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This simulation study compared proportions of two types of structure coefficients in descriptive
discriminant analysis, those based upon the error matrix, and those based upon the total matrix, for two
groups from different populations with identical covariance matrices. The expected finding that the
structure coefficients based upon the error matrix might be more appropriate than those based upon the
total matrix was not supported.

Descriptive discriminant analysis (DDA) is a post hoc procedure useful for understanding the

relationships among continuous variables following a significant MANOVA (Stevens, 2002;
Tabachnick & Fidell, 2001). In DDA, linear discriminant functions (LDFs) are formed by
weighting the p continuous variables such that separation of the k groups on the grouping variable
is maximized. The number of LDFs possible is the smaller of p and £ — 1. Thus, where there is one
grouping variable with two levels, as is the case with the current study, only one LDF is possible.
Initially, a vector of raw weights (v) is calculated for a given LDF (Tatsuoka, 1988a, 1988b).
However, these raw weights are not useful for interpretation. Instead, one commonly used coefficient for
interpretation of LDF variable importance is the structure coefficient (SC), a measure of correlation
between a given p and the associated LDF. The SC can be calculated using either the total group
intercorrelation matrix (R) or the pooled within-group intercorrelation matrix (W) (Cooley & Lohnes,
1971; Huberty, 1975). These will be referred to as total SCs and within SCs, respectively. As part of the
DDA output, SAS provides both the total and within SCs, and SPSS, only the within SCs. The p x 1
vector of total SCs (st) for the only LDF in the two-group case may be calculated as follows:

st = RDvO™ (1)

where D is the diagonal matrix formed from the diagonal elements of (1/N-1)T (i.e., by multiplying the
total SSCP matrix T by the reciprocal of the total sample size minus one); 8 is the grand variance, and R
and v are as defined previously (Cooley & Lohnes, 1971). The calculation of the p x 1 vector of within
SCs (sw) follows the same formula, with the exception that the W matrix correspondingly replaces the T
matrix.

Purpose of the Study

In his study of the ranking of LDF variable importance in DDA, Huberty (1975) notes that total SCs
are appropriate if data “are considered representative of a single population” (p. 60) and within SCs, “if
the underlying model is one of £ populations with identical covariance matrices” (p. 60). As it appears no
study has tested these stipulations, such was the primary goal of the current work. Specifically, the
condition of k = 2 populations with identical covariance matrices was simulated, and the total and within
SCs examined based upon criteria outlined in the procedures section to determine under what conditions
within SCs might be better suited to total SCs in interpreting relative variable importance in DDA.

Procedures

This Monte Carlo simulation was executed using PROC IML in SAS. Two p-dimensional,
multivariate population matrices were generated, with each being N(M, ) (SAS Institute, 1999). The
general procedure was as follows: In all cells, l; was a p x 1 null vector, and M, a p x 1 vector of effects
of some combination such that J,# Ho. A sample of dimension # x p was then drawn from each population
(n; = ny; p; = p,) and analyzed as a two-way MANOVA using Wilks’ A and a special case of Bartlett’s V
as a test of significance:

V=-[N-1-(p+2)/2]In A )
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where A is also calculated using a modified formula
AN=1/(1+AN) 3)

since in the two-group analysis, A is the only characteristic root. The special case of Bartlett’s V
is approximately a x> distribution with p degrees of freedom (Tatsuoka, 1988a, 1988b).

Specifically, the variables and corresponding levels manipulated in this study were as
follows:

1. p=2,3,and 4.

2. n=10,50, 100, and 500.

3. The population correlation matrices, P; and P,. Five levels were used, reflecting five possible
ranges of p intercorrelation: 0 - .20; .21 - .40; .41 - .60; .61 - .80, and .81 — 1.00. For any given
experiment, the exact correlation for the two groups between continuous variables p and p’ (where p Z p”)
was randomly generated within any one of these five ranges. The two most highly correlated ranges were
included to investigate the effects of collinearity upon st and sw.

