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The Type I error control and statistical power of three tests of regression models incorporating discrete ordinal 
variables were compared in a Monte Carlo study. Samples were generated from populations measured on discrete 
ordinal variables representing 5-point and 7-point response scales. Each sample was analyzed using ordinary least 
squares regression, ordinal multiple regression and cumulative logit models. Factors examined in the Monte Carlo 
study were the population effect size, number of regressor variables, level of regressor intercorrelation, population 
distribution shape and sample size. Results suggest that the logistic regression approach evidenced poor Type I error 
control with small samples or with large numbers of regressors. In contrast, both the ordinary least squares approach 
and the ordinal multiple regression approach evidenced good Type I error control across the majority of conditions 
examined. Further, the power differences between these approaches were negligible. 
 

common response format for the measurement of many variables in the social sciences is a 
forced-choice, ordinal scale. For example, data may be collected using a Likert scale in which 
respondents indicate the extent of their agreement or disagreement with a stimulus. Similarly, 
ordinal rating scales may be used to obtain ratings by participants regarding their perceptions of 

the frequency or intensity of a target phenomenon. 
The level of measurement of this type of variable and the appropriate statistical techniques for the 
analysis of such data have been the subject of debate for many years. Stevens (1951) defined four levels 
of measurement (nominal, ordinal, interval and ratio) and the appropriateness of their use within statistical 
analyses.  The subsequently published literature presents conflicting views about the use of parametric 
statistics with such discrete ordinal variables.  Critics of Stevens have proposed that ordinal data can be 
treated as interval data when parametric statistics are employed (e.g., Borgatta & Bohrnstedt, 1980; Gaito, 
1980).   In contrast, some researchers have proposed alternative analyses that are purported to more 
appropriately represent the discrete ordinal nature of such data (Agresti & Finlay, 1997; Cliff, 1994, 
1996; Long, 1999), while others have recommended a rescaling of such data to provide a closer 
approximation to interval-level measurement (Harwell & Gatti, 2001).  The long-standing debate about 
how to treat ordinal variables in statistical analyses is fueled by the need within the social sciences to 
accurately answer research questions in which measures are obtained using a discrete ordinal response 
scale.   
 The purpose of this study was to investigate available analysis options for ordinal level data in the 
context of multiple regression analysis, and to empirically compare the performance of these analysis 
options.  Multiple regression was the focus of this study because it has proven to be a useful, general 
purpose tool for data analysis encompassing the analysis of variance and analysis of covariance as special 
cases. As stated above, the literature reflects disagreement about appropriate analyses of discrete ordinal 
data.  Therefore, one purpose of our work is to raise researchers’ awareness of multiple regression 
analysis options with discrete ordinal variables.  Further, the literature base is lacking empirical studies 
that investigate factors of the research context (such as effect size, number of regressors, sample size, and 
level of measurement) that may affect the performance of the analysis options.  Therefore, a second 
purpose was to compare the performance of three analysis options with various manipulations of factors 
under controlled conditions.     
 

Analysis Options with Discrete Ordinal Variables 
 Through the years, ordinal data have been analyzed using a variety of models, including ordinary 
least squares regression, variants of logistic regression analysis, and techniques developed specifically for 
ordinal-level analyses. Each of these methods will be briefly described. 
 
  Ordinary Least Squares. Ordinary least squares regression (OLS) analysis essentially ignores the 
discreteness and the ordinal level of measurement of variables, treating all values as if they represented a 
continuous interval-level measure. The well-known general linear model in matrix form is given by 

= +y Xb ε  , 

A 
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   where  y is an n x 1 vector of values for the dependent variable, 
    X is an n x (k + 1) matrix of observations on the k regressor variables augmented with a unit  
     vector to provide an intercept,  
    b is a (k + 1) x1 vector of regression coefficients, and  
    ε is an n x 1 vector of residuals.   
 
The OLS regression coefficients are obtained as: 

1ˆ ( )−= T Tb X X X y  . 
Hypothesis tests associated with OLS regression are typically of the form 0 : 0iH β = , where iβ is the 
parameter associated with one of the elements of the vector b. This test is conducted by obtaining the ratio 
of the parameter estimate to its standard error and comparing that ratio to a t distribution with df = n – k – 
1. A simultaneous test that all of the iβ parameters are equal to zero (equivalent to the test that the 
population squared multiple correlation coefficient is equal to zero) is obtained by calculating the ratio 
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and comparing the result to an F distribution with df = k, n – k – 1. 
 
