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The purpose of this study is to present a comparison of three types of regression models that could be 
used to analyze dichotomous criterion variables under three different data structures, and to discuss the 
implications of the results of those comparisons. The three types of models used were (a) logistic 
regression, (b) linear ordinary least squares, and (c) polynomial ordinary least squares models.    

ogistic regression is commonly used in medical literature as a means to account for the variance in 
a binary (or categorical) dependent variable (King & Ryan, 2002), and its use is growing in the 
social sciences literature as well.  Peng, So, Stage, and St. John (2002) reported that "research using 
logistic regression has been published with increasing frequency in three higher education journals: 

Research in Higher Education, The Review of Higher Education, and The Journal of Higher Education” 
(p. 259).  This trend has corresponded with the increased availability of computer software that provides 
the option to analyze data using logistic regression (Peng, Lee, & Ingersoll, 2002).   While there has been 
an increase in the use of this method, its use has been accompanied by “great variation in the presentation 
and interpretation of results in these publications, which can make it difficult for readers to understand 
and compare the results across articles” (Peng, So, Stage, & St. John, 2002, p. 259).   
 The popularity of logistic regression has grown, in part, due to proponents who have suggested that it 
is a more appropriate alternative to ordinary least square (OLS) linear regression or discriminant analysis 
for modeling categorical (dichotomous) dependent variables.  With a dichotomous dependent variable, all 
of the observed dependent data points will fall on one of two horizontal lines that are parallel, which is a 
difficult condition to model with the single straight line produced by an OLS linear model.   Peng, Lee, 
and Ingersoll (2002) suggested a potential solution to this problem via plotting the calculated means of 
the dependent variables for categories of the independent variable.  Such a plot takes a sigmoid shape, 
which Peng, Lee and Ingersoll rightly point out, has extremes that do not follow a linear trend.   
  Perhaps, it should be no surprise then that a linear fit to such data has obvious limitations.   In 
addition, the errors in this type of model are not normally distributed and are not constant across the range 
of the data.  Finally, OLS models produce values that are above (greater than 1) and below (less than 0) 
the range of the observed levels of the dependent variable.  This problem has been partially addressed by 
constraining the results of the predicted probabilities to a logical range, but this comes at the expense of 
treating values above and below the range as perfectly representative of the end points (i.e., 100% likely 
for points above 1 and 0% likely for points below 0). 
  The growth in the use of logistic methods is predicated on the reported “superiority of logistic 
regression over OLS models” (Peng, So, Stage, & St. John, 2002, p. 260) as a means to overcome the 
"limitations of ordinary least squares (OLS) regression in handling dichotomous outcomes” (Peng & So, 
2002, p. 31).  The logistic model is as follows: 
 

          ln[p/(1-p)] =  α + βX +e  ,  
 

where:  p =  probability that the event Y occurs, α = the Y intercept, β = the regression coefficient, and e 
=error. The natural log transformation of the odds ratio is necessary to make this relationship linear.  The 
most obvious advantage of this model is that it constrains the predicted values of probability to the logical 
range of 0 to 1, which overcomes an obvious limitation of the OLS model.  Additionally, the model does 
not require "data that are drawn from a multivariate normal distribution with equal variances and 
covariances for all the variables" (Peng & So, 2002); and, therefore, it has less restrictive assumptions 
than either OLS or linear discriminant function analysis. 
  Brown and Newman (2002) examined methods for modeling data that conformed to a known 
function or shape and found that, in some instances, polynomial modeling could be superior to modeling 
based upon the known function (e.g., cosine).  A sigmoid curve could be modeled using a polynomial 
function that accounted for the two inflection points in the curve:  
         Y = a0U + a1X + a2X2 + a3X3 + e   
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A polynomial model of this nature would potentially better fit the shape of the distribution at its extremes; 
and, if consistent with the research of Brown and Newman, it would be better able to fit the data if the 
data deviated from the sigmoid shape.   
 While many have expressed concerns about the limitations of OLS when predicting dichotomous 
outcomes, Pohlmann and Leitner (2000) found very similar results when they compared OLS and logistic 
regression methods.   Indeed, they found identical conclusions in regard to significance testing, and they 
found the predicted values for both modeling methods to be quite similar.  Pohlmann and Leitner did, 
however, find a slight advantage in accuracy of the predicted values.   The similarity in results is striking 
given that Pohlmann and Leitner used a linear model (OLS) as the basis of the comparison.   
 