4. Population mean vector, lo. As previously mentioned, U3 was held constant as a null vector.
Thus, M, was manipulated as the vector of effects. The p elements of a given J, were some combination
of effects in standard deviations, with three possible levels of standard deviation used: 0, .5 and 1. These
levels were arbitrarily selected to represent a three-tiered conceptualization of relative variable influence:
negligible; moderately influential, and highly influential respectively. This manner of ranking variables
will be discussed in the following section. In addition to its usefulness in defining a variable with a
negligible contribution, the difference of 0 SD was included to investigate the influence of
noncontributing variables upon st and sw. In sum, 20 p x 1 mean vector pairs were analyzed: 5 for p =2;
7 for p =3, and 8 for p =4. (See Tables 1 thru 20 for the specific M, investigated for a given cell.)

Each n x p cell was replicated 5,000 times. For the replications where the MANOVA null hypothesis
Hy: py = e was correctly rejected within each cell, the p x 1 vectors of total and within SCs, st and sw,
were calculated. An expected pattern across sy and sw was identified for each mean effect vector U, and
the proportions of st and sw vectors conforming to the identified pattern calculated. These proportions of
st and sy, vectors were then compared across all levels of n, p, and P. The use of identified SC patterns
will be discussed shortly.

Three-tiered Ranking of Relative Variable Importance

It may be tempting to apply some absolute criterion to SCs in order to make the determination of a
corresponding continuous variable’s contribution to group separation in DDA. Pedhazur (1997) cites the
general guideline that an SC value of .3 is “meaningful” (p. 934). However, this guideline is too general
to frame even a three-tiered ranking of relative variable importance upon separation of the groups. At the
opposite end of the ranking spectrum are studies in which the SC values of a large number of variables
are ranked in order of size without consideration of a more relaxed ranking system, such as the three-
tiered system proposed above. For example, Huberty (1975) compared the utility of three types of
weights/coefficients (total SCs, within SCs, and standardized weights) for variable ranking where the
number of groups k = 3, 4, and 5, and the number of variables was held constant at p = 10. In essence,
such rankings amounted to a ten-tiered ranking system. Generally, all coefficients/weights fared poorly
regarding the correct ranking of the 10 variables. These results agreed with the findings of Barcikowski
and Stevens (1975), who also investigated the utility of standardized weights and structure coefficients for
ranking variable importance in canonical correlation. In this latter study, the simplest canonical
dimension examined involved two variables in one variate and five, in the other variate. Thus, the
smallest number of continuous variables investigated in the Barcikowski and Stevens work was p = 7, and
in a more complex analysis than DDA, the canonical correlation (Tabachnick & Fidell, 2001). Both
Huberty, and Barcikowski and Stevens note that a large sample size would be necessary for positive
results for a 1-to-p ranking system (e.g., a 42:1 to 68:1 n.:p ratio in Barcikowski & Stevens). Thus, with
the minimum number of variables p = 7, the total sample size needed for utilizing SCs in DDA would be
N =294 (42:1) or N =476 (68:1). As an additional objective of this study, the group sample size n will
be investigated in conjunction with using a more relaxed ranking system.
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Investigation of Levels of p = 2, 3, and 4

Rather than generally discounting SC usefulness for relative variable importance in DDA based upon
studies employing large numbers of continuous variables (Barcikowski & Stevens, 1975; Huberty, 1975),
it appears useful to investigate the more basic multivariate analyses, such as two-group DDA with p = 2,
3, and 4 variables, for two reasons. First, in educational research, a smaller number of p variables more
realistically reflects that which is currently investigated in multivariate research (Schneider, 2002).
Second, given the necessity of extremely large sample sizes in DDA where p is large (Stevens, 2002),
limiting the number of continuous variables appears logical when resources, such as the number of
participants in a study, are limited.

Identified SC Patterns

The identified pattern for a given mean vector effect |1, was chosen by examining the range of SC
values corresponding to each element of [l when n = 1000 across both types of SCs and all levels of P. A
vector of least restrictive ranges for each of the p elements was then constructed to represent the identified
pattern of ranges of SCs for the corresponding mean effect vector [p. The decision to use n = 1000 for
identifying SC ranges is based upon the author’s prior experience. When the group size is # = 1000 in
two-group DDA, the SCs are sufficiently stabilized for interpretation of relative variable importance
given the three-tiered ranking. Specifically, the ranges of SCs reflecting the effects of 0, .5, and 1 SD,
respectively, are mutually exclusive. Increasing the group size n to 5000, for example, would have
produced narrower ranges; however, such adjustment was not deemed necessary to term a coefficient
value as indicating a ranking so general as moderately influential, for example.

