored, 
but rather under what circumstances the missing data mechanism is ignorable. Additionally, when one 
speaks of data missing at random, these words should not convey the notion that the missingness is 
derived from a random process external or unrelated to other variables under study (Collins et al., 2001). 
  According to Heitjan & Rubin (1991) missing data can take many forms, and missing values are part 
of a more general concept of coarsened data. This general category of missing values results when data 
are grouped, aggregated, rounded, censored, or truncated, resulting in a partial loss of information. The 
major classifications of missing data mechanisms can be best explained by the relationship among the 
variables under investigation. Rubin (1987) identified three general processes that can produce missing 
data. First, data that are missing purely due to chance are considered to represent data that are missing 
completely at random (MCAR). Specifically, data are missing completely at random if the probability of 
a missing response is completely independent of all other measured or unmeasured characteristics under 
examination. Accordingly, analyses of data of this nature will result in unbiased estimates of the 
population parameters under investigation. Second, data that are classified as missing at random (MAR), 
do not depend on the missing value itself, but may depend on other variables that are measured for all 
participants under study. Lastly, and most problematic statistically, are data missing not at random 
(MNAR). This type of missingness, also referred to as nonignorable missing data, is directly related to 
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the value that would have been observed for a particular variable. A commonly encountered situation, in 
which data would be classified as MNAR, arises when respondents in a certain income or age strata fail to 
provide responses to questions of this nature. 
  In much of the research that has been previously conducted, the key assumption has been that data are 
missing at random. If data are randomly missing and the percentage of missing data is not too large, 
researchers are advised that any missing data treatment is effective. However, this assumption of 
randomly missing data is tenuous in many instances. Although a few procedures have been presented to 
test the assumption of randomly missing data (e.g., Cohen & Cohen, 1975, 1983; Tabachinick & Fidell, 
1983), Kromrey and Hines (1994) assert that this assumption is rarely tested and that the applied 
researcher is hard pressed to find guidance if data are missing nonrandomly. 
 

Missing Data Treatments 
 Applied researchers often employ deletion or deterministic imputation procedures to manage missing 
data rather than choosing from among other available missing data treatments. The former procedures 
employ a deletion process, utilizing cases with complete data (Glasser, 1964; Haitovsky, 1968). Listwise 
deletion discards all cases with incomplete information, whereas pairwise deletion constructs a correlation 
matrix utilizing all pairs of complete data. Deterministic imputation procedures (e.g., mean substitution, 
simple regression, or multiple regression) provide estimates of the missing values (Santos, 1981; Kalton 
& Kasprzyk, 1982). In all deterministic approaches to imputation, the residual (error) term is set to zero in 
the estimation equation. In contrast, stochastic imputation includes a random value for the residual in the 
estimation equation. Some empirical evidence suggests that the stochastic imputation procedures are 
superior to the deterministic approaches (Santos, 1981; Kalton & Kasprzyk, 1982; Jinn & Sedransk, 1989; 
Keawkungal & Benson, 1989; Brockmeier, Hines, & Kromrey, 1993). 
  Kromrey and Hines (1994) examined the effectiveness of the deletion and deterministic imputation 
procedures in regression analysis with nonrandomly missing data in the context of missing data on one of 
two predictor variables. Systematically missing data were produced by generating 60% of the missingness 
above the mean value of the variable in each simulated sample. These researchers concluded that with 
moderate amounts of missing data, the deletion procedures yielded results similar to those obtained 
without missing data. Further, the deterministic imputation procedures evidenced poor performance when 
compared to the deletion procedures. 
 Within the context of a two-predictor multiple regression analysis with nonrandomly missing data, 
Brockmeier, Kromrey, and Hines (2000) investigated the effectiveness of eight missing data treatments on 
the sample estimate of R2 and each standardized regression coefficient. These researchers varied the 
overall proportion of missing data in each sample, as well as the proportion of the missingness that 
occurred in values greater than the sample mean. The results suggested that the stochastic multiple 
regression imputation procedure provided the best treatment of missing data. 
 