 Ordinal Multiple Regression. Cliff (1994) presented an ordinal multiple regression strategy (OMR) 
and Long (1999) provided a method for estimating confidence intervals around the parameters of this 
model. The OMR model was developed to predict the ordinal information (that which Cliff refers to as  
“dominance”) in a criterion variable, based upon the observed ordinal information among the predictor 
variables. That is, OMR predicts the dominance scores on the criterion variable (dihy) by weighting the 
observed dominance scores on the regressor variables (dihx). The dominance scores are given as 

( )ihx i hd sign x x= − , 
taking the value of 1 if the ith observation has a higher “score” on X than does the hth observation, a value 
of –1 if the score on X is lower, and a value of zero if the two observations are tied on X. The weights for 
the OMR model are obtained as 

1−= x yw T t  
 where w is a k X 1 vector of regression weights, 
   Tx is a k X k matrix of Kendall tau-a correlation coefficients among the regressors, and 
    ty is a k X 1 vector of tau-a correlations between the regressors and the criterion  variable.  
 
Confidence intervals and hypothesis tests about the OMR weights (w) are conducted using the standard 
normal (z) distribution. That is, the confidence interval for the jth weight, described by Long (1999) is 
wj±Z(1-α/2) ˆwjσ  and a test of the null hypothesis that the population weight is zero is conducted by dividing 
the sample weight by its standard error and comparing the ratio to a critical value of Z. 
 
 Logistic Regression. A cumulative logit model for ordinal criterion variables (LR) was described by 
Agresti and Finlay (1997). The LR analysis models the probability of a value on the dependent variable 
being in the jth category or lower, that is, modeling ( )P y j≤ based on the values of predictor variables. In 
logit form, the model is 

( )
( )

log j

P y j
X

P y j
α β

 ≤
= +  > 

 

 where jα is the intercept for the jth category of the ordinal response, and 
   β is a k X 1 vector of regression weights for the predictors. 
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Parameter estimates for the LR models are usually obtained using maximum likelihood methods. 
Inference in the cumulative logit model is conducted using Wald tests for the individual regression 
parameters (ratios of the estimates to their standard errors), and likelihood ratio tests to obtain a 
simultaneous test that all parameters are equal to zero. 
 

Method 
  This research was a Monte Carlo study in which random samples were generated under known and 
controlled population conditions. In the Monte Carlo study, samples were generated from populations of 
discrete ordinal variables. In each sample the data were analyzed using the OLS, OMR, and cumulative 
logit regression approaches. 
  The Monte Carlo study included six factors in the design. These factors were (a) the true population 
effect size of the individual regressors (populations were simulated with effect sizes corresponding to 
small, medium and large values of Cohen’s effect size f 2, as well as a null condition (effect size of zero), 
(b) number of regressor variables (with k = 2, 5 and 10 regessors), (c) correlation between regressor 
variables (with r12 = .10 and .30), (d)  sample sizes (with n = 5*k, 10*k and 100*k), (e) level of 
measurement of variables (discrete, ordinal variables were investigated as 5-option response scales, and 7-
option response scales), and (f) population distribution shape  (conditions were simulated in which the 
discrete ordinal variables were uniform, unimodal symmetric, and unimodal skewed). 
 
  Generation of Pseudo-populations. Because the population parameters corresponding to regression 
weights in the models being investigated for discrete ordinal data cannot be determined analytically, the 
simulation study was conducted by generating a pseudo-population for each condition, then drawing 
random samples with replacement from these pseudo-populations. The pseudo-populations consisted of 
10,000 observations randomly generated from the corresponding population (level of discreteness of the 
measurements, distribution shape and degree of relationship between the regressors and the criterion 
variable).  
  The data were generated by transforming uniform random variates obtained from the RANUNI 
function in SAS, using a modification of the technique described by Bradley and Fleisher (1994), and 
operationalized by Ferron, Yi, and Kromrey (1997). In this method, a population correlation matrix, R, 
based on discrete ordinal variables is constructed by an iterative process in which large simulated samples 
(n = 100,000) are generated from an approximation of R, ( )R . The observed correlation matrix obtained 

from this large sample ( )R̂  is compared elementwise to R, and the residuals ( )ˆR R− are used to adjust the 

generating matrix R . This sequence of large sample generation, matrix estimation, and adjustment of 
R continues until the process converges. The resulting matrix, R , is used as a template to generate 
correlated discrete data for the Monte Carlo study. 
  Each analysis model was calculated on all observations in these pseudo-populations providing values 
that served as the corresponding population parameters. The Monte Carlo simulation was then conducted 
by randomly sampling observations, with replacement, from these pseudo-populations. 
The research was conducted using SAS/IML version 8.1. Conditions for the study were run under 
Windows 98. Discrete random variables were generated using the RANUNI function of SAS.  A different 
seed value was used in each execution of the program and the program code was verified by hand-
checking results from benchmark datasets. 
 For each condition investigated, 5,000 samples were generated. The use of 5,000 samples provides 
adequate precision for the investigation of the sampling behavior of these statistics. For example, 5,000 
samples provides a maximum 95% confidence interval width around an observed proportion that is 
± .014 (Robey & Barcikowski, 1992). 
 The relative performance of the analysis strategies was evaluated by a comparison of the Type I error 
control and statistical power of the tests of regression coefficients. Estimates of Type I error control and 
statistical power were obtained by conducting the hypothesis tests associated with each parameter of each 
analytical model. For the OLS and LR models, the simultaneous test that all regression parameters is 
equal to zero was also conducted. The proportion of rejections of hypothesis tests for conditions in which  
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FIGURE 1: Distribution of Type I Error Rate Estimates for Tests of Individual Regression Coefficients 
 
the population parameter is zero provided an estimate of Type I error control. Similarly, the proportion of 
rejections of such tests for conditions in which the parameter is not zero provided an estimate of statistical 
power. 
 

