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This simulation study compared proportions of two types of structure coefficients in descriptive 
discriminant analysis, those based upon the error matrix, and those based upon the total matrix, for two 
groups from different populations with identical covariance matrices.  The expected finding that the 
structure coefficients based upon the error matrix might be more appropriate than those based upon the 
total matrix was not supported.  

escriptive discriminant analysis (DDA) is a post hoc procedure useful for understanding the 
relationships among continuous variables following a significant MANOVA (Stevens, 2002; 
Tabachnick & Fidell, 2001).  In DDA, linear discriminant functions (LDFs) are formed by 
weighting the p continuous variables such that separation of the k groups on the grouping variable 

is maximized.  The number of LDFs possible is the smaller of p and k – 1.  Thus, where there is one 
grouping variable with two levels, as is the case with the current study, only one LDF is possible. 
  Initially, a vector of raw weights (v) is calculated for a given LDF (Tatsuoka, 1988a, 1988b).  
However, these raw weights are not useful for interpretation.  Instead, one commonly used coefficient for 
interpretation of LDF variable importance is the structure coefficient (SC), a measure of correlation 
between a given p and the associated LDF.  The SC can be calculated using either the total group 
intercorrelation matrix (R) or the pooled within-group intercorrelation matrix (W) (Cooley & Lohnes, 
1971; Huberty, 1975).  These will be referred to as total SCs and within SCs, respectively.  As part of the 
DDA output, SAS provides both the total and within SCs, and SPSS, only the within SCs.  The p x 1 
vector of total SCs (sT) for the only LDF in the two-group case may be calculated as follows: 
 

               sT  =  RD.5vθ-.5            (1) 
 

where D is the diagonal matrix formed from the diagonal elements of (1/N-1)T (i.e., by multiplying the 
total SSCP matrix T by the reciprocal of the total sample size minus one); θ is the grand variance, and R 
and v are as defined previously (Cooley & Lohnes, 1971).  The calculation of the p x 1 vector of within 
SCs (sW) follows the same formula, with the exception that the W matrix correspondingly replaces the T 
matrix. 
 

Purpose of the Study 
 In his study of the ranking of LDF variable importance in DDA, Huberty (1975) notes that total SCs 
are appropriate if data “are considered representative of a single population” (p. 60) and within SCs, “if 
the underlying model is one of k populations with identical covariance matrices” (p. 60).  As it appears no 
study has tested these stipulations, such was the primary goal of the current work.  Specifically, the 
condition of k = 2 populations with identical covariance matrices was simulated, and the total and within 
SCs examined based upon criteria outlined in the procedures section to determine under what conditions 
within SCs might be better suited to total SCs in interpreting relative variable importance in DDA. 
 

Procedures 
 This Monte Carlo simulation was executed using PROC IML in SAS.  Two p-dimensional, 
multivariate population matrices were generated, with each being N(µ, Σ) (SAS Institute, 1999).  The 
general procedure was as follows:  In all cells, µ1 was a p x 1 null vector, and µ2, a p x 1 vector of effects 
of some combination such that µ1≠ µ2. A sample of dimension n x p was then drawn from each population 
(n1 = n2; p1 = p2) and analyzed as a two-way MANOVA using Wilks’ Λ and a special case of Bartlett’s V 
as a test of significance: 
          V  =  -[N – 1 – (p + 2 ) / 2] ln  Λ        (2) 

D
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  where Λ is also calculated using a modified formula 
 

          Λ  =  1 / (1 + λ)            (3) 
 