New Approaches to Missing Data 
 Traditionally, researchers have not utilized maximum likelihood estimation (ML), multiple 
imputation (MI), or the aforementioned stochastic imputation procedures. Kromrey (1989) and 
Brockmeier (1992) indicated that these methods are not typically found in the journals of applied 
researchers, with much of the scholarly work on maximum likelihood estimation and multiple imputation 
appearing in technical statistical journals. Little (1992) stated that maximum likelihood estimation is 
infrequently utilized due to the lack of software and the mathematical complexity of the computations. 
More recently, however, maximum likelihood estimation has been included in some structural equation 
modeling software and statistical packages. Additionally, Gregorich (1999) has created a maximum 
likelihood estimation program using SAS IML that is currently available and freely distributed to SAS 
users for noncommercial purposes. This program employs the Expectation-Maximization (EM) algorithm 
to estimate the maximum likelihood covariance matrix and mean vector in the presence of missing data. 
This maximum likelihood approach assumes that data are missing completely at random or missing at 
random. While a decade ago few stand-alone programs existed for employing multiple imputation as a 
missing data treatment, ML and MI are now becoming more popular with the implementation of these 
procedures in free and commercial software (Schafer & Graham, 2002). For example, a recent release of 
SAS (version 8.2) introduced a multiple imputation procedure. 
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  Rubin (1996) indicated that the ultimate goal of multiple imputation is to provide statistically valid 
inferences in applied contexts where researchers employ different analyses and models and when there is 
no one accepted reason for the missing data. The multiple imputation procedure replaces each missing 
value with a set of plausible values that represents the degree of uncertainty about the correct value to 
impute. One might view this approach as an enhancement over simple imputation methods that fail to 
reflect the uncertainty about the predictions of the missing values, often resulting in point estimates of a 
variety of parameters that are not statistically valid in any generality.  
  Multiple imputation inference involves three distinct phases (Schafer, 1997). First, missing data are 
filled in m times to generate complete data sets. Second, the m complete data sets are analyzed using 
standard statistical analyses. Finally, the results from the m complete data sets are combined to produce 
inferential information. For a recent review of MI procedures, see Sinharay, Stern, and Russell (2001). 
  Evidence of the effectiveness of maximum likelihood estimation and multiple imputation, as missing 
data treatments has been somewhat limited in the past (for a recent exception, see Collins et al., 2001). 
However, with the innovations in the software described above, interest and enthusiasm for these 
alternative methods appears to be growing. A recent issue of Psychological Methods (2001) devoted a 
special section to issues surrounding missing data, with a specific focus on multiple imputation and 
maximum likelihood estimation. 
 

Purpose 
 The purpose of this study was to investigate the effectiveness of ten missing data treatments within 
the context of a two-predictor multiple regression analysis with nonrandomly missing data. Further, the 
study investigated whether sample size, proportion of missing data occurring in the upper stratum on each 
predictor, and the total percentage of missing data affected the effectiveness of the ten missing data 
treatments. The success of each method was evaluated based on the sample estimate of R2 and each 
standardized regression coefficient. Five distinct types of missing data treatments were examined: 
deletion (both listwise and pairwise methods), deterministic imputation (with imputations based on the 
sample mean, simple regression and multiple regression), stochastic imputation (mean, simple regression 
and multiple regression), maximum likelihood estimation and multiple imputation. 
 

Method 
 This research was a Monte Carlo study designed to simulate multiple regression analyses in the 
presence of missing data. The use of simulation methods allows the control and manipulation of research 
design factors and the incorporation of sampling error into the analyses. Observations for each sample 
were generated under known population conditions and missing data were created in each sample. 
 
Data Source 
 Data for this investigation were simulated to model the correlational structure observed in a sample of 
responses to an instrument designed to measure teachers’ reported perceptions of computers and 
integration of technology in their classrooms (Hogarty, Lang, & Kromrey, in press). These field data were 
composite scores based on selected subscales from the instrument. Each subscale contained items 
measured on either a 5-point Likert scale ranging from strongly disagree to strongly agree or a 5-point 
frequency of use scale ranging from not at all to every day. Two correlation matrices from these data were 
selected for use as population templates in this Monte Carlo study (Table 1). The first matrix had 
correlations between variables that ranged from 0.33 to 0.61 with an R2 of 0.50. In contrast, the second 
matrix presented lower correlations (ranging from 0.12 to 0.49) and an R2 value of 0.25. 
 