Results 
Type I Error Control 
 Box-and-whisker plots in Figure 1 depict the distribution of Type I error rate estimates for tests of 
individual regression weights across the conditions examined in the research. The figure clearly portrays a 
higher typical Type I error rate for the LR analysis method, relative to the OMR and OLS methods. The 
tails of the plot for the LR method range from .02 to .12, with half ranging from .06 to .08. The OMR 
method exhibits the most consistent Type I estimates, with the majority of estimates at .06.  The OLS 
method is similar to the OMR with tails ranging from .04 to .07, with half ranging from .05 to .06.  
 Estimates of Type I error rates for the tests of individual regression weights in samples from the 
unimodal symmetric population are presented in Table 1.  Overall the 5-point scale and 7-point scale 
exhibited few differences across the three analysis methods for all conditions.  With two regressors and 
small sample size, the Type I error rate for the LR analysis method was lower than the OMR and OLS 
analysis methods.  For example, with a 5-point scale, k=2, r12=.30, and n=10, the estimated Type I error 
rate for OMR was .07, for OLS was .05, and for LR was .04.  However, with more than 2 regressors and 
small to medium sample sizes, the Type I error rate was higher for LR when compared to OLS and OMR.  
For example, with a 5-point scale, k=10, r12=.10, and n=50, the estimated Type I error rate for LR (.09) 
was higher than OMR (.05) and OLS (.05) .  The OMR method had slightly higher Type I error rates with 
2 regressors when compared to its performance with 5 and 10 regressors. 
 The analysis methods provided similar results across models with five and ten regressors, with LR 
consistently having higher Type I error rates than OMR or OLS. The OMR and OLS methods for small, 
medium, and larger sample sizes exhibited similar Type I error rates, which ranged from .05 to .07. In 
contrast the LR analysis method for small and medium sample sizes exhibited a higher Type I error rate, 
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5-point Scale        Analysis Method 
k r12 N OMR OLS LR 
2 .10 10 0.08 0.06 0.04 
  20 0.07 0.05 0.06 
  200 0.06 0.06 0.06 
 .30 10 0.07 0.05 0.04 
  20 0.06 0.05 0.06 
  200 0.06 0.06 0.06 
5 .10 25 0.06 0.05 0.08 
  50 0.06 0.06 0.07 
  500 0.06 0.06 0.06 
 .30 25 0.06 0.05 0.09 
  50 0.06 0.06 0.07 
  500 0.06 0.06 0.06 
10 .10 50 0.05 0.05 0.09 
  100 0.06 0.06 0.08 
  1000 0.06 0.06 0.07 
 .30 50 0.05 0.05 0.10 
  100 0.06 0.06 0.08 
  1000 0.06 0.07 0.07 
7-point Scale        Analysis Method 
k r12 N OMR OLS LR 
2 .10 10 0.08 0.05 0.05 
  20 0.06 0.05 0.06 
  200 0.06 0.05 0.06 
 .30 10 0.07 0.05 0.05 
  20 0.06 0.05 0.06 
  200 0.06 0.06 0.05 
5 .10 25 0.06 0.06 0.09 
  50 0.06 0.05 0.07 
  500 0.06 0.06 0.06 
 .30 25 0.06 0.05 0.09 
  50 0.06 0.06 0.08 
  500 0.05 0.05 0.05 
10 .10 50 0.06 0.05 0.05 
  100 0.06 0.06 0.07 
  1000 0.05 0.05 0.05 
 .30 50 0.06 0.06 0.10 
  100 0.06 0.06 0.08 

  1000 0.07 0.06 0.07 
 

which ranged from .06 to .10.  For the small sample conditions, the LR method provided slightly higher 
Type I error rates with 10 regressors than with 5 regressors (although it remained liberal with small 
samples in both conditions). For example, with a 7-point scale, k=10, r12=.30, and n=50, the estimated 
Type I error rate for LR was .10.  In contrast, with k = 5, r12=.30, and n = 25, the Type I error rate 
estimate for LR dropped to .09. The LR method evidenced better Type I error control as the sample size 
increased.  For example, with a 7-point scale, k=5, r12=.30, the LR method was .09 with the small sample, 
.08 with the medium sample, and .05 with the large sample. 
 The Type I error rate estimates for tests of individual regression weights in selected conditions across 
distribution shapes are presented in Table 2. The three distribution shapes (unimodal symmetric, uniform, 

Table 1. Type I Error Rate Estimates for Tests of Individual Regression Weights with Unimodal Symmetric Populations 
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Table 2. Type I Error Rates Estimates for Tests of Individual Regression Weights Across Distribution Shapes. 