since in the two-group analysis, λ is the only characteristic root.  The special case of Bartlett’s V 
is approximately a χ2 distribution with p degrees of freedom (Tatsuoka, 1988a, 1988b).      
  Specifically, the variables and corresponding levels manipulated in this study were as 
follows:  
  1.  p = 2, 3, and 4. 
 2. n = 10, 50, 100, and 500.  
 3. The population correlation matrices, Ρ1 and Ρ2.  Five levels were used, reflecting five possible 
ranges of p intercorrelation:  0 - .20; .21 - .40; .41 - .60; .61 - .80, and .81 – 1.00.  For any given 
experiment, the exact correlation for the two groups between continuous variables p and p’ (where p ≠ p’) 
was randomly generated within any one of these five ranges.  The two most highly correlated ranges were 
included to investigate the effects of collinearity upon sT and sW. 
 4. Population mean vector, µ2.  As previously mentioned, µ1 was held constant as a null vector.  
Thus, µ2 was manipulated as the vector of effects.  The p elements of a given µ2 were some combination 
of effects in standard deviations, with three possible levels of standard deviation used: 0, .5 and 1.  These 
levels were arbitrarily selected to represent a three-tiered conceptualization of relative variable influence: 
negligible; moderately influential, and highly influential respectively.  This manner of ranking variables 
will be discussed in the following section. In addition to its usefulness in defining a variable with a 
negligible contribution, the difference of 0 SD was included to investigate the influence of 
noncontributing variables upon sT and sW.  In sum, 20 p x 1 mean vector pairs were analyzed:  5 for p = 2; 
7 for p = 3, and 8 for p = 4.  (See Tables 1 thru 20 for the specific µ2 investigated for a given cell.) 
 Each n x p cell was replicated 5,000 times.  For the replications where the MANOVA null hypothesis 
H0: µ1 = µ2 was correctly rejected within each cell, the p x 1 vectors of total and within SCs, sT  and sW, 
were calculated.  An expected pattern across sT  and sW was identified for each mean effect vector µ2 and 
the proportions of sT  and sW vectors conforming to the identified pattern calculated.  These proportions of 
sT  and sW, vectors were then compared across all levels of n, p, and Ρ.  The use of identified SC patterns 
will be discussed shortly. 
 
Three-tiered Ranking of Relative Variable Importance 
 It may be tempting to apply some absolute criterion to SCs in order to make the determination of a 
corresponding continuous variable’s contribution to group separation in DDA.  Pedhazur (1997) cites the 
general guideline that an SC value of .3 is “meaningful” (p. 934).  However, this guideline is too general 
to frame even a three-tiered ranking of relative variable importance upon separation of the groups.  At the 
opposite end of the ranking spectrum are studies in which the SC values of a large number of variables 
are ranked in order of size without consideration of a more relaxed ranking system, such as the three-
tiered system proposed above. For example, Huberty (1975) compared the utility of three types of 
weights/coefficients (total SCs, within SCs, and standardized weights) for variable ranking where the 
number of groups k = 3, 4, and 5, and the number of variables was held constant at p = 10.  In essence, 
such rankings amounted to a ten-tiered ranking system.  Generally, all coefficients/weights fared poorly 
regarding the correct ranking of the 10 variables.  These results agreed with the findings of Barcikowski 
and Stevens (1975), who also investigated the utility of standardized weights and structure coefficients for 
ranking variable importance in canonical correlation.  In this latter study, the simplest canonical 
dimension examined involved two variables in one variate and five, in the other variate.  Thus, the 
smallest number of continuous variables investigated in the Barcikowski and Stevens work was p = 7, and 
in a more complex analysis than DDA, the canonical correlation (Tabachnick & Fidell, 2001). Both 
Huberty, and Barcikowski and Stevens note that a large sample size would be necessary for positive 
results for a 1-to-p ranking system (e.g., a 42:1 to 68:1 n:p ratio in Barcikowski & Stevens).  Thus, with 
the minimum number of variables p = 7, the total sample size needed for utilizing SCs in DDA would be 
N = 294 (42:1) or N = 476 (68:1).  As an additional objective of this study, the group sample size n will 
be investigated in conjunction with using a more relaxed ranking system. 
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Investigation of Levels of p = 2, 3, and 4 
  Rather than generally discounting SC usefulness for relative variable importance in DDA based upon 
studies employing large numbers of continuous variables (Barcikowski & Stevens, 1975; Huberty, 1975), 
it appears useful to investigate the more basic multivariate analyses, such as two-group DDA with p = 2, 
3, and 4 variables, for two reasons.  First, in educational research, a smaller number of p variables more 
realistically reflects that which is currently investigated in multivariate research (Schneider, 2002).  
Second, given the necessity of extremely large sample sizes in DDA where p is large (Stevens, 2002), 
limiting the number of continuous variables appears logical when resources, such as the number of 
participants in a study, are limited. 
 