A second reason for identifying SC vector patterns in the form of ranges has to do with the nature of
the SCs in general. The description of the SC as a measure of correlation between a variable and the
associated LDF might lead one to believe that the value of a given element is not influenced by the values
of other elements in the vector. This is not the case. In DDA where the number of groups £ = 2, the
squared elements (ez,- ’s) of an SC vector, whether st or sy, must sum to one:

e+ e+ L+ ezp =1, (4)

where there are p elements. (Note: If (k— 1) > p, the proportions of trace of the correlation matrix, either
R or W, as defined previously, accounted for by the p SC vectors would sum to one [Cooley and Lohnes,
1971]). This condition has implications for assigning unchanging SC values to indicate an effect of, say,
1 SD in the effect vector, J,. A variable on which the two groups differ by 1 SD will have a higher SC
value in a vector of dimension p x 1 if the remaining p — 1 variables differ by .5 SD than if the remaining
p — 1 variables also reflect a difference between groups of 1 SD. For example, compare the elements of
the two 4 x 1 total SC (st) vectors in Illustration 1 below. These two vectors have been written in the
form of the condition outlined in Equation 4 above. In each, the last, bolded element is the referent kept
constant at an effect of 1 SD. The remaining 3 elements represent an effect of .5 SD in the first vector
and 1 SD in the second vector.

3880698 + .4231913% + 4083566 + .7096167° = 1.0000000 (5)
50217457 + .5076089% + 4923756 + .4977151> = 1.0000001

Though both bolded coefficient values above represent a population effect of 1 SD between groups on the
last variable in a set of 4, one can readily see the problem with applying some absolute, unchanging
criteria value to indicate an effect of 1 SD. Instead, it is useful to note that the coefficient values in the
first LDF above may indicate a present-but-lesser influence for the first three variables on group
separation (coefficients in some expected range of .25 to .47, for example) and a prevalent influence for
the last coefficient (which might be considered to be within some expected range of .68 to .82).
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Table 1. Proportion of Total and Within SCs Fitting the Identified Pattern

Level Level of P 0
ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0 Population Mean Vector: Pp= LJ
10 | 3188 | .2825 2881 2475 | 2289 :
3710 | .3441 3438 2913 | 2473 .
50 | 5007 | 4991 4955 4833 | 4925 Identified SC Range:
5209 | .5182 5165 5020 | .5083 Absolute value of LO —.25 J
100 | 6248 | .6284 6377 6251 | .6326 96-1.0
6372 | .6450 6505 6418 | .6484
500 | 9486 | .9472 9442 9430 | .9398
9530 | .9542 9510 9476 | .9438

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Table 2. Proportion of Total and Within SCs Fitting the Identified Pattern

Level Level of P
ofn | 0-.20 [ .21-.40 41-60 | .61-80 | .81-1.0 _ 10
10 | 2565 | 2397 | 2356 | 2127 | 2111 | [opulation Mean Vecior: o=,
3147 | 3035 .2909 2560 | .2447
50 | 4672 | 4662 4810 4738 | 4618 Identified SC Range:
5178 | 5140 .5334 5214 | 5154 0- 14
100 | .6146 | .6250 6232 6306 | .6238 Absolute value of J
.6694 .6756 .6814 .6830 | .6818 99-1.0
500 | 9516 | .9516 9514 9518 | .9504
9702 | .9706 9676 9696 | .9698

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Interpretation of the LDFs in Illustration 1 introduces another important point. Because of the
condition imposed upon SCs as shown in Equation 4, it is important to note that the three-tiered ranking
is only completely evident when all three of the SD effects are represented in the effect vector W,. For
effect vectors with only two of the three SD levels present (e.g., .5 SD and 1 SD, as is the case in the first
LDF in Illustration 1), only a two-level means of relative comparison is possible (i.e., less
influential/negligible, or more influential, respectively). Finally, when all elements of a given effect
vector U, are the same (e.g., all are 1 SD, as is shown in the second LDF in Illustration 1), one “ranking”
is possible (i.e., all variables are contributing equally). Thus, these two lower levels of variable ranking
are subsumed in the three-tiered ranking system. Only if the SC values were unchanging could the three-
tiered ranking system remain unaffected by the absence of one (or two) of the three SD levels from a
given effect vector .