5-point Scale Symmetric Uniform Skewed 

k r12 N OMR OLS LR OMR OLS LR OMR OLS LR 
2 .10 10 0.08 0.06 0.04 0.07 0.04 0.05 0.08 0.05 0.02 
  20 0.07 0.05 0.06 0.07 0.05 0.07 0.07 0.05 0.05 
 .30 10 0.07 0.05 0.04 0.07 0.06 0.05 0.08 0.05 0.02 
  20 0.06 0.05 0.06 0.06 0.05 0.06 0.07 0.05 0.05 

5 .10 25 0.06 0.05 0.08 0.06 0.06 0.09 0.06 0.05 0.08 
  50 0.06 0.06 0.07 0.06 0.05 0.07 0.06 0.05 0.07 
 .30 25 0.06 0.05 0.09 0.06 0.05 0.09 0.06 0.06 0.07 
  50 0.06 0.06 0.07 0.07 0.06 0.08 0.06 0.05 0.06 

10 .10 50 0.05 0.05 0.09 0.05 0.05 0.09 0.06 0.05 0.09 
  100 0.06 0.06 0.08 0.05 0.05 0.07 0.05 0.05 0.07 
 .30 50 0.05 0.05 0.10 0.05 0.05 0.09 0.04 0.09 0.12 
  100 0.06 0.06 0.08 0.05 0.05 0.07 0.05 0.05 0.07 

7-point Scale Symmetric Uniform Skewed 

k r12 N OMR OLS LR OMR OLS LR OMR OLS LR 
2 .10 10 0.08 0.05 0.05 0.08 0.05 0.07 0.07 0.04 0.04 
  20 0.06 0.05 0.06 0.06 0.05 0.07 0.06 0.05 0.06 
 .30 10 0.07 0.05 0.05 0.08 0.05 0.07 0.07 0.06 0.04 
  20 0.06 0.05 0.06 0.06 0.05 0.06 0.07 0.05 0.06 

5 .10 25 0.06 0.06 0.09 0.05 0.05 0.09 0.06 0.05 0.08 
  50 0.06 0.05 0.07 0.06 0.05 0.07 0.06 0.06 0.07 
 .30 25 0.06 0.05 0.09 0.05 0.05 0.09 0.06 0.06 0.08 
  50 0.06 0.06 0.08 0.06 0.05 0.07 0.06 0.05 0.07 

10 .10 50 0.06 0.05 0.05 0.05 0.05 0.09 0.06 0.06 0.10 
  100 0.06 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.08 
 .30 50 0.06 0.06 0.10 0.05 0.05 0.10 0.05 0.09 0.12 
  100 0.06 0.06 0.08 0.06 0.06 0.08 0.06 0.06 0.07 

 
and skewed) yielded similar Type I error rates for all three analysis methods.  For example, with the 7-
point scale, k=5, r12=.10, and n=25, the estimated Type I error rate ranged from .05 to .06 across the 
distribution shapes for the OMR and OLS analysis method.  Similarly, for the LR analysis method the 
estimated Type I error rate ranged from .08 to .09 across the distribution shapes. 
 Figure 2 contains box-and-whisker plots depicting the distribution of Type I error rate estimates for 
simultaneous tests of regression coefficients. The LR method portrays a wide range of estimates, .00 to 
.18, with half ranging from .00 to .09.  The OLS method portrays a much smaller range of estimates, .04 
to .07, with half ranging from .05 to .06.  Thus the OLS method exhibits a much smaller type I error rate 
for simultaneous tests of regression coefficients across all research conditions. 
 Table 3 presents the estimates of Type I error rates for the simultaneous test of all regression weights 
when samples were drawn from the unimodal symmetric populations. As evident in this table, the LR 
method evidenced substantially greater variability in Type I error control for this test than did the OLS 
method.  Specifically, the LR method was very conservative in conditions with both k = 2 and k = 5 and 
was liberal with k = 10, with Type I error rates reaching as high as .14 (with the 7-point scale, k = 10, 
r12=.3, and n=50).  The OLS method maintained Type I error rates near the nominal level across these 
conditions, with larger estimates in the larger sample size and 10k conditions.  The Type I error rates for 
these tests across distribution shapes (Table 4) indicated a slight increase in Type I error rates for the OLS 
method when samples were drawn from the 7 point, 10 regressors, symmetric and skewed distributions, 
relative to the rates obtained from the uniform distribution. However, these higher rates remained very 
close to the nominal alpha level and did not exceed .09. 
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FIGURE 2: Distribution of Type I Error Rate Estimates for Simultaneous Test of Regression Coefficients 