Identified SC Patterns 
 The identified pattern for a given mean vector effect µ2 was chosen by examining the range of SC 
values corresponding to each element of µ2 when n = 1000 across both types of SCs and all levels of Ρ.  A 
vector of least restrictive ranges for each of the p elements was then constructed to represent the identified 
pattern of ranges of SCs for the corresponding mean effect vector µ2.  The decision to use n = 1000 for 
identifying SC ranges is based upon the author’s prior experience.  When the group size is n = 1000 in 
two-group DDA, the SCs are sufficiently stabilized for interpretation of relative variable importance 
given the three-tiered ranking.  Specifically, the ranges of SCs reflecting the effects of 0, .5, and 1 SD, 
respectively, are mutually exclusive.  Increasing the group size n to 5000, for example, would have 
produced narrower ranges; however, such adjustment was not deemed necessary to term a coefficient 
value as indicating a ranking so general as moderately influential, for example. 
 A second reason for identifying SC vector patterns in the form of ranges has to do with the nature of 
the SCs in general.  The description of the SC as a measure of correlation between a variable and the 
associated LDF might lead one to believe that the value of a given element is not influenced by the values 
of other elements in the vector.  This is not the case.  In DDA where the number of groups k = 2, the 
squared elements (e2

i ’s) of an SC vector, whether sT or sW, must sum to one: 
 
          e2

1  +  e2
2  +  …  +  e2

p  =  1 ,          (4) 
 
where there are p elements.  (Note:  If (k – 1) > p, the proportions of trace of the correlation matrix, either 
R or W, as defined previously, accounted for by the p SC vectors would sum to one [Cooley and Lohnes, 
1971]).  This condition has implications for assigning unchanging SC values to indicate an effect of, say, 
1 SD in the effect vector, µ2.  A variable on which the two groups differ by 1 SD will have a higher SC 
value in a vector of dimension p x 1 if the remaining p – 1 variables differ by .5 SD than if the remaining 
p – 1 variables also reflect a difference between groups of 1 SD.  For example, compare the elements of 
the two 4 x 1 total SC (sT) vectors in Illustration 1 below.  These two vectors have been written in the 
form of the condition outlined in Equation 4 above.  In each, the last, bolded element is the referent kept 
constant at an effect of 1 SD.  The remaining 3 elements represent an effect of .5 SD in the first vector 
and 1 SD in the second vector. 
 

     .38806982  +  .42319132  +  .40835662  +  .70961672  =  1.0000000      (5) 
 

    .50217452  +  .50760892  +  .49237562  +  .49771512  =  1.0000001 
 

Though both bolded coefficient values above represent a population effect of 1 SD between groups on the 
last variable in a set of 4, one can readily see the problem with applying some absolute, unchanging 
criteria value to indicate an effect of 1 SD.  Instead, it is useful to note that the coefficient values in the 
first LDF above may indicate a present-but-lesser influence for the first three variables on group 
separation (coefficients in some expected range of .25 to .47, for example) and a prevalent influence for 
the last coefficient (which might be considered to be within some expected range of .68 to .82). 
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Table 1. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
0
.5
 

 
 
 

 
    

  
                   Identified SC Range:  

                   Absolute value of   
0 − .25
.96 −1.0
 

 
 

 

 
  

 
 
 
 
 
Table 2. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
0
1
 

 
 
 

 
    

  
                   Identified SC Range:  

                   Absolute value of   
0 − .14
.99 −1.0
 

 
 

 

 
  

 
 
 
 
 Interpretation of the LDFs in Illustration 1 introduces another important point.  Because of the 
condition imposed upon SCs as shown in Equation 4, it is important to note that the three-tiered ranking 
is only completely evident when all three of the SD effects are represented in the effect vector µ2.  For 
effect vectors with only two of the three SD levels present (e.g., .5 SD and 1 SD, as is the case in the first 
LDF in Illustration 1), only a two-level means of relative comparison is possible (i.e., less 
influential/negligible, or more influential, respectively).  Finally, when all elements of a given effect 
vector µ2 are the same (e.g., all are 1 SD, as is shown in the second LDF in Illustration 1), one “ranking” 
is possible (i.e., all variables are contributing equally).  Thus, these two lower levels of variable ranking 
are subsumed in the three-tiered ranking system.  Only if the SC values were unchanging could the three-
tiered ranking system remain unaffected by the absence of one (or two) of the three SD levels from a 
given effect vector µ2. 
 