Table 1. Correlation Matrices Used for Simulation 
Higher Correlated Data Set Lower Correlated Data Set 
             Y   X1              Y   X1 
   X1    0.53     X1    0.49  
   X2    0.61 0.33    X2    0.16 0.12 
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Experimental Design 
 The study employed a 2 X 3 X 4 X 6 experimental design. The factorial design included two 
between-subjects factors (population correlation matrix and sample size, N = 50, 100, and 200) and two 
within-subjects factors (proportion of missing data in the upper stratum of each variable and percentage of 
missing data). The four proportions of systematically missing data in the upper stratum were 0.60, 0.70, 
0.80, and 0.90. The six conditions of missing data generated were 10%, 20%, 30%, 40%, 50%, and 60%. 
In addition, the complete samples with no missing data were analyzed. Missing data were distributed 
equally across both predictor variables (i.e., with 20% missing data, 10% of the observations presented 
missing data on each of the regressors). 
 The pseudopopulations were not manipulated within the experiment, but were selected to obtain the 
desired correlational patterns in each data set. The sample sizes, missing data structures and missing data 
treatments were chosen to replicate and extend the earlier work of Kromrey and Hines (1994) and 
Brockmeier et al. (2000). 
 
Conduct of the Monte Carlo Study 
 This research was conducted using SAS/IML version 8.2. Conditions for the study were run under 
Windows 98. Normally distributed random variables were generated using the RANNOR random number 
generator in SAS. A different seed value for the random number generator was used in each execution of 
the program and the program code was verified by hand-checking results from benchmark data sets. For 
each condition examined in the Monte Carlo study, 5000 samples were simulated. The use of 5000 
samples provides adequate precision for this investigation. For example, the use of 5000 samples provides 
a maximum 95% confidence interval width around an observed proportion that is ± 0.014 (Robey & 
Barcikowski, 1992). 
 Within each sample, missing data were created by setting to missing the generated values of one of 
the two regressors variables, under the constraint that no observation may have both regressors missing. 
The target percentage of missing data was evenly divided between the two regressors (i.e., half of the 
missingness occurred on each regressor). In addition, the percentage of the missingness that was imposed 
on observations in the upper stratum was controlled by dividing each sample into two strata for each 
regressor, then randomly selecting the correct number of observations from each stratum. The proportion 
of data missing in the upper stratum was altered to create increasing degrees of distortion in the observed 
data. The probability of a missing value was established to be proportional to the value of the variable. 
For the majority of conditions, the upper stratum was defined as observations above the sample median 
value of the predictor variable. If an insufficient number of observations were available above the median 
(e.g., with 90% missing and 60% of these occurring above the median) the upper stratum was defined as 
the top 60% of the distribution.  
 In each generated sample, the 24 missing data conditions were independently imposed (six total 
percentages of missing data crossed with four proportions of missing data in the upper stratum), allowing 
the two missing data factors to be treated as within-subjects factors in the research design. In addition, 
each complete sample with no missing data was analyzed to provide a reference for the evaluation of the 
missing data treatments. Each sample was analyzed by computing the regression equation (obtaining the 
sample estimates of each standardized regression weight and the sample value of R2) after applying each 
of the ten missing data treatments. 
 