 
Statistical Power 
 The distribution of estimates of statistical power for the tests of regression weights across the 
conditions examined in this research are presented as box-and-whisker plots in Figure 3. As is evident in 
this figure, most of the conditions examined yielded relatively low power and the power differences 
across analysis methods was not great. However, the LR analysis method provided slight power 
advantages relative to OMR and OLS analyses (a result that should be expected because of its tendency to 
be liberal in Type I error control). 
 Power estimates for the tests of individual regression weights with samples drawn from the three 
distribution shapes are presented in Tables 5 and 6. Few differences were evident between the analyses of 
variables with 5 points and those with 7 points. With small effect sizes (f 2 = .02) the power estimates for 
all analysis methods ranged from .04 to .12.  With large effect sizes (f 2 = .35), modest but greater power 
differences were evident across the analysis methods. With a small number of regressors (k = 2), the 
OMR method evidenced power advantages over the OLS and LR methods with small samples. With a 5-
point scale, f 2 = .35, k = 2, r12 = .10,  and n = 10, for example, the statistical power of the OMR method 
was estimated to be .19, while the power estimates of the OLS and LR methods were .15 and .09, 
respectively (Table 5). These slight power advantages of the OMR method disappeared with larger 
samples and larger numbers of regressors (conditions in which the LR approach evidenced modest power 
advantages). The differences in statistical power between tests conducted on samples from unimodal 
symmetric, uniform, and skewed distributions are negligible. For example, with the 7-point response 
scale, f 2 = .35, k = 5, r12 = .10, and n = 50, the power estimates for the OMR method ranged from .21 for 
the skewed population to .28 for the uniform population (Table 6). Similarly, the power estimates for 
OLS ranged only from .28 to .31, and those of the LR method ranged from .32 to .35. 
 The distribution of power estimates for simultaneous tests of regression coefficients across all 
research conditions is presented with box-and-whisker plots in Figure 4. The OLS method evidenced a 
slight power advantage over the LR method. Power estimates for the simultaneous test of all regression 
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Table 3. Estimates of Type I Error Rate for Simultaneous Tests of All Regression Weights with  
Unimodal Symmetric Populations 

  5-Point Scale  7-Point Scale 
   Analysis Method  Analysis Method 

k r12 N OLS LR  OLS LR 

2 .10 10 0.05 0.01  0.05 0.01 
  20 0.05 0.00  0.04 0.00 
  200 0.06 0.00  0.06 0.00 

.30 10 0.05 0.00 0.05 0.01
  20 0.05 0.00  0.05 0.00 
  200 0.05 0.00  0.06 0.00 

5 .10 25 0.05 0.01  0.06 0.01 
  50 0.06 0.01  0.06 0.01 
  500 0.08 0.00  0.07 0.00 

.30 25 0.06 0.01 0.05 0.02
  50 0.05 0.01  0.08 0.01 
  500 0.08 0.01  0.05 0.00 

10 .10 50 0.06 0.11 0.07 0.13
  100 0.06 0.10  0.06 0.09 
  1000 0.08 0.08  0.08 0.08 

.30 50 0.06 0.14 0.07 0.14
  100 0.07 0.10  0.07 0.10 
  1000 0.10 0.10  0.08 0.09 

weights with samples drawn from unimodal symmetric, uniform, and skewed populations are presented in 
Tables 7 and 8. With a small effect size (.02) and k = 2 or k = 5, the LR test provided rejection rates less 
than the nominal alpha level across most conditions. For the OLS test, similarly low power levels were 
observed except for large samples (and power estimates were still less than .50 for these conditions). As 
expected, with larger effect sizes the power estimates for both methods increased. The OLS method 
evidenced substantially greater power than the LR method for k = 2 and k = 5, while the LR method 
evidenced smaller power advantages for k = 10. A comparison of power estimates across distribution 
shapes suggests that population shape is not a major influence on the power of either the OLS or the LR 
method. 
 