Results 
 Tables 1 through 20 present the results of the 20 mean effect vectors (µ2i, where i = 1 - 20) examined 
in this study.  For each µ2, a vector of corresponding SC ranges was identified.  This identified pattern is 
included in each table.  Also included are the proportions of total- and within-SCs  (sT and sW, 
respectively) conforming to the identified pattern for each n x Ρ cell.  The sT and sW proportions were 
compared within each n x Ρ cell, with the larger proportion interpreted as indicating greater usefulness of  
the referent SC (either sT or sW). 
 Tables 1 through 5 include the results for the five mean effect vectors where the number of 
continuous variables p = 2.  In general, sW proportions were higher for vectors including elements with no 
effect (0 SD) (Tables 1 and 2) and vectors where both variables contributed differently (Table 3).  In 
contrast, for 2 x 1 effect vectors where both variables contributed equally (Tables 4 and 5), sT proportions 
were generally higher than those of sW (the exception being the cell with n = 500 and Ρ > .8, where both 
proportions were 1.0). 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .3188 .2825 .2881 .2475 .2289 

 .3710 .3441 .3438 .2913 .2473 
  50 .5007 .4991 .4955 .4833 .4925 

 .5209 .5182 .5165 .5020 .5083 
100 .6248 .6284 .6377 .6251 .6326 

 .6372 .6450 .6505 .6418 .6484 
500 .9486 .9472 .9442 .9430 .9398 

 .9530 .9542 .9510 .9476 .9438 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .2565 .2397 .2356 .2127 .2111 

 .3147 .3035 .2909 .2560 .2447 
  50 .4672 .4662 .4810 .4738 .4618 

 .5178 .5140 .5334 .5214 .5154 
100 .6146 .6250 .6232 .6306 .6238 

 .6694 .6756 .6814 .6830 .6818 
500 .9516 .9516 .9514 .9518 .9504 

 .9702 .9706 .9676 .9696 .9698 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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Table 3. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
.5
1
 

 
 
 

 
    

  
                   Identified SC Range:  

                         
.34 − .54
.84 − .94
 

 
 

 

 
  

 
 
 
 
 
Table 4. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
.5
.5
 

 
 
 

 
    

  
                   Identified SC Range:  

                         
.58 − .81
.58 − .81
 

 
 

 

 
  

 
 
 
 
 
Table 5. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
1
1
 

 
 
 

 
    

  
                   Identified SC Range:  

                         
.63− .78
.63− .78
 

 
 

 

 
  

 
 
 
 
 
 Tables 6 through 12 include results for the seven mean effect vectors where the number of continuous 
variables p=3. At this juncture, interpretation of the proportions becomes more complicated. For the effect 
vector with two of three variables not contributing (Table 6), sW proportions were higher.  When the 
condition was changed to one variable not contributing instead of two (Table 7), the sT proportions were 
higher for cells of smaller size and lesser intercorrelation (i.e., n < 100 and Ρ < .8), and the sW proportions 
higher for the largest cells (n = 500) and the highest intercorrelation (Ρ>.8). Finally, when the condition 
was changed to all variables contributing, and all equally (.5 SD) (Table 8), sT proportions were higher 
for all cells except the n = 500 x Ρ>.8 cell, where both proportions equaled 1.0).  

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .2789 .2917 .3058 .3222 .3371 

 .2711 .2958 .3276 .3592 .4001 
  50 .4564 .4857 .5275 .6004 .7036 

 .4604 .4965 .5406 .6504 .8178 
100 .6286 .6516 .6766 .7564 .8474 

 .6414 .6744 .7106 .8220 .9170 
500 .9060 .9362 .9620 .9722 .9924 

 .9542 .9696 .9876 .9908 .9984 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .3258 .3674 .3744 .5899 .6177 

 .2502 .2808 .2747 .4396 .4667 
  50 .5023 .5341 .6119 .7041 .9370 

 .4678 .5028 .5709 .6701 .9216 
100 .6365 .6957 .7713 .8749 .9230 

 .6066 .6608 .7483 .8535 .9125 
500 .9458 .9844 .9842 .9974 1.000 

 .9324 .9772 .9778 .9966 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .3699 .4042 .4845 .5154 .7010 

 .2614 .2779 .3438 .3491 .5013 
  50 .6328 .6584 .7321 .8666 .9533 

 .5300 .5514 .6268 .7752 .8961 
100 .7856 .8736 .9238 .9748 .9976 

 .6878 .7822 .8452 .9430 .9876 
500 .9946 .9998 .9992 1.000 1.000 

 .9750 .9924 .9942 1.000 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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Table 6. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  
0
0
.5