Method 
 The method for the present study was an extension of the method described by Pohlmann and Leitner 
(2000).  Common artificial data sets were used to compare the three methods (i.e., linear, polynomial, and 
logistic regression) in terms of the effects of known changes in the distribution of the scores on the results 
of the analysis.   
 Each of the distributions of the independent variable was created to appear like a group of 200 
intelligence test scores.  In the first case, which is shown in Figure 2, the scores, which reflected a 
bimodal distribution (Modes = 94 and 103, M = 98.5, s = 3.154, Range = 15), were highly correlated with 
the dependent variable (r = .837).  In the second case, which is shown in Figure 3, the scores were more 
normally distributed (M = 97.9, s = 5.636, Range = 26) and moderately correlated (r = .445) with the 
dependent variable.  In scores in the third case (which is shown in Figure 4), were normally distributed 
(M = 97.2, s = 5.148, Range = 31) and slightly correlated with the dependent variable (r = .150).   
 Linear, polynomial, and logistic regression analyses were performed on each of the three data sets, 
and the three methods were compared in terms of (a) the goodness-of-fit values and the statistical tests of 
those values, (b) the correlations of the predicted probabilities, (c) the mean square error values, and (d) 
the accuracy of the classifications of group membership. 
 

Results 
  The three sets of data were analyzed by using a linear OLS model, a polynomial OLS model, and a 
logistic model.  In order to facilitate the retention of all the variables in the polynomial model (i.e., linear, 
squared, and cubic variables), the scores were centered before these variables were generated. The results 
of these analyses are contained in Table 1. 
 
Goodness-of-Fit Values  
  The first comparison of the result of the three models involved the amount of variation in the 
dependent variable accounted for by each model.  One issue that had to be addressed before such a 
comparison could be made is: What value from the logistic regression analysis would be appropriate to 
compare to the coefficient of determination (R2) values obtained for the linear and polynomial OLS 
models.  Menard (2000, p. 24) indicated “[the] R2

L [Cox-Snell R2 value] has the most intuitively 
reasonable interpretation as a proportional reduction in error measure, parallel to R2

O [coefficient of 
determination value used in OLS] analogs.”  Thus, to assess the degree of model fit we compared the 
Cox-Snell values produced for the logistic regression models and the R2 values produced for the linear 
and polynomial OLS models.      
 As can be seen in Table 1, the results of the analyses are very similar.  Under the high correlation 
condition, the goodness-of-fit values of the linear model (.701), the polynomial model (.764), and the 
logistic model (.660) are similar.  The goodness-of-fit values were also similar for the three models under 
the medium correlation condition.  Specifically the goodness-of-fit values for the linear, polynomial, and 
logistic models were .198, .199, and .196, respectively.  The statistical test for each of these goodness-of-
fit values was statistically significant at the .001 level, as was the case under the high correlation 
condition.   
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Figure 3.  Normal distribution with low correlation  
(r = .150). 
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Figure 4.  Predicted values of the polynomial model under the low 
correlation condition.

 
 
Figure 1.  Bimodal distribution with high correlation 
(r = .837) 

Figure 2.  Normal distribution with moderate correlation  
(r = .445). 
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Table 1.  Results of the Comparisons of the Tests of Significance 

Model and Condition     

Bimodal Distribution (High Correlation) F p R2 Adj. R2 
Linear Model 464.96 <.001 .701 .700 
Polynomial (cubic) Model 211.05 <.001 .764 .760 
 
Logistic Model 

 
χ2 

 
p 

 
Cox-Snell 

 
 

 15.932 <.001 .660  
Normal Distribution (Med. Correlation) F p R2 Adj. R2 
Linear Model 48.80 <.001 .198 .194 
Polynomial (cubic) Model 16.27 <.001 .199 .187 
 
Logistic Model 

 
χ2 

 
p 

 
Cox-Snell 

 
 

