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This article illustrates how, in the absence of true panel data, multivariate regression analysis can be used 
in conjunction with a pseudo panel data set to identify variables that were related to the increase in the 
proportion of two-income spouses in the United States between 1940 and 2000.  We present the 
procedures used to form the pseudo panel data set, construct and estimate the various models used to 
analyze the pseudo panel data, and interpret the results produced by those models.  Our analysis revealed 
an inverse relationship between the proportion of two-income spouses and the presence of young children 
as well as an increasing trend across generations in the proportion of two-income spouses. 

his article provides an illustration of how researchers can apply panel regression analysis 
techniques to pseudo panel data when true panel data are not available. The analysis conducted in 
this study was designed to identify variables that were related to the dramatic increase in the 
proportion of two-income, married couples in the United States between 1940 and 2000.  Ben-

Porath (1973) suggested that such investigations are best addressed through the use of panel data, and 
Baltagi (1995) described the substantial advantages provided by panel data analysis relative to cross-
section or time-series data.  However, due to the extensive time period covered by the data in our study, 
we were unable to form an appropriate panel data set.  Thus, we constructed a pseudo panel data set to act 
as a substitute for a true panel data set.   
  The remaining sections of this article present the techniques we employed to construct and analyze 
this pseudo panel data set.  Specifically, the first section of this article shows how a pseudo panel data set 
was constructed using cross-section data from the Decennial United States Census collected from 1940 to 
2000.  The second section describes the specifications of the various models used to analyze the pseudo 
panel data.  The third section discusses the procedures followed to interpret the results produced by the 
various models. The final section summarizes the findings and the procedures used to produce those 
findings.  
 

Construction of a Pseudo Panel Data Set 
  Panel data and pseudo panel data sets are obtained by pooling comparable cross-section data collected 
repeatedly over time. To maintain comparability, both true panel data and pseudo panel data should be 
based on responses to similar questions collected in a similar manner.  True panel data also needs to be 
repeatedly collected from the same individuals across time to ensure comparability.  The formation of a 
true panel data set is usually not a significant problem if individuals are defined to be a relatively small 
number of entities such as the member countries of the United Nations Security Council, and the 
questions are unambiguous (e.g., What is the population of each country?).  In these situations, panel data 
covering an extended period of time may be constructed and pseudo panel data are usually not needed as 
an alternative.   
  Comparability over time becomes a more significant issue for true panel data if an individual is 
defined to be individual people or households and the number of individuals is very large.  The Panel 
Study of Income Dynamics (PSID) from the Survey Research Center at the University of Michigan, and 
the National Longitudinal Surveys of Labor Market Experience (NLS) from the Center for Human 
Resource Research at The Ohio State University are two examples of this type of large, individual panel 
data.  These high-quality data sets are very careful to pose consistent questions to the same individuals 
across time.  Nonetheless, continued comparability becomes increasingly difficult over time as data are 
lost.  A loss of data can occur due to individuals (a) failing to answer some questions in one or more time 
periods, (b) failing to respond at all in some years, or (c) dropping out of the data set because of death, 
migration, or deciding to no longer participate in the survey.   
  When the loss of data is non-random, researchers are faced with potential problems of bias that 
become increasingly problematic over time, even in top quality panel data.  Since the likelihood of non-
random data loss increases as the time period covered by the panel data increases, large panel data sets 
usually cover a relatively short period of time. To answer long-term individual behavioral questions, such 
as the ones we are addressing in this article, pseudo panel data can be used as a substitute for the 
unavailable true panel data.  

T 



Russell & Fraas 

Multiple Linear Regression Viewpoints, 2005, Vol. 31(1) 
 

2 

  Deaton (1985) demonstrated that a pseudo panel data set has the advantage of a less stringent 
requirement.  That is, the data can be repeatedly collected from random samples drawn from the same 
time-stable cohort of individuals rather than repeatedly from the same specific individuals.  Pseudo panel 
data are constructed by first defining cohorts using individual characteristics that are stable over time.  If 
the size of each cohort is sufficiently large, successive surveys will generate successive random samples 
of individuals from each of the cohorts.  For every cohort, the mean value for each variable is then 
calculated for each time period.  These mean values become the observations in the pseudo panel data.  
As noted by Deaton, this procedure allows pseudo panel data to be constructed from any series of cross-
section data that includes variables that can be used to identify stable cohorts. 
  In addition to filling gaps in the availability of true panel data, Deaton (1985) identified four 
additional advantages of pseudo panel data.  First, data from different sources can be combined into a 
single set of pseudo panel data if comparable cohorts can be defined in each source.  Second, attrition 
problems often found in true panel data are minimized.  Third, the problem of the individuals' response 
errors is smoothed by the use of cohort means and can be explicitly controlled by using errors-in-
variables methods.  Fourth, inconsistencies between micro and macro analysis can be analyzed by moving 
from individual data to ever larger cohorts to one macro cohort.     
 