Missing Data Treatments 
  The missing data treatments examined in this study included deletion, deterministic imputation, 
stochastic imputation and model-based approaches. The treatment of missing data was considered with 
respect to two predictor variables, X1 and X2 (with missing data on one but not both predictors), and a 
single criterion variable, Y1 (with no missing data). The first method, listwise deletion, necessitated the 
deletion of any observations in the sample with missing values for either of the predictor variables. The 
resulting ‘complete’ data set for each sample was used in the calculation of parameter estimates (R2 and 
the standardized regression weights). For the second method, pairwise deletion, a correlation matrix was 
constructed based on all of the available data for each pair of variables. The resulting correlation matrix 
was subsequently analyzed to obtain the regression equation for each sample. 
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  Three imputation techniques using deterministic methods were employed, a mean imputation 
approach and both simple and multiple regression imputation. For the mean imputation procedure, 
missing values were imputed using the sample mean value for each regressor variable. In contrast, 
deterministic multiple regression imputation for each sample was initiated by calculating a prediction 
equation based on the data available and deriving a predicted value for the variable with missing data 
based on the values of the other two variables. For example, to predict missing values for X1, the sample 
regression equation for predicting X1 based on both X2 and Y was estimated. The resulting equation was 
then used to compute predicted values for X1 and those values were imputed to replace the missing data. 
The same process was followed for simple regression imputation, but only a single predictor variable was 
used (i.e., either X2 or Y was used to predict the missing values for X2). In each sample, the variable 
evidencing the stronger correlation was used as the predictor.  
  The three stochastic techniques examined mirrored the deterministic methods described above. 
However, as stated earlier, stochastic techniques differ from deterministic methods with regard to the 
incorporation of a random error term. For stochastic mean imputation, the imputation begins with the 
mean value in the sample for the particular variable with missing data, but each imputation requires the 
addition of a randomly selected normal deviate drawn from a distribution with 0µ = and 2σ equal to the 
sample variance of the variable. The same steps were followed when employing the stochastic simple and 
multiple regression imputation methods as those described above for the parallel deterministic approaches 
with the exception of the addition of a random residual term. This residual was randomly drawn from a 
distribution with 0µ = and 2σ equal to the mean squared residual from the regression that was used to 
derive the prediction equation. 
  The multiple imputation approach is an extension of the multiple regression imputation procedure. 
This approach replaces each missing value with a set of plausible values that represent the degree of 
uncertainty about the correct values to be imputed. For this study, 10 imputations were employed for the 
multiple imputation procedure. Rubin (1987) indicated that the efficiency of an estimate based on m 
imputations is approximately: 

            ( ) 1

1 m
γ −

+ ; 

where γ  is the fraction of missing information for the variable being estimated. For example, with 50% 
missing information, m = 5 imputations provides an estimate of efficiency of approximately 91%, 
whereas m = 10 imputations increases the estimated efficiency to 95%.  
 As described earlier, first, missing data were filled in ten times to generate ten complete data sets. 
This phase was accomplished by first conducting a multiple regression analysis on the sample data to 
derive an initial set of parameter estimates. These estimates, along with the obtained covariance matrix, 
where then used to generate a sample of ten sets of parameter estimates. These parameter estimates were 
applied individually to the sample data and the predicted values imputed, resulting in ten distinct samples 
with complete data. The ten complete data sets were then analyzed sequentially using multiple regression 
analysis. Finally, the obtained R2 values and standardized regression weights from the ten regression 
analyses were averaged and the resultant values were used to assess the performance of this procedure.  
  The final procedure examined was maximum likelihood estimation via the EM algorithm. This is an 
iterative approach that seeks parameter values that maximize the likelihood of the observed data. The 
well-known EM algorithm (Dempster, Laird, & Rubin, 1977) consists of an estimation step (or E-step) 
that predicts the missing values based upon estimates of the parameters, and a maximization step (or M-
step) that revises the estimates of the parameters. The E and M steps are repeated until the parameter 
values do not change appreciably from one cycle to the next. For an excellent overview of the theory 
underlying this approach, both with and without missing data see Rubin (1987). 
 
Statistical Analysis 
  The relative effectiveness of the missing data treatments was evaluated in terms of statistical bias and 
standard errors for the estimates of the standardized regression weights and the sample value of R2. The 
results were analyzed by computing the effect sizes obtained from the missing data treatment conditions 
relative to the complete sample condition (i.e., 0% missing data). That is, 
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where  ijkδ =  the effect size for missing data treatment i,  under missing data condition j and sample  
     size k, 
   ijkθ =  the mean value of the parameter estimate over the 5000 samples, 

   0kθ =  the mean value of the parameter estimate over the 5000 samples of size k with no  
     missing data, and 
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kθσ =  the standard deviation of the parameter estimates across the 5000 samples of size k  
     with no missing data. 

In addition, standard deviation ratios were calculated to assess the sampling variability of each missing 
data treatment for the sample estimate of R2 and standardized regression coefficients relative to the 
complete sample condition: 
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where  
ijkRatioSD =  the ratio for missing data treatment i, under missing data condition j and sample  

      size k, 
   ˆ

ijkθσ =  the standard deviation of the parameter estimates obtained across the 5000 samples  
     with missing data treatment i, under missing data condition j and sample size k, 
   

0
ˆ

kθσ =  the standard deviation of the parameter estimates across the 5000 samples of size k  
     with no missing data. 
 