Results

Tables 1 through 20 present the results of the 20 mean effect vectors (Up;, where i = 1 - 20) examined
in this study. For each [, a vector of corresponding SC ranges was identified. This identified pattern is
included in each table. Also included are the proportions of total- and within-SCs (st and s,
respectively) conforming to the identified pattern for each n x P cell. The sy and sw proportions were
compared within each n x P cell, with the larger proportion interpreted as indicating greater usefulness of
the referent SC (either st or sw).

Tables 1 through 5 include the results for the five mean effect vectors where the number of
continuous variables p = 2. In general, sw proportions were higher for vectors including elements with no
effect (O SD) (Tables 1 and 2) and vectors where both variables contributed differently (Table 3). In
contrast, for 2 x 1 effect vectors where both variables contributed equally (Tables 4 and 5), st proportions
were generally higher than those of sw (the exception being the cell with » = 500 and P > .8, where both
proportions were 1.0).
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Table 3. Proportion of Total and Within SCs Fitting the Identified Pattern

Level Level of P , |3
ofn | 0-20 | 21-40 | 41-60 | .61-80 | 81.1.0 | [opulation Mean Vector: o= |
10 | 2789 | 2917 3058 3222 | 3371
2711 | 2958 3276 3592 | .4001 Identified SC Range:
50 | 4564 | 4857 5275 6004 | .7036 F 4— 54 J
4604 | .4965 5406 6504 | .8178
100 | .6286 | .6516 6766 7564 | 8474 .84 -.94
6414 | .6744 7106 8220 | .9170
500 | .9060 | .9362 9620 9722 | 9924
9542 | .9696 9876 9908 | .9984
Note: (SST SCs are in Roman print; SSW SCs, in bold print.)
Table 4. Proportion of Total and Within SCs Fitting the Identified Pattern
Level Level of P , S
ofn [0-20 | 21-40 | A41-60 | .61-80 | 81.1.0 | [opulation Mean Vecior: o= LJ
10 | 3258 | 3674 3744 5899 | 6177
2502 | .2808 2747 4396 | .4667 Identified SC Range:
50 | .5023 | .5341 6119 7041 | .9370 '58_'81J
4678 | .5028 5709 6701 | .9216
100 | .6365 | .6957 7713 8749 | 9230 .58-.81
6066 | .6608 7483 8535 | 9125
500 | .9458 | .9844 9842 9974 | 1.000
9324 | 9772 9778 9966 | 1.000

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Table 5. Proportion of Total and Within SCs Fitting the Identified Pattern

Level Level of P . 1
ofn | 0-20 | 21-40 | 41-60 | .61-80 | 81.1.0 | [opulation Mean Vecior: = H
10 | 3699 | .4042 4845 5154 | 7010
2614 | 2779 3438 3491 | .5013 Identified SC Range:
50 | .6328 | .6584 7321 8666 | .9533 63— .78 J
5300 | .5514 6268 7752 | .8961
100 | .7856 | .8736 9238 9748 | .9976 .63-.78
6878 | .7822 .8452 9430 | .9876
500 | 9946 | .9998 19992 1.000 | 1.000
9750 | .9924 9942 1.000 | 1.000

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Tables 6 through 12 include results for the seven mean effect vectors where the number of continuous
variables p=3. At this juncture, interpretation of the proportions becomes more complicated. For the effect
vector with two of three variables not contributing (Table 6), sw proportions were higher. When the
condition was changed to one variable not contributing instead of two (Table 7), the st proportions were
higher for cells of smaller size and lesser intercorrelation (i.e., n < 100 and P < .8), and the sw proportions
higher for the largest cells (» = 500) and the highest intercorrelation (P>.8). Finally, when the condition
was changed to all variables contributing, and all equally (.5 SD) (Table 8), st proportions were higher
for all cells except the n = 500 x P>.8 cell, where both proportions equaled 1.0).
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Table 6. Patterns for both Total and Within SCs where p =3 and k=2

Level Level of P

ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0
10 .0811 .0676 .0841 .0646 .0750
1146 1152 1164 .0886 .0847