 
 
 
  

   

                   Identified SC Range:  

                   Absolute value of *  
.00 .26
.00 .26
.94 1.0

−

−

−

 
 
 
  

 

                     * Vectors were either all positive or all negative 
 
Table 7. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  
0
.5
.5

 
 
 
  

   

                  Identified SC Range:  

                   Absolute value of *  
.00 .22
.58 .81
.58 .81

−

−

−

 
 
 
  

 

                    * Vectors were either all positive or all negative 
 
 
Table 8. Patterns for both Total and Within SCs where p = 3 and k = 2 
 

                     Population Mean Vector: µ2=  
.5
.5
.5

 
 
 
  

   

                   Identified SC Range:  

                         
.46 .67
.46 .67
.46 .67

−

−

−

 
 
 
  

 

 
 
Table 9. Patterns for both Total and Within SCs where p = 3 and k = 2 
 

                     Population Mean Vector: µ2=  
.5
.5
1

 
 
 
  

   

                   Identified SC Range:  

                         
.28 .59
.28 .59
.74 .86

−

−

−

 
 
 
  

 

 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0811 .0676 .0841 .0646 .0750 

 .1146 .1152 .1164 .0886 .0847 
  50 .2249 .2146 .2230 .2660 .3202 

 .2466 .2307 .2413 .2844 .3346 
100 .3313 .3158 .3366 .3528 .4470 

 .3502 .3337 .3581 .3744 .4660 
500 .8306 .8356 .8372 .8392 .8376 

 .8456 .8504 .8546 .8528 .8520 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .1322 .1616 .1723 .2011 .2676 

 .1115 .1356 .1581 .1992 .2804 
  50 .2834 .3125 .3675 .4757 .5226 

 .2719 .3034 .3555 .4744 .5300 
100 .4375 .5017 .5695 .6442 .7146 

 .4264 .4889 .5609 .6400 .7228 
500 .9352 .9654 .9748 .9768 .9712 

 .9220 .9598 .9748 .9778 .9728 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0933 .1282 .1941 .2637 .5446 

 .0640 .0531 .0990 .1348 .3822 
  50 .2085 .2821 .4045 .5480 .8761 

 .1805 .2386 .3562 .4907 .8559 
100 .3614 .4253 .4790 .7315 .9388 

 .3235 .3781 .4390 .6952 .9291 
500 .8722 .8974 .9626 .9884 1.000 

 .8422 .8662 .9492 .9852 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .1221 .1587 .1575 .2216 .2988 

 .1022 .1377 .1569 .2382 .3713 
  50 .3497 .4043 .4697 .5151 .6368 

 .3283 .3914 .4657 .5282 .7016 
100 .5642 .6226 .6932 .7684 .7642 

 .5266 .5950 .6916 .7798 .7920 
500 .9506 .9660 .9782 .9866 .9934 

 .9274 .9454 .9582 .9704 .9810 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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Table 10. Patterns for both Total and Within SCs where p = 3 and k = 2 
 

                     Population Mean Vector: µ2=  

.5
1
1

 

 

 
 
 

 

 

 
 
 
   

                   Identified SC Range:  

                   Absolute value of *  

.25 − .46

.61− .73

.61− .73

 

 

 
 
 

 

 

 
 
 
 

                    * Vectors were either all positive or all negative 
 
Table 11. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  

1
1
1

 

 

 
 
 

 

 

 
 
 
    

                  Identified SC Range:  

                         

.52 − .63

.52 − .63

.52 − .63

 

 

 
 
 

 

 

 
 
 
 

 
Table 12. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  

0
.5
1

 

 

 
 
 

 

 

 
 
 
    

                 Identified SC Range:  

                   Absolute value of   

.00 − .13

.35 − .54

.84 − .94

 

 

 
 
 

 

 

 
 
 
 