 43.649 <.001 .196  
Normal Distribution (Low Correlation) F p R2 Adj. R2 
Linear Model 4.55 .034 .023 .018 
Polynomial (cubic) 2.30 .079 .034 .019 
 
Logistic Model 

 
χ2 

 
p 

 
Cox -Snell 

 
 

 4.548 .030 .022  
 

 Under the low correlation condition similar goodness-of-fit values were obtained for the linear model 
(.023), polynomial model (.034), and the logistic model (.030).  The statistical tests of the goodness-of-fit 
values for the linear and logistic models were significant at the .05 level.  The statistical test of the R2 
value for the polynomial model was not significant, however, at the .05 level (p = .079).   
 Although these estimates are similar, this is perhaps the least desirable manner to compare the 
modeling methods as the estimates of relationship have different meanings under the OLS and logistic 
methods.  Estimates of probability and errors in estimation of probability may be more adequate methods 
of comparison for these methods.   
 
Correlations of the Predicted Probabilities 
 In order to compare predictions of probabilities, the dependent variable was transformed to reflect the 
observed probability under each of the independent variable conditions. These values formed the 
dependent variables used with the linear and polynomial models. If the three models were equally 
effective, they should produce similar estimates of probability, and the correlations between the estimates 
of probability under each of the conditions should be high.  The correlation coefficient values for the 
three sets of predicted probability values are listed in Table 2. As expected, the correlation between the 
estimated probabilities generated by the logistic and polynomial models was higher (r = .968, p < .01) 
than the correlation between the estimated probabilities generated by the linear and logistic models (r = 
.929, p < .01).   
 
Mean Square Error Values 
 Although it is clear from these correlations that there is a great deal of similarity in estimates of 
probability under each of these conditions, some differences emerge when one compares the mean square 
error values of the three models (see Table 3).  As can be seen in Table 3, the models produce similar 
mean square error values when there is a normal distribution with a medium or low degree of relationship 
between the independent and dependent variables.  Differences existed, however, in the mean square error 
terms when a larger relationship existed between the independent and dependent variables and the 
independent variable had a bimodal distribution. 
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Table 2. Correlations of Predicted Probabilities  
Regression Model and 
Condition 

 
Linear 

 
Cubic 

 
Logistic 

High Correlation    
Linear - .941a .929a 

Cubic  - .968a 

Medium Correlation    
Linear - .988a .993a 

Cubic  - .993a 

Low Correlation    
Linear - .814a 1.00a 

Cubic  - .804a 

a p < .001.   
 
 
Table 3. Mean Square Error Values for Each Condition 

Model and Condition   

Bimodal Distribution (High Correlation) 
Sum of Squared Error Mean Square Error 

Linear Model 6.17 .0386 
Polynomial (cubic) Model 1.82 .0091 
Logistic Model .75 .0038 
Normal Distribution (Medium Correlation)   
Linear Model 4.74 .0237 
Polynomial (cubic) Model 4.51 .0226 
Logistic Model 4.74 .0237 
Normal Distribution (Low Correlation)   
Linear Model 5.09 .0255 
Polynomial (cubic) Model 4.52 .0226 
Logistic Model 5.12 .0256 

 
 
Table 4. Group Membership Classifications and Errors 

Model and Condition 
 

Correct 
Classification 

False 
Positives 

False 
Negatives 

Bimodal Distribution (High Correlation)    
Linear Model 185 7 8 
Polynomial (cubic) Model 185 7 8 
Logistic Model 185 7 8 
Normal Distribution (Medium Correlation)    
Linear Model 135 34 31 
Polynomial (cubic) Model 135 34 31 
Logistic Model 135 34 31 
Normal Distribution (Low Correlation)    
Linear Model 114 39 47 
Polynomial (cubic) Model 111 27 62 
Logistic Model 114 39 47 
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Accuracy of the Classifications of Group Membership 
 Accuracy of the group membership classifications was the last method used to compare the three 
types of models. The results of the group classifications for each model under each condition are listed in 
Table 4.  Although the predicted probabilities produced by the various models were not exactly the same, 
each of the models produced the exact same group membership classifications under the high and medium 
correlation conditions.  In the low correlation condition, however, an interesting difference in the 
classification patterns emerged.  Under this condition, the polynomial model had the lowest mean square 
error value but it had three more classification errors than either the linear model or the logistic model.  In 
addition, the types of errors (false-positive errors and false-negative errors) made by the polynomial 
model were different from either the linear or logistic model.  The polynomial model, under the low 
correlation condition, made the fewest false positive classifications, but it made substantially more false 
negative identifications than did either the linear model or the logistic model.  
 The differences in classification of the sample subjects could be taken as an argument against the 
polynomial function.  This would be a valid conclusion if the sample parameters of false-positive and 
false-negative identifications were representative of the Type I and Type II error rates in the population as 
a whole. The probabilities of the subjects, who were classified differently, were located around the cut-
value of .50. In the case of the polynomial model, the regression line is virtually horizontal at the mid-
point and, therefore, has little predictive (discriminant) power (see Figure 4). 
 