50 2249 2146 2230 .2660 3202
.2466 2307 2413 2844 .3346

100 3313 3158 .3366 3528 4470
3502 3337 3581 3744 4660

500 .8306 .8356 8372 .8392 .8376
.8456 .8504 .8546 8528 .8520

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)
Table 7. Patterns for both Total and Within SCs where p =3 and k=2

Level Level of P

of n 0-.20 21-.40 41-.60 .61-.80 | .81-1.0
10 1322 .1616 1723 2011 2676
1115 1356 1581 1992 2804

50 2834 3125 3675 4757 5226
2719 3034 3555 4744 5300

100 4375 5017 .5695 .6442 7146
4264 .4889 5609 .6400 7228

500 9352 9654 9748 9768 9712
9220 9598 9748 9778 9728

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

0
Population Mean Vector: o= | 0
5
Identified SC Range:
.00-.26
Absolute value of * | .00—-.26
94-1.0

* Vectors were either all positive or all negative

0
Population Mean Vector: (o= |.5
5
Identified SC Range:
.00-.22
Absolute value of * | .58 —.81
.58 -.81

* Vectors were either all positive or all negative

Table 8. Patterns for both Total and Within SCs where p =3 and k= 2

Level Level of P
ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0
10 .0933 1282 1941 2637 .5446
.0640 .0531 .0990 .1348 3822
50 2085 2821 4045 .5480 .8761
.1805 .2386 3562 4907 .8559
100 3614 4253 4790 7315 .9388
3235 3781 4390 .6952 9291
500 8722 .8974 .9626 .9884 1.000
8422 .8662 9492 9852 1.000
Note: (SST SCs are in Roman print; SSW SCs, in bold print.)
Table 9. Patterns for both Total and Within SCs where p = 3 and
Level Level of P
ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0
10 1221 1587 1575 2216 .2988
1022 1377 .1569 2382 3713
50 .3497 4043 4697 S151 .6368
3283 3914 4657 5282 7016
100 .5642 .6226 .6932 7684 7642
5266 .5950 .6916 7798 7920
500 .9506 .9660 9782 9866 9934
9274 9454 9582 9704 9810

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)
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Population Mean Vector: Jo= | .5
5
Identified SC Range:
46 —-.67
46 —-.67
46 —-.67
k=2
5

Population Mean Vector: Jo= | .5

1

Identified SC Range:
28-.59

.28-.59
.74 - .86
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Table 10. Patterns for both Total and Within SCs where p =3 and k=2

Level Level of P 5
ofn | 0-20 | 21-40 | 41-60 | .61-.80 | .81-1.0 :
10 | .0812 1117 1312 1811 | 2871 Population Mean Vector: o= |1
0529 | 0754 .0848 1524 | 2702 1
50 | 2590 | 3177 3948 5196 | 6762 . ,
2004 | 2639 3319 | 4621 | .6222 [dentified SC Range: 25— 46
100 | 4812 | 5308 6118 7812 | .8962 LT
3960 | .4532 5356 7148 | .8504 . |61-.73
500 | 9150 | 9506 | 9840 | .9966 | .9996 Absolute value of * | .
.8688 .9168 .9658 9902 | .9976 ’ '

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

* Vectors were either all positive or all negative

Table 11. Patterns for both Total and Within SCs where p =3 and k =2

Level Level of P
ofn | 0-20 | 21-40 | 41-60 | .61-80 | .81-1.0 1
10 .0728 1012 1338 .1946 .6803 Population Mean Vector: o= |1
0340 | .0437 0520 0698 | .4621 .
50 | 2472 | 3072 4096 5485 | .7849
1606 | .2024 2776 3995 | .6484 Identified SC Range:
100 | 4262 | .5068 6284 7968 | 9808 52-.63
2952 | 3608 4628 6552 | 9472 57— 63
500 | 9458 | .9662 9890 9996 | 1.000
8494 | .8884 9502 | .9930 | .9998 52-.63
Note: (SST SCs are in Roman print; SSW SCs, in bold print.)
Table 12. Patterns for both Total and Within SCs where p =3 and k =2
Level Level of P
ofn | 0-20 ] 21-40 | .41-60 | .61-.80 | .81-1.0 0
10 0751 .0736 .0691 .0817 .0993 Population Mean Vector: Ho= | .5
0861 | .0861 .0896 1019 | .1184 .
50 | 2275 | 2436 2568 3372 | 3918 .
2467 | 2597 2862 3942 | .4618 Identified SC Range:
100 | 3746 | .3984 4310 4868 | 5914 00-.13
4014 | 4338 4828 5556 | .6676 35- 54
500 | .8822 | .9010 9204 0460 | .9462 Absolute value of
9158 | .9420 9586 | .9702 | .9716 84 -.94

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

In short, the dominant coefficient apparently shifted from sw to st as the number of contributing variables
was increased to the point that a vector of equally contributing variables was reached.