Conclusions 
 Surprisingly few and relatively small differences were evident among the OMR, OLS and LR 
methods in terms of their Type I error control and statistical power in tests of their respective weights. 
The OMR approach, while accurately representing the ordinal nature of the discrete response scales and 
discrete regressor variables, provided neither superior Type I error control nor superior statistical power. 
In contrast, the LR analysis evidenced Type I error control problems with small sample sizes or large 
numbers of regressors, conditions in which the Wald tests of the logistic regression weights became 
liberal. Although this analysis method presents modest power advantages relative to OMR and OLS, such 
power comes at a cost of relatively tenuous Type I error control. Finally, the surprisingly good 
performance of the OLS approach suggests that researchers who approach the analysis of discrete ordinal 
data (such as individual Likert items) with OLS tools should feel no guilt in such a tactic. The Type I 
error control in tests conducted of the OLS regression weights was as good as that obtained with tests of 
OMR weights and was superior to tests obtained in the LR context. Further, the statistical power 
evidenced with OLS was comparable or superior to that of OMR. 
 Of course, testing hypotheses about weights obtained in these models are only a small part of the 
inferential machinery applied to discrete ordinal data. Additional research is needed to focus on the 
relative bias in sample estimates of weights for OMR, OLS, and LR models and on the accuracy of 
confidence bands constructed around the sample estimated weights. Furthermore, research conducted on 
models that present a mixture of discrete ordinal variables and continuous variables is needed in order to 
explore the relative performance of these models in such a context. Finally, the substantive nature of the  
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Table 4. Type I Error Rate Estimates for Simultaneous Tests of All Regression Weights Across Distribution 
Shapes. 

5-point Scale Symmetric  Uniform  Skewed 

k r12 N OLS LR  OLS LR  OLS LR 
2 .10 10 0.05 0.01  0.05 0.00  0.05 0.00 
  20 0.05 0.00  0.06 0.00  0.05 0.00 
 .30 10 0.05 0.00  0.06 0.01  0.05 0.01 
  20 0.05 0.00  0.05 0.00  0.05 0.00 

5 .10 25 0.05 0.01  0.06 0.02  0.05 0.01 
  50 0.06 0.01  0.06 0.00  0.05 0.01 
 .30 25 0.06 0.01  0.06 0.01  0.05 0.01 
  50 0.05 0.01  0.06 0.01  0.05 0.01 

10 .10 50 0.06 0.11  0.05 0.12  0.05 0.12 
  100 0.06 0.10  0.05 0.09  0.06 0.09  
 .30 50 0.06 0.14  0.04 0.13  0.04 0.14 
  100 0.07 0.10  0.05 0.09  0.05 0.12 

7-point Scale Symmetric  Uniform  Skewed 

k r12 N OLS LR  OLS LR  OLS LR 
2 .10 10 0.05 0.01  0.05 0.00  0.05 0.00 
  20 0.04 0.00  0.05 0.00  0.05 0.00 
 .30 10 0.05 0.01  0.05 0.01  0.06 0.01 
  20 0.05 0.00  0.05 0.00  0.05 0.00 

5 .10 25 0.06 0.01  0.04 0.01  0.04 0.01 
  50 0.06 0.01  0.05 0.00  0.06 0.01 
 .30 25 .0.05 0.02  0.05 0.01  0.06 0.02 
  50 0.08 0.01  0.05 0.00  0.06 0.01 

10 .10 50 0.07 0.13  0.05 0.12  0.07 0.15 
  100 0.06 0.09  0.06 0.09  0.09 0.12 
 .30 50 0.07 0.14  0.05 0.15  0.05 0.17 
  100 0.07 0.10  0.05 0.09  0.06 0.13 

inferences suggested by these models requires attention from the perspective of psychometrics. That is, 
the OMR model provides a vehicle for inferences about the ordinal position of observations on the 
criterion variable, while the LR model estimates the probability of an observation being “in category j or 
lower” on the criterion variable. In contrast, the OLS model provides a prediction of the criterion value as 
though it was a continuous variable (i.e., seeking to minimize the sum of squared errors of prediction). In 
addition (although not analyzed in this research study), methods for determining both the strength and 
direction of the response have been proposed (Jones & Sobel (2000); Brody & Dietz (1997) . These types 
of inferences have obvious substantive differences, and the validity of such inferences extends beyond the 
estimation of Type I error rates and statistical power. 
 In conclusion, this study has sought to bring increased awareness and clarity to three analysis options 
for multiple regression with discrete ordinal variables.  The social sciences often focus on variables which 
are measured with ordinal scales (most commonly Likert scales).  Unfortunately, the appropriate 
application of multiple regression with discrete ordinal data has been insufficiently addressed in the 
literature.  There are many reasons for this paucity of treatment of the issue: general debates continue 
about the treatment of ordinal data with statistics, the breadth of analysis options are spread among 
numerous sources, and the consequences of analysis choice in terms of Type I error control and statistical 
power has not been thoroughly investigated.  The current study presents three analysis options within the 
literature and clarifies their differences with the hopes of both increasing the appropriate analysis of 
discrete ordinal variables and stimulating additional methodological research in this area. 
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FIGURE 3: Distribution of Statistical Power Estimates for Tests of Individual Regression Coefficients 

O LS LR

Analy sis M etho d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Es
ti

m
at

ed
 S

ta
ti

st
ic

al
 P

ow
er

 
FIGURE 4: Distribution of Statistical Power Estimates for Simultaneous Test of Regression Coefficients 
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Table 5. Estimates of Statistical Power for Tests of Individual Regression Weights Across Distribution Shapes.  
5 Point Likert  Symmetric Uniform Skewed 