Discussion 
  The following three main issues regarding the method and results of the study need to be addressed: 
(a) the distributions chosen for the study, (b) the comparisons made, and (c) implications of the results 
regarding group membership classifications. One could argue that the distributions chosen for the present 
study were more alike than different.  Certainly, more dramatic differences in distribution shape could 
have been generated. The distributions were generated with the intent of varying the degree of 
relationship between the independent and dependent variable (r = .837 to .150) and the shape of the 
independent variable distribution in terms of the number of modes (one or two) and variability around the 
mean (s = 3.154 to 5.636). Given the similarities in the distribution, one might have expected very similar 
patterns of outcomes in the comparison of the different modeling techniques. Yet, this was not the case. 
 An examination of the results produced by the three types of models revealed some interesting 
similarities and differences. Initially, we had posited that the third-degree polynomial and logistic 
methods would produce more comparable results because the third-degree polynomial modeling would 
allow the regression line to take a sigmoid shape analogous to that of the logistic model. Brown and 
Newman (2002) had found that polynomial modeling could, in some instances, be superior to modeling 
with a known (e.g., cosine) function, and it was expected this could be the case with the logistic model as 
well.  In this study the linear, logistic, and third-degree polynomial modeling methods produced similar 
goodness-of-fit values. This is not, however, the only means by which the effectiveness of the models can 
be gauged.   
  Further comparisons can be made by examining the predicted probabilities and the errors in the 
predicted probabilities. In this regard, the third-degree polynomial and logistic models produced, as 
expected, more similar results than did the logistic and linear models across each of the three comparison 
distributions.  However, the group classifications produced by these methods did not follow this pattern.  
Surprisingly, the logistic and linear models produced identical classifications for each of the distribution 
conditions despite differences in predicted probabilities. The linear, logistic and third-degree polynomial 
models produced identical classifications in two of the three conditions (high and medium correlations), 
but in the low correlation condition, the third-degree polynomial model produced three (3.5%) more 
errors and produced a different pattern of errors (false-positive and false-negative errors) than did the 
logistic and linear models.   
 This last comparison, the pattern of classifications, resulted in the most interesting contrast.  Not 
surprisingly, the cases that were classified differently occurred near the cut-value of the predicted 
probabilities. This finding points to a concern regarding the stability of the predicted classifications for 
these modeling techniques. Cases that have predicted probabilities that are above the cut-value 
(irrespective of differences in the predicted probability) are grouped together as are cases below the cut-
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value.  This aggregation of cases into categories does not take into consideration the error in the predicted 
probability and, in turn, the stability of the model.  The differences in classification produced by the 
models in the low correlation condition points to the need to develop a method to estimate the stability of 
these models when using them for classification purposes.  Studies that fail to take this into consideration 
may unintentionally convey a greater sense of stability in the classifications provided by the models in the 
study.  We would suggest replication as one possible means to estimate the stability of the model 
(Newman, McNeil, & Fraas, 2003). We strongly believe the argument between statistical significance and 
practical significance is not as salient as this issue of replicability; therefore, we suggest future research 
may wish to develop methods of estimating the stability (i.e. replicability) of the classifications produced 
by logistic models. To this end, the authors are presently working on a method of estimating the stability 
of the predicted probabilities using confidence intervals around the predicted scores and comparing the 
stability estimates across the three methods described in this paper. 
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