When the condition of all variables contributing equally at .5 SD (Table 8) was altered such that one
variable contributed 1 SD toward group separation (Table 9), the dominant coefficient again shifted, this
time with st proportions higher for P < .61 excepting cells where » = 500. When a second element in the
effect vector was changed from .5 SD to 1 SD (Table 10), sy proportions were consistently higher than
sw; such remained true as the last of the three effects was increased from .5 SD to 1 SD (Table 11). Note
that the condition in Table 11 was similar condition to that in Table 8, this time with all effect variables
again contributed equally but with the greater effect of 1 SD. Thus, for the condition of all variables
contributing, and contributing equally, st proportions were higher than sw.

One additional condition was examined where p = 3, that of all three variables contributing at the
three different levels of effects (0, .5, and 1 SD) (Table 12). For this condition, sy proportions were
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consistently higher than sy. It is interesting to note that sy proportions are consistently higher for all three
conditions where at least half of the p variables did not contribute to group separation (i.e., the effect
equals 0 SD; see Tables 1, 2, and 11).

Tables 13 through 20 include the results of the eight conditions in this study involving as mean effect
vectors P with p = 4 continuous variables. Unlike the somewhat systematic shifting of the predominance
of one coefficient over another where the number of continuous variables p = 3, the vectors involving p =
4 are not so easily interpreted, generally speaking. Whereas for the two conditions with all mean effect
vector elements contributing and contributing equally (Tables 14 and 18), the st proportions were
consistently higher, for no condition examined were the sw proportions consistently higher than sy. It
should be noted that the number of conditions was limited and numerous possibilities omitted, including
conditions where 2 or 3 elements in the 4 x 1 effect vector represented p variables contributing nothing
toward group separation (that is, 2 or 3 elements in the effect vector [, at 0 SD). Thus, the idea that sw
proportions might be consistently higher than st proportions where the number of noncontributing p
variables equaled or exceeded half was not examined where p = 4.

The sw proportions were higher than the st proportions for all but 4 of the 20 n x P cells for the
condition where three effects were all set at .5 SD and one, at 1 SD (Table 15). These four cells having
higher or equal proportions of st were four extreme cells (i.e., » = 10 and 500; P < .4 and P> .6). The sw
proportions were also higher for most of the cells where the mean effect vector M, included one
noncontributing variable (0 SD), two moderately contributing variables (.5 SD), and one predominantly
contributing variable (1 SD) (Table 19). In Table 19, cells having higher st proportions tended to be those
where the group size was very large (n = 500).

For three conditions, neither sw nor st proportions were consistently higher, but sy proportions were
prevalent in the 20 n x P cells. The first such condition involved three of the four variables contributing
equally at .5 SD and one, not contributing (0 SD) (Table 13). Here, st proportions were higher where P <
.40. As the level of intercorrelation among p increased, sw was higher, initially for the largest group size n
= 500 (P range: .41 to .60), then for the two largest group sizes n = 100 and 500 as the intercorrelation
increased to the second highest range (P range: .61 to .80). Finally, where intercorrelation was at the
highest level (P> .81), sw proportions were higher for the three largest levels of n (n = 50, 100 and 500).
These findings are similar to those in the p = 3 condition with two variables contributing equally at .5 SD
and one, not contributing (0 SD) (Table 7).

In the remaining two conditions, where two variables are contributing equally at .5 SD and two,
contributing equally at 1 SD (Table 16) and one variable not contributing (0 SD), one contributing
somewhat (.5 SD), and the remaining two, contributing equally at 1 SD (Table 20), st proportions were
higher generally, with sw proportions tending to be higher for greatest continuous variable
intercorrelation (P> .81) but not for any given group size n.