Results 
  The results of this study are presented in terms of the effect sizes and the inflation of sampling error 
associated with the 10 missing data treatments. To save space, only summary statistics are reported, but 
complete tables are available from the first author. 
 
Effect Sizes for Missing Data Treatments 
  The distributions of the obtained effect sizes for the estimation of R2 for all conditions examined in 
this study are presented in Figures 1 and 2 for the high and low correlation matrices, respectively. Similar 
patterns of results were seen for both population matrices, although the biases associated with some of the 
missing data treatments (MDTs) were more extreme in the high correlation matrix. Four particularly poor 
MDTs are evident in these figures: the three deterministic imputation procedures and the stochastic mean 
imputation approach. These methods led to large biases in sample R2 across most of the conditions 
examined, with the mean imputation approaches yielding underestimates of R2 and the deterministic 
regression procedures yielding overestimates. The other MDTs provided relatively unbiased estimates of 
R2 across the majority of conditions examined. 
  Figures 3 and 4 present the distributions of effect sizes associated with the estimation of the 
standardized regression weight for X1 in the conditions simulated for the high and low correlation 
matrices, respectively. For this regression weight, the three deterministic imputation procedures and the 
stochastic mean imputation procedure showed relatively extreme bias in the conditions simulated in the 
low correlation matrix (Figure 4). For the high correlation matrix (Figure 3), although the pattern of over 
and under estimation remained the same, substantially less bias was evident, especially for the 
deterministic mean procedure. 
   Figures 5 and 6 present the distributions of effect sizes associated with the estimation of the 
standardized regression weight for X2. A notably different pattern was observed for this regression 
weight. In the high correlation matrix (see Figure 5), the same four procedures evidenced the bias pattern  
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Figure 1. Distributions of Effect Sizes for Estimates of R2 in High Correlation Matrix. 
 

L W PW M N Det M N  Sto M R  Det M R  Sto SR Det SR Sto M L M I

M issing  Data Treatm ent

-5

-4

-3

-2

-1

0

1

2

Ef
fe

ct
 S

iz
e

 
Figure 2. Distributions of Effect Sizes for Estimates of R2 in Low Correlation Matrix. 
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Figure 3. Distributions of Effect Sizes for Estimates of 1β in High Correlation Matrix. 
 