 
In short, the dominant coefficient apparently shifted from sW to sT as the number of contributing variables 
was increased to the point that a vector of equally contributing variables was reached. 
  When the condition of all variables contributing equally at .5 SD (Table 8) was altered such that one 
variable contributed 1 SD toward group separation (Table 9), the dominant coefficient again shifted, this 
time with sT proportions higher for Ρ < .61 excepting cells where n = 500.  When a second element in the 
effect vector was changed from .5 SD to 1 SD (Table 10), sT proportions were consistently higher than 
sW; such remained true as the last of the three effects was increased from .5 SD to 1 SD (Table 11).  Note 
that the condition in Table 11 was similar condition to that in Table 8, this time with all effect variables 
again contributed equally but with the greater effect of 1 SD.  Thus, for the condition of all variables 
contributing, and contributing equally, sT proportions were higher than sW. 
  One additional condition was examined where p = 3, that of all three variables contributing at the 
three different levels of effects (0, .5, and 1 SD) (Table 12).  For this condition, sW proportions were 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0812 .1117 .1312 .1811 .2871 

 .0529 .0754 .0848 .1524 .2702 
  50 .2590 .3177 .3948 .5196 .6762 

 .2004 .2639 .3319 .4621 .6222 
100 .4812 .5308 .6118 .7812 .8962 

 .3960 .4532 .5356 .7148 .8504 
500 .9150 .9506 .9840 .9966 .9996 

 .8688 .9168 .9658 .9902 .9976 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0728 .1012 .1338 .1946 .6803 

 .0340 .0437 .0520 .0698 .4621 
  50 .2472 .3072 .4096 .5485 .7849 

 .1606 .2024 .2776 .3995 .6484 
100 .4262 .5068 .6284 .7968 .9808 

 .2952 .3608 .4628 .6552 .9472 
500 .9458 .9662 .9890 .9996 1.000 

 .8494 .8884 .9502 .9930 .9998 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0751 .0736 .0691 .0817 .0993 

 .0861 .0861 .0896 .1019 .1184 
  50 .2275 .2436 .2568 .3372 .3918 

 .2467 .2597 .2862 .3942 .4618 
100 .3746 .3984 .4310 .4868 .5914 

 .4014 .4338 .4828 .5556 .6676 
500 .8822 .9010 .9204 .9460 .9462 

 .9158 .9420 .9586 .9702 .9716 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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consistently higher than sT. It is interesting to note that sW proportions are consistently higher for all three 
conditions where at least half of the p variables did not contribute to group separation (i.e., the effect 
equals 0 SD; see Tables 1, 2, and 11). 
  Tables 13 through 20 include the results of the eight conditions in this study involving as mean effect 
vectors µ2 with p = 4 continuous variables. Unlike the somewhat systematic shifting of the predominance 
of one coefficient over another where the number of continuous variables p = 3, the vectors involving p = 
4 are not so easily interpreted, generally speaking.  Whereas for the two conditions with all mean effect 
vector elements contributing and contributing equally (Tables 14 and 18), the sT proportions were 
consistently higher, for no condition examined were the sW proportions consistently higher than sT.  It 
should be noted that the number of conditions was limited and numerous possibilities omitted, including 
conditions where 2 or 3 elements in the 4 x 1 effect vector represented p variables contributing nothing 
toward group separation (that is, 2 or 3 elements in the effect vector µ2 at 0 SD).  Thus, the idea that sW 
proportions might be consistently higher than sT proportions where the number of noncontributing p 
variables equaled or exceeded half was not examined where p = 4.   
  The sW proportions were higher than the sT proportions for all but 4 of the 20 n x Ρ cells for the 
condition where three effects were all set at .5 SD and one, at 1 SD (Table 15).  These four cells having 
higher or equal proportions of sT were four extreme cells (i.e., n = 10 and 500; Ρ < .4 and Ρ > .6). The sW 
proportions were also higher for most of the cells where the mean effect vector µ2 included one 
noncontributing variable (0 SD), two moderately contributing variables (.5 SD), and one predominantly 
contributing variable (1 SD) (Table 19). In Table 19, cells having higher sT proportions tended to be those 
where the group size was very large (n = 500).   
  For three conditions, neither sW nor sT proportions were consistently higher, but sT proportions were 
prevalent in the 20 n x Ρ cells. The first such condition involved three of the four variables contributing 
equally at .5 SD and one, not contributing (0 SD) (Table 13). Here, sT proportions were higher where Ρ < 
.40. As the level of intercorrelation among p increased, sW was higher, initially for the largest group size n 
= 500 (Ρ range: .41 to .60), then for the two largest group sizes n = 100 and 500 as the intercorrelation 
increased to the second highest range  (Ρ range: .61 to .80).  Finally, where intercorrelation was at the 
highest level (Ρ > .81), sW proportions were higher for the three largest levels of n (n = 50, 100 and 500).  
These findings are similar to those in the p = 3 condition with two variables contributing equally at .5 SD 
and one, not contributing (0 SD) (Table 7). 
   In the remaining two conditions, where two variables are contributing equally at .5 SD and two, 
contributing equally at 1 SD (Table 16) and one variable not contributing (0 SD), one contributing 
somewhat (.5 SD), and the remaining two, contributing equally at 1 SD (Table 20), sT proportions were 
higher generally, with sW proportions tending to be higher for greatest continuous variable 
intercorrelation (Ρ > .81) but not for any given group size n. 
 