Effect k r12 N OMR OLS LR OMR OLS LR OMR OLS LR
.02 2 .10 10 0.09 0.06 0.04 0.09 0.05 0.04 0.08 0.06 0.03 

   20 0.09 0.07 0.09 0.08 0.06 0.08 0.08 0.07 0.07 

  .30 10 0.09 0.06 0.04 0.09 0.05 0.03 0.08 0.07 0.03 
   20 0.08 0.07 0.08 0.10 0.08 0.10 0.07 0.08 0.08 

 5 .10 25 0.07 0.06 0.09 0.07 0.06 0.10 0.06 0.06 0.09 
   50 0.08 0.07 0.09 0.08 0.07 0.09 0.07 0.07 0.08 

  .30 25 0.06 0.05 0.09 0.07 0.05 0.09 0.05 0.11 0.11 
   50 0.11 0.10 0.12 0.06 0.06 0.07 0.05 0.08 0.08 

 10 .10 50 0.07 0.06 0.10 0.06 0.06 0.10 0.06 0.06 0.10 
   100 0.07 0.07 0.09 0.07 0.06 0.08 0.06 0.07 0.09 

  .30 50 0.06 0.05 0.09 0.05 0.05 0.09 0.04 0.10 0.15 
   100 0.07 0.06 0.08 0.06 0.06 0.08 0.05 0.07 0.09 

.35 2 .10 10 0.19 0.15 0.09 0.18 0.16 0.12 0.18 0.19 0.08 
   20 0.34 0.34 0.37 0.31 0.32 0.35 0.28 0.35 0.36 

  .30 10 0.19 0.14 0.07 0.17 0.14 0.10 0.14 0.18 0.07 
   20 0.30 0.27 0.30 0.33 0.31 0.34 0.25 0.31 0.30 

 5 .10 25 0.15 0.16 0.22 0.13 0.14 0.20 0.13 0.19 0.23 
   50 0.27 0.30 0.34 0.24 0.26 0.29 0.22 0.33 0.36 

  .30 25 0.11 0.11 0.16 0.10 0.10 0.15 0.07 0.19 0.17 
   50 0.20 0.20 0.23 0.18 0.18 0.21 0.11 0.23 0.22 

 10 .10 50 0.11 0.14 0.19 0.11 0.13 0.19 0.09 0.15 0.19 
   100 0.21 0.24 0.28 0.21 0.24 0.28 0.16 0.25 0.27 

  .30 50 0.07 0.08 0.14 0.05 0.08 0.14 0.04 0.19 0.19 
   100 0.11 0.12 0.15 0.09 0.12 0.17 0.05 0.18 0.17 
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Table 6. Estimates of Statistical Power for Tests of Individual Regression Weights Across Distribution Shapes. 
7 point Likert  Symmetric Uniform Skewed 

Effect k r12 N OMR OLS LR OMR OLS LR OMR OLS LR
.02 2 .10 10 0.08 0.06 0.06 0.08 0.05 0.07 0.08 0.06 0.04 

   20 0.08 0.07 0.09 0.08 0.07 0.09 0.07 0.07 0.08 

  .30 10 0.08 0.05 0.05 0.08 0.06 0.07 0.09 0.07 0.04 
   20 0.08 0.07 0.08 0.08 0.06 0.08 0.09 0.08 0.08 

 5 .10 25 0.07 0.06 0.10 0.07 0.06 0.10 0.07 0.08 0.11 
   50 0.07 0.07 0.09 0.07 0.07 0.09 0.07 0.08 0.09 

  .30 25 0.06 0.05 0.09 0.06 0.05 0.09 0.05 0.09 0.11 
   50 0.07 0.07 0.09 0.06 0.06 0.08 0.06 0.07 0.10 

 10 .10 50 0.06 0.06 0.11 0.06 0.06 0.10 0.06 0.06 0.10 
   100 0.08 0.07 0.09 0.07 0.07 0.09 0.07 0.07 0.09 

  .30 50 0.06 0.05 0.09 0.05 0.06 0.10 0.04 0.14 0.18 
   100 0.06 0.06 0.08 0.06 0.06 0.08 0.04 0.09 0.09 

.35 2 .10 10 0.18 0.15 0.12 0.18 0.16 0.17 0.16 0.20 0.10 
   20 0.32 0.33 0.37 0.33 0.34 0.38 0.26 0.36 0.37 

  .30 10 0.18 0.13 0.09 0.17 0.14 0.14 0.12 0.15 0.10 
   20 0.31 0.28 0.31 0.29 0.28 0.32 0.25 0.32 0.32 