L W PW M N D et M N  S to M R  D et M R  S to SR D et SR S to M L M I

M issin g  D ata  Tre atm e n t

-3

-2

-1

-0

1

2

Ef
fe

ct
 S

iz
e

 
Figure 4. Distributions of Effect Sizes for Estimates of 1β  in Low Correlation Matrix. 
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Figure 5. Distributions of Effect Sizes for Estimates of 2β in High Correlation Matrix. 
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Figure 6. Distributions of Effect Sizes for Estimates of 2β  in Low Correlation Matrix. 
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Figure 7. Distributions of Standard Deviation Ratios for Estimates of R2 in High Correlation Matrix. 
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Figure 8. Distributions of Standard Deviation Ratios for Estimates of R2 in Low Correlation Matrix. 
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Figure 9. Distributions of Standard Deviation Ratios for Estimates of 1β in High Correlation Matrix. 
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Figure 10. Distributions of Standard Deviation Ratios for Estimates of 1β  in Low Correlation Matrix. 
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Figure 11. Distributions of Standard Deviation Ratios for Estimates of 2β in High Correlation Matrix. 
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Figure 12. Distributions of Standard Deviation Ratios for Estimates of 2β  in Low Correlation Matrix. 
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seen before, but the MI procedure also revealed substantial negative bias. In the low correlation matrix 
(Figure 6), for most conditions very little bias was evident in any of the methods. When bias was present, 
the bias was consistently in a positive direction (overestimation of the regression weight). 
  To aid in the interpretation of the distributions of effect sizes observed, the differences in mean effect 
sizes were examined across each of the design factors in the study. Table 2 presents the mean effect sizes 
across conditions examined in each of the two population correlation matrices. On average, the two 
deletion procedures provided relatively unbiased estimates of all parameters (with the average effect size 
not exceeding 0.10). For the three deterministic procedures, substantial bias was evident in the estimates 
for both matrices, with the exception of the estimation of β1 in the high correlation matrix and β2 in the 
low correlation matrix. The simple regression, multiple regression, and stochastic imputation procedures 
performed well on average, with the average bias not exceeding 0.08, and the MI procedure performed 
well with the exception of the estimation of β2 in the high correlation matrix, a condition that led to 
substantial negative bias. Finally, the maximum likelihood (EM) approach provided reasonably unbiased 
estimates of all parameters across the conditions. 
  Table 3 presents the patterns of effect sizes by sample size. Neither deletion procedure was 
appreciably influenced by the sample size, with the average bias ranging from -0.02 to 0.10 across the 
parameters and conditions examined. In contrast, the deterministic imputation procedures and the 
stochastic mean imputation procedure showed greater bias with larger samples, often doubling in 
magnitude as sample size increased from 50 to 200. The remaining stochastic imputation procedures and 
the EM approach showed minimal bias across sample sizes examined, with the exception of the MI 
procedure in the estimation of the second regression weight. 
  Table 4 presents the pattern of mean effect sizes by the percentage of missing data. The deletion 
procedures, deterministic imputation procedures and the stochastic mean imputation procedure all 
evidenced greater degrees of bias with larger percentages of missing data. In the most extreme condition 
(60% missing data), the stochastic mean imputation procedure yielded an effect size of –2.31 for the 
estimation of R2. The stochastic regression procedures (both simple and multiple) also evidenced greater 
bias with more missing data, but the increase was quite small (reaching only as large as 0.07 for simple 
regression and 0.14 for multiple regression). The bias observed with the MI procedure in the estimation of 
the second regression weight is also evident in this table, with increasing bias accompanying greater 
proportions of missing data. Finally, the EM approach showed a small increase in bias with greater 
amounts of missing data (with mean effect size reaching as high as 0.16 in the estimation of R2).  
  Table 5 presents the pattern of mean effect sizes by the proportion of missing data occurring in the 
upper stratum of each regressor. Surprisingly, for most of the MDTs, the estimation bias was not strongly 
related to this factor. Exceptions were pairwise deletion, which showed larger bias in the estimation of R2 
and β2 with increasing proportions of missing data in the upper stratum, and the maximum likelihood 
procedure, which showed greater bias in the estimation of β2. 
 As a final approach to guide interpretation of the success of the missing data treatments, the 
proportions of conditions in which the effect size was less than 0.30 in absolute value were computed (see 
Table 6). Effect sizes this small are considered to present little or no practical problem to researchers 
(Kromrey & Hines, 1991). The criterion of 0.30 was chosen (rather than Cohen’s 0.50, a medium effect 
size) because the regression coefficients and the sample estimate of R2 are subject to both substantive 
interpretation and tests of statistical significance. The best performance, overall, in terms of providing 
relatively unbiased estimates of the three parameters of interest was the stochastic multiple regression 
imputation procedure. With this method, none of the conditions examined yielded effect sizes greater than 
0.30. Closely following the stochastic multiple regression approach were the stochastic simple regression 
approach and the maximum likelihood (EM) approach. Both of these methods provided effect sizes less 
than 0.30 for all conditions except for two, both of which involved the estimation of the second regression 
weight. The deletion procedures also performed relatively well, providing relatively unbiased estimates in 
more than 90% of the conditions examined. The deterministic imputation procedures and the stochastic 
mean imputation procedures produced very poor performance in this analysis. For example, none of these 
procedures produced effect sizes less than 0.30 for the estimates of R2 in more than 24% of the conditions.  