Discussion 
 Though the results for this study are sometimes complex to interpret, what is clear is that sW 
proportions were not consistently higher than sT proportions in this study where the two groups were 
generated from two populations with identical covariance matrices.  From the cells investigated, one 
might expect sW proportions to be higher when half of the p continuous variables are not contributing to 
group separation.  It seems that this situation might likely occur when a researcher does what Stevens 
(2002) advises against in the context of MANOVA:  including variables in an analysis without theoretical 
justification, or simply because the data were available.  Too, when all variables are contributing equally, 
sT proportions are consistently higher than sW.  Finally, generally speaking, for conditions with mixed 
results (i.e., some cells with sT proportions higher and some cells with higher sW proportions), sW 
proportions tended to be higher for greater p-variable intercorrelation (Ρ > .81) or larger group sizes n 
(i.e., n = 500). 
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Table 13. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

0
.5
.5
.5

 
 
 
 
 
 

    

                   Absolute value of *  

.00 .17

.42 .70

.42 .70

.42 .70

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 
 

Table 14. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

.5

.5

.5

.5

 
 
 
 
 
 

     

                         

.41 .59

.41 .59

.41 .59

.41 .59

−

−

−

−

 
 
 
 
 
 

 

 
Table 15. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

.5

.5

.5
1

 
 
 
 
 
 

     

                   Absolute value of *  

.25 .47

.25 .47

.25 .47

.67 .82

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 
Table 16. Patterns for both Total and Within SCs where p = 4 and k = 2  
 

                     Population Mean Vector: µ2=  

.5

.5
1
1

 
 
 
 
 
 

     

                         

.25 .41

.25 .41

.57 .71

.57 .71

−

−

−

−

 
 
 
 
 
 

 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0621 .0723 .0872 .1120 .1576 

 .0378 .0513 .0605 .0913 .1507 
  50 .1847 .2719 .2918 .3844 .5253 

 .1682 .2477 .2752 .3712 .5394 
100 .3704 .4144 .5179 .5998 .6992 

 .3451 .3911 .5033 .5998 .7150 
500 .9522 .9646 .9634 .9682 .9694 

 .9450 .9612 .9646 .9714 .9710 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0254 .0524 .0814 .1424 .3699 

 .0113 .0143 .0287 .0528 .1781 
  50 .0809 .1234 .1943 .3386 .6008 

 .0663 .0972 .1552 .2744 .5293 
100 .1956 .2590 .3688 .5595 .8771 

 .1712 .2199 .3266 .5099 .8572 
500 .7810 .8492 .9334 .9832 .9990 

 .7336 .8110 .9104 .9766 .9980 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0439 .0555 .0577 .0902 .1238 

 .0368 .0510 .0630 .1287 .2098 
  50 .1652 .2200 .2648 .3991 .5766 

 .1654 .2274 .2831 .4383 .6912 
100 .3610 .4220 .5060 .6212 .7708 

 .3772 .4534 .5392 .6808 .8226 
500 .8972 .9396 .9670 .9902 .9992 

 .9364 .9684 .9800 .9902 .9974 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0244 .0413 .0500 .0621 .1036 

 .0159 .0266 .0275 .0636 .1173 
  50 .1346 .1656 .2147 .3074 .5988 

 .1074 .1391 .1920 .3004 .6334 
100 .3076 .3684 .4840 .5784 .7664 

 .2574 .3348 .4422 .5554 .7534 
500 .9022 .9378 .9794 .9932 .9998 

 .8694 .9136 .9552 .9824 .9960 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 
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Table 17. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

.5
1
1
1

 
 
 
 
 
 

    

                         

.20 .35

.49 .62

.49 .62

.49 .62

−

−

−

−

 
 
 
 
 
 

 

 
Table 18. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

1
1
1
1

 
 