 5 .10 25 0.14 0.14 0.20 0.14 0.16 0.23 0.12 0.18 0.22 
   50 0.26 0.28 0.32 0.28 0.31 0.35 0.21 0.31 0.34 

  .30 25 0.12 0.11 0.16 0.11 0.11 0.17 0.07 0.19 0.18 
   50 0.20 0.18 0.22 0.19 0.19 0.22 0.13 0.24 0.24 

 10 .10 50 0.11 0.13 0.19 0.11 0.13 0.19 0.10 0.16 0.21 
   100 0.21 0.23 0.28 0.22 0.25 0.28 0.18 0.26 0.28 

  .30 50 0.07 0.08 0.14 0.07 0.09 0.16 0.04 0.19 0.20 
   100 0.12 0.13 0.16 0.12 0.13 0.18 0.05 0.19 0.19 
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Table 7. Estimates of Statistical Power for Simultaneous Tests of All Regression Weights Across 
Distribution Shapes. 

5 Point Likert Symmetric Uniform Skewed 
Effect k r12 N OLS LR OLS LR OLS LR

.02 2 .10 10 0.07 0.01 0.05 0.01 0.07 0.01
   20 0.08 0.00 0.08 0.00 0.07 0.00

  .30 10 0.06 0.01 0.05 0.01 0.08 0.01
   20 0.07 0.00 0.09 0.00 0.09 0.00

 5 .10 25 0.06 0.01 0.08 0.03 0.08 0.02
   50 0.11 0.01 0.13 0.02 0.12 0.01

  .30 25 0.06 0.02 0.06 0.02 0.10 0.02
   50 0.35 0.18 0.08 0.01 0.13 0.02

 10 .10 50 0.10 0.18 0.08 0.16 0.11 0.17
   100 0.14 0.18 0.13 0.17 0.15 0.17

  .30 50 0.09 0.20 0.06 0.19 0.17 0.19
   100 0.15 0.22 0.10 0.16 0.17 0.23

.35 2 .10 10 0.21 0.02  0.22 0.03  0.28 0.02 
   20 0.53 0.04   0.50 0.03  0.53 0.04 

  .30 10 0.22 0.03  0.22 0.02  0.26 0.02 
   20 0.52 0.04  0.55 0.04  0.54 0.04 

 5 .10 25 0.44 0.20  0.42 0.18  0.54 0.24 
   50 0.85 0.56  0.80 0.49  0.87 0.58 

  .30 25 0.51 0.27  0.38 0.18  0.52 0.22 
   50 0.90 0.66  0.84 0.52  0.86 0.52 

 10 .10 50 0.74 0.87  0.72 0.84  0.73 0.82 
   100 0.99 1.00  0.99 0.99  0.98 0.99 

  .30 50 0.69 0.84  0.71 0.89  0.75 0.81 
   100 0.98 0.99  0.99 1.00  0.99 0.99 
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Table 8. Estimates of Statistical Power for Simultaneous Tests of All Regression Weights Across 
Distribution Shapes. 

7 Point Likert Symmetric Uniform Skewed 
Effect k r12 N OLS LR OLS LR OLS LR

.02 2 .10 10 0.06 0.00 0.06 0.01 0.07 0.01
   20 0.08 0.00 0.09 0.00 0.09 0.00

  .30 10 0.06 0.01 0.06 0.00 0.08 0.00
   20 0.08 0.00 0.08 0.00 0.12 0.00

 5 .10 25 0.07 0.02 0.07 0.02 0.14 0.03
   50 0.11 0.02 0.10 0.02 0.13 0.02

  .30 25 0.06 0.02 0.08 0.02 0.10 0.03
   50 0.11 0.02 0.09 0.01 0.13 0.02

 10 .10 50 0.08 0.17 0.08 0.19 0.11 0.18
   100 0.13 0.20 0.14 0.20 0.15 0.19

  .30 50 0.06 0.14 0.06 0.18 0.08 0.18
   100 0.10 0.14 0.10 0.16 0.19 0.22

.35 2 .10 10 0.20 0.02 0.22 0.02 0.27 0.02
   20 0.51 0.03 0.52 0.03 0.54 0.04

  .30 10 0.20 0.02 0.23 0.02 0.23 0.03
   20 0.53 0.05 0.51 0.04 0.56 0.05

 5 .10 25 0.40 0.18 0.46 0.21 0.49 0.22
   50 0.81 0.52 0.86 0.58 0.84 0.55

  .30 25 0.45 0.23 0.44 0.21 0.56 0.25
   50 0.85 0.58 0.86 0.55 0.88 0.55

 10 .10 50 0.68 0.82 0.70 0.82 0.76 0.84
   100 0.98 0.99 0.99 1.00 0.98 0.99

  .30 50 0.74 0.88 0.76 0.89 0.82 0.87
   100 0.99 1.00 1.00 1.00 0.99 1.00
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