Discussion

Though the results for this study are sometimes complex to interpret, what is clear is that sw
proportions were not consistently higher than st proportions in this study where the two groups were
generated from two populations with identical covariance matrices. From the cells investigated, one
might expect sw proportions to be higher when half of the p continuous variables are not contributing to
group separation. It seems that this situation might likely occur when a researcher does what Stevens
(2002) advises against in the context of MANOVA: including variables in an analysis without theoretical
justification, or simply because the data were available. Too, when all variables are contributing equally,
st proportions are consistently higher than sw. Finally, generally speaking, for conditions with mixed
results (i.e., some cells with sy proportions higher and some cells with higher sw proportions), sw
proportions tended to be higher for greater p-variable intercorrelation (P > .81) or larger group sizes n
(i.e., n=500).
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Table 13. Patterns for both Total and Within SCs where p =4 and k=2

Level Level of P 0
of n 0-.20 21-.40 41-.60 .61-.80 | .81-1.0 5
10 0621 .0723 .0872 1120 .1576 Population Mean Vector: o=
.0378 .0513 .0605 0913 1507
50 1847 2719 2918 3844 5253 5
.1682 2477 2752 3712 5394 00— .17
100 3704 4144 5179 .5998 .6992 Identified SC Range: ’ )
3451 3911 5033 5998 7150 ©1.42-.70
500 | 9522 | .9646 9634 | 9682 | 9694 Absolute value of * | _
9450 9612 9646 9714 9710 ' '
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 42-.10

* Vectors were either all positive or all negative

Table 14. Patterns for both Total and Within SCs where p =4 and k =2

Level Level of P S
ofn | 0-20 ] 21-40 | 41-60 [ .61-80 [ .81-1.0 5
10 | .0254 | .0524 0814 1424 | 3699 Population Mean Vector: Y=
0113 | .0143 .0287 0528 | .1781 >
50 | .0809 | .1234 1943 3386 | .6008 5
0663 | .0972 1552 2744 | 5293 41— 59
100 | .1956 | .2590 3688 5595 | 8771 , S
1712 | 2199 3266 | .5099 | .8572 [dentified SC Range: | 41- 59
500 | 7810 | .8492 9334 9832 | .9990 41-59
7336 | 8110 9104 9766 | .9980
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) A41-.59
Table 15. Patterns for both Total and Within SCs where p =4 and k =2
Level Level of P S
ofn | 0-20 ] 21-40 | 41-60 [ .61-80 [ .81-1.0 5
10 | .0439 | .0555 0577 0902 | .1238 Population Mean Vector: Y=
0368 | .0510 0630 1287 | 2098 :
50 | .1652 | .2200 2648 3991 | .5766 1
1654 | 2274 2831 4383 | .6912 25— 47
100 | 3610 | .4220 5060 6212 | 7708 , -
3772 | 4534 5392 | .6808 | .8226 Identified SC Range: | 5 47
500 | 8972 | 9396 | 9670 | .9902 | .9992 Absolute value of * | . _
9364 | .9684 9800 9902 | .9974 o
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 67-.82

* Vectors were either all positive or all negative

Table 16. Patterns for both Total and Within SCs where p =4 and k=2

Level Level of P
ofn | 0-20 | .21-40 41-60 | .61-.80 | .81-1.0 5
10 | .0244 0413 .0500 0621 | .1036 5
.0159 .0266 .0275 0636 | .1173 Population Mean Vector: U=
50 | .1346 .1656 2147 3074 | .5988
1074 1391 1920 3004 | .6334 1
100 | .3076 3684 4840 5784 | 7664 25— 4]
2574 3348 4422 5554 | .7534 Identified SC Range: o
500 | .9022 9378 9794 9932 | .9998 1.25-.41
.8694 9136 .9552 9824 | .9960 5771

Note: (SST SCs are in Roman print; SSW SCs, in bold print.) s7- 71
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Structure Coefficients in DDA

Table 17. Patterns for both Total and Within SCs where p =4 and k =2

Level Level of P

ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0
10 .0353 .0534 .0734 .1335 2462
0184 .0269 .0408 0735 2267

50 1764 .2290 .3037 .3982 6531
1234 1626 2382 3464 .6979

100 .3690 4492 5732 7252 8248
2816 3566 .5038 .6952 .8658

500 9254 9464 9714 9856 .9960
9056 9486 .9846 9950 .9996

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Population Mean Vector: Y=

20-.35
49-.62
49-.62
49-.62

Identified SC Range:

Table 18. Patterns for both Total and Within SCs where p =4 and k=2

Level Level of P

ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0
10 .0371 .0582 .1013 .1984 4455
0131 0175 0277 .0496 1497

50 2132 2842 .3558 .5222 8764
1138 1600 2126 3397 7762

100 4230 5186 .6484 .8380 9772
2628 3392 4566 .6850 9314

500 9732 9834 19982 19998 1.000
.8990 9304 9842 9986 1.000

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Population Mean Vector: U=

— = e

44 -.56
Identified SC Range: 44 - 56

44 -.56
44 -.56

Table 19. Patterns for both Total and Within SCs where p =4 and k=2

Level Level of P

ofn | 0-.20 | .21-.40 41-.60 .61-.80 | .81-1.0
10 .0191 .0273 .0335 .0436 .0819
.0235 0267 .0387 0459 1170

50 .1095 1431 .1660 2134 3582
1055 1583 1770 2236 4078

100 2456 .2886 .3664 4632 .6256
2430 2936 3870 5054 .6684

500 .8494 .8828 9244 .9634 9812
.8180 .8574 .8992 9496 9794

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

0

.5
Population Mean Vector: U=

1

.00-.15

Identified SC Range: 34-50

Absolute value of *
.34-.50

.74 - .86

* Vectors were either all positive or all negative

Table 20. Patterns for both Total and Within SCs where p =4 and k =2

Level Level of P

of n 0-.20 21-.40 41-.60 .61-.80 | .81-1.0
10 0224 0213 .0348 .0428 0776
.0178 .0213 .0262 .0343 0746

50 .1486 .1642 2118 2726 4964
1364 1434 1920 2712 5284

100 .2934 .3456 4458 4816 .6938
2528 2994 4126 4558 7112

500 9152 9466 9586 9736 9800
.8596 9020 9272 9690 9828

Note: (SST SCs are in Roman print; SSW SCs, in bold print.)

Multiple Linear Regression Viewpoints, 2004, Vol. 30(1)

0
.5
Population Mean Vector: o=
1
.00-.11

Identified SC Range: 27— 43

Absolute value of
.60-.72

.60-.72

* Vectors were either all positive or all negative
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Schneider

Issues of Practical Significance

Even though no significance tests were conducted regarding which of the two SC proportions were
prevalent, the practical usefulness of the information available in the tables is worth comment. First, for a
number of the conditions, the difference between proportions was minimal from a practical standpoint
(i.e., = .03 or less in many cells); thus, either st or sw coefficients might be used for interpretation (see
Tables 6, 7, 13, 16, 19, and 20). The primary goal of this study was to compare st and sw coefficients to
determine if sy coefficients might be more useful where the two groups were from two populations with
identical covariance matrices. Nevertheless, it may be useful to speak of three additional issues of
practical significance though such issues are not directly related to the research goal. First, the SC values
for variables not contributing to group separation (0 SD in the effect vector) tended to exhibit a range of
approximately .00 to .26, and the signs of the elements in the resulting SC vectors could not be predicted
(see Tables 1, 2, 6, 7, 12, 13, 19, and 20). As for the values of the coefficients of the noncontributing
variables, such generally fits the rule cited in Pedhazur (1997) that coefficient values of .3 of above are
useful.

Second, regarding use of the identified ranges to guide researcher interpretation, one can see that
other factors must be considered when determining the group size necessary to achieve a given proportion
in DDA, such as the effect between groups on each continuous variable and the degree of continuous
variable intercorrelation. Moreover, given the jump in proportions between n = 100 and 500, in order for
the tables of proportions to be useful, proportions associated with additional sample sizes between n =
100 and 500 must be examined. The inclusion of more mean effect values (e.g., .3 SD; .7 SD) might also
further clarify the dynamic between higher st and sw for conditions where neither coefficient consistently
had a higher proportion.

Finally, whereas unusual, the use of identified SC patterns does offer the beginnings of a practical
means of interpreting relative variable importance in DDA. As one compares the identified patterns with
their respective effect vectors, one can see a relationship between the population effect vectors and
sample SCs. How a researcher might utilize these identified patterns provides a focus for future DDA
studies.
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