 
 
 
 

     

                         

.44 .56

.44 .56

.44 .56

.44 .56

−

−

−

−

 
 
 
 
 
 

 

 

Table 19. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

0
.5
.5
1

 
 
 
 
 
 

     

                   Absolute value of *  

.00 .15

.34 .50

.34 .50

.74 .86

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 
Table 20. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

0
.5
1
1

 
 
 
 
 
 

     

                   Absolute value of   

.00 .11

.27 .43

.60 .72

.60 .72

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0353 .0534 .0734 .1335 .2462 

 .0184 .0269 .0408 .0735 .2267 
  50 .1764 .2290 .3037 .3982 .6531 

 .1234 .1626 .2382 .3464 .6979 
100 .3690 .4492 .5732 .7252 .8248 

 .2816 .3566 .5038 .6952 .8658 
500 .9254 .9464 .9714 .9856 .9960 

 .9056 .9486 .9846 .9950 .9996 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0371 .0582 .1013 .1984 .4455 

 .0131 .0175 .0277 .0496 .1497 
  50 .2132 .2842 .3558 .5222 .8764 

 .1138 .1600 .2126 .3397 .7762 
100 .4230 .5186 .6484 .8380 .9772 

 .2628 .3392 .4566 .6850 .9314 
500 .9732 .9834 .9982 .9998 1.000 

 .8990 .9304 .9842 .9986 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0191 .0273 .0335 .0436 .0819 

 .0235 .0267 .0387 .0459 .1170 
  50 .1095 .1431 .1660 .2134 .3582 

 .1055 .1583 .1770 .2236 .4078 
100 .2456 .2886 .3664 .4632 .6256 

 .2430 .2936 .3870 .5054 .6684 
500 .8494 .8828 .9244 .9634 .9812 

 .8180 .8574 .8992 .9496 .9794 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0224 .0213 .0348 .0428 .0776 

 .0178 .0213 .0262 .0343 .0746 
  50 .1486 .1642 .2118 .2726 .4964 

 .1364 .1434 .1920 .2712 .5284 
100 .2934 .3456 .4458 .4816 .6938 

 .2528 .2994 .4126 .4558 .7112 
500 .9152 .9466 .9586 .9736 .9800 

 .8596 .9020 .9272 .9690 .9828 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 
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Issues of Practical Significance 
 Even though no significance tests were conducted regarding which of the two SC proportions were 
prevalent, the practical usefulness of the information available in the tables is worth comment.  First, for a 
number of the conditions, the difference between proportions was minimal from a practical standpoint  
(i.e., ≈ .03 or less in many cells); thus, either sT or sW coefficients might be used for interpretation (see 
Tables 6, 7, 13, 16, 19, and 20). The primary goal of this study was to compare sT and sW coefficients to 
determine if sW coefficients might be more useful where the two groups were from two populations with 
identical covariance matrices. Nevertheless, it may be useful to speak of three additional issues of 
practical significance though such issues are not directly related to the research goal. First, the SC values 
for variables not contributing to group separation (0 SD in the effect vector) tended to exhibit a range of 
approximately .00 to .26, and the signs of the elements in the resulting SC vectors could not be predicted 
(see Tables 1, 2, 6, 7, 12, 13, 19, and 20). As for the values of the coefficients of the noncontributing 
variables, such generally fits the rule cited in Pedhazur (1997) that coefficient values of .3 of above are 
useful. 
 Second, regarding use of the identified ranges to guide researcher interpretation, one can see that 
other factors must be considered when determining the group size necessary to achieve a given proportion 
in DDA, such as the effect between groups on each continuous variable and the degree of continuous 
variable intercorrelation.  Moreover, given the jump in proportions between n = 100 and 500, in order for 
the tables of proportions to be useful, proportions associated with additional sample sizes between n = 
100 and 500 must be examined.  The inclusion of more mean effect values (e.g., .3 SD; .7 SD) might also 
further clarify the dynamic between higher sT and sW for conditions where neither coefficient consistently 
had a higher proportion. 
 Finally, whereas unusual, the use of identified SC patterns does offer the beginnings of a practical 
means of interpreting relative variable importance in DDA. As one compares the identified patterns with 
their respective effect vectors, one can see a relationship between the population effect vectors and 
sample SCs. How a researcher might utilize these identified patterns provides a focus for future DDA 
studies. 
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