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Discussion and Conclusions 
 Researchers in many fields are often confronted with challenges regarding appropriate methods for 
dealing with missing data. This issue continues to be a pervasive concern for applied researchers 
conducting inquiries across a multitude of research contexts.  If missing data are ignored or improperly 
handled, resulting parameter estimates are likely to be biased, inferences distorted and conclusions 
unsubstantiated. Our investigation was designed to inform the treatment of nonrandomly missing data 
across a variety of commonly encountered situations in the conduct of multiple regression analysis. In this 
vein, we examined the influence of various configurations of missing data across two predictor variables. 
We studied two distinct correlational structures (both low and high correlations among variables) and 
three levels of sample size (small, medium and large). Missing data were simulated by varying the 
proportion of missingness in the upper stratum of each variable (i.e., above the median in most instances) 
and the total percentage of missingness. 
  The influence of the degree of relationship between the variables under investigation was negligible 
for the deletion procedures, but rather substantial for the deterministic procedures. When the influence of 
sample size was examined, the deletion procedures appeared relatively unaffected, yet sample size 
evidenced a dramatic effect on the deterministic procedures and the stochastic mean imputation 
procedures, with larger sample sizes resulting in rather substantially biased estimates. For most of the 
conditions examined, the influence of the proportion of missing data in the upper stratum had little effect 
on most of the missing data treatment methods. As expected, the most problematic conditions appeared to 
be those in which the proportion of missing data in the upper stratum was high, coupled with a large 
percentage of missing data. 
  The influence of missing data on sample estimates of R2 varied considerably among the missing data 
techniques across the conditions examined. In many instances, nonbiased parameter estimates were 
evidenced for the two stochastic regression approaches and the maximum likelihood estimation method. 
Both pairwise and listwise deletion methods and the multiple imputation approach were nearly as 
effective, yielding relatively few conditions presenting some degree of bias. In contrast, the stochastic 
mean substitution approaches and all three deterministic approaches evidenced considerable bias, 
suggesting that these methods should be avoided when faced with missing data of this nature. Similar 
patterns were observed for these four missing data treatments for both the high and low correlation 
matrices, however, the bias associated with these procedures was more pronounced when the variables 
were more highly correlated. 
  If we turn our attention to the estimation of the regression parameters, we find that both deletion 
procedures, the stochastic regression approaches and the two model-based methods (i.e., multiple 
imputation and maximum likelihood estimation) consistently yielded unbiased estimates of the 
standardized regression weight for X1. Once again, the three deterministic procedures and the stochastic 
mean imputation procedure showed a similar pattern of bias across both the high and low correlation 
matrices, but for these analyses, bias was considerably less pronounced for the high correlation matrix 
conditions. 
  Of interest is the notably different pattern inherent in the bias associated with the estimation of the 
standardized regression weight for X2. For the high correlation matrix conditions, the same four 
procedures evidenced extreme bias, but surprisingly the multiple imputation procedure exhibited 
substantial negative bias. In contrast, multiple imputation evidenced very little bias for the lower 
correlation condition across the various treatments and conditions. 
  When we consider the results from this examination of ten missing data treatments under various 
conditions of missing data on two predictors, we find no convincing evidence to recommend any of the 
deterministic procedures or the stochastic mean imputation approach as valid approaches to dealing with 
issues of missing data. On the contrary, the results reported here provide substantial evidence that these 
methods should be avoided. However, these results suggest that the use of stochastic regression methods, 
multiple imputation techniques and maximum likelihood estimation warrant careful consideration under 
many circumstances. Further, the simple deletion methods performed relatively well in many conditions. 
Although the stochastic multiple regression imputation approach performed the best over all of the 
conditions examined, the simpler deletion methods may be sufficient in many circumstances. 
  The results of this study need to be considered in the context of the limitations of this research. First, 
the findings are somewhat narrowly focused on a two-predictor multiple regression model. The success of 
these methods in more complex situations, such as factor analysis or path analysis remains uncertain, 
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although recent work suggests promise for the maximum likelihood approach in structural equation 
modeling (Enders, 2001). Clearly, additional research is called for to examine these methods, as well as 
others, in multiple contexts under supplementary conditions. Second, the structure of the missing data was 
such that the missingness was balanced across the two predictors, and the missingness was never allowed 
to occur across both predictors for any observation. Additionally, the behavior of the missing data 
techniques was explored for only two correlational structures. The nature and structure of the simulated 
data sets may additionally limit the ability to generalize the results beyond the conditions examined. 
Further, the simulated data used in this study were multivariate normal. The success of these missing data 
treatments with nonnormal distributions will require additional research. Finally, the focus of this work 
was on bias and sampling error of R2 and standardized regression weights. The impact of missing data and 
their treatment on Type I error rates, statistical power, and the accuracy of confidence intervals 
constructed around parameter estimates requires additional investigation. 
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