Source of Data and Data Issues 
  As previously discussed, it was necessary to identify a source of successive surveys for the 1940–
2000 time period.  For our analysis, the successive surveys were the one percent public use microdata 
samples available through the United States Census Bureau for the seven census years beginning with 
1940 and ending with 2000 (Ruggles, Sobek, Alexander, Fitch, Goeken, Hall, King, & Ronnander, 2004).  
Prior to forming our pseudo panel data set from this information, three data issues were addressed: (a) 
cohort stability over time, (b) measurement error bias, and (c) differentiation between age, period, and 
cohort effects. 
  Establishing  the stability of cohorts over time.  Even if awkward variables result, time-constant 
cohort definitions must be used with pseudo panel data. We defined cohorts using race, gender, and 
generation to prevent the movement of individuals between cohorts over time.  Because we were 
investigating the work behavior of married couples, we first considered marital status as an additional 
cohort definition.  While this would allow the straightforward calculation of the proportion of married 
couples that are two-income couples, marital status cannot be used as a cohort definition because 
individual marital status is not necessarily constant over time. To create a dependent variable of interest 
while maintaining cohort stability we calculated the proportion of the generation-race-gender cohort that 
consisted of working individuals married to working individuals.  While the proportion of the cohort that 
consists of working individuals married to working individuals is not as straightforward as the simple 
proportion of married couples that are two-income couples, this type of variable definition was necessary 
to maintain cohort stability.    
  Addressing errors in measurement.  As with true panel data, observations that are measured with a 
systematic error may need to be eliminated from the data to avoid biased results.  The possible gains in 
obtaining more interpretable results produced by this technique must be weighed against the potential for 
bias due to a systematic elimination of a non-random group of individuals.  For example, our study uses 
data from questions posed to individuals by the United States Census Bureau regarding their work 
behavior.  The questions are not designed to reflect a farmer's work pattern.  Consequently, a high degree 
of error in the responses of individuals engaged in farming exists.  To eliminate this source of error in the 
data, we followed the practice suggested by Coleman and Pencavel (1993) and eliminated all observations 
from individuals living on farms prior to the calculation of the pseudo panel data cell means.  This 
decision limits the applicability of the results to non-farmers.  More importantly, this decision implicitly 
assumes the migration between census years of individuals off the farm and into the population used to 
calculate the cohort means was a random event and introduced no systematic bias.  Immigrants to the 
United States were also eliminated from the data to maintain cohort stability.      
  Differentiating between age, period, and cohort effects.  When data contain observations on many 
individuals over an extended period of time, observed variance can be attributed to three functionally 
related effects: (a) differences between cohorts, which are labeled the cohort effect; (b) differences 
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associated with different points in the life cycle, which are labeled the age effect; and/or (c) differences 
associated with different periods, which are labeled the period effect.  The problem that must be 
addressed regarding these three effects is that they cannot be simultaneously identified because only one 
time dimension and one individual or cohort dimension exists.  More specifically, the functional 
relationship between all three effects causes perfect colinearity when all three effects are fully specified 
(Fienberg & Mason, 1985; Ryder, 1965).  For example in our data set, if a regression model includes a 
cohort variable of 1910 for the 1906-1915 birth cohort, and a mean age variable of 40 for that cohort 
using the 1950 census, the 1950 period variable cannot be specified because it is already defined by the 
cohort and age variables (e.g., 1910 + 40 = 1950).  
  The question of how best to solve this identification problem has generated controversy, especially 
among sociologists (Rodgers, 1982; Smith, Mason, & Fienberg, 1982).  If a linear restriction is imposed 
on any pair of age, period, or cohort variables (e.g., the membership in the cohort born 1906-1915 is no 
different from membership in the 1916-1925 cohort, thereby restricting the cohort variables to be equal 
for this pair), then the results are identifiable.  However, Rodgers shows that such a restriction must be 
made on strong a priori grounds, and the researcher should know the restriction can easily distort the 
results.  
  An alternative solution is to recognize that the three accounting variables are proxies for substantive 
characteristics associated with age, period, and cohort.  If one of the accounting measures can be replaced 
with a direct measure of a characteristic, the identification problem is solved (Feinberg, et al., 1985).  For 
example, if the accounting variable for period is replaced with a substantive measure of the 
unemployment rate for each year, the age and cohort effects can be identified.  The weakness of this 
strategy, however, is the inherent assumption that the substantive measure fully captures all aspects of the 
effect.  In other words, the use of the unemployment rate implicitly assumes there are no other substantive 
period effects such as military conflicts or high rates of inflation.   
  We addressed the age, period, and cohort identification problem by using a linear restriction that all 
period effects are equal and are included in the constant term.  This assumption allows a set of mean age 
dummy and cohort dummy variables to exactly identify the cohort and age effect in the regressions.  An 
assumption that the period effect is a linear trend would also solve the identification problem.  It should 
be noted, however, that the regression results produced by using a trend specification are more difficult to 
interpret because the cohort and age coefficients would then measure deviations from the trend. 
 
Formation of the Cohorts 
  Stable cohorts were defined by race, gender, and generation (i.e., year of birth).  The race 
characteristic was restricted to Caucasians and African-Americans only to maintain sufficient sample size 
for each of the two cohorts.  The gender characteristic consisted of a male cohort and a female cohort.   
And the generation characteristic consisted of seven cohorts with each cohort representing a ten-year 
span.  The first and seventh generation cohorts contained individuals born between 1906 and 1915, and 
between 1966 and 1975, respectively.  
   The race (2), gender (2), and generation (7) cohort definitions describe 28 potential (2*2*7 = 28) 
cohorts.  Repeated over the seven census years, there was a potential of 196 cells of cohort mean data.  
However, to reduce the impact of schooling and retirement on the decision to work, individuals younger 
than 25 or older than 64 were excluded from the data.  Consequently, beginning with the generation born 
in the years from 1946 to 1955, complete working age life-cycle data were not available because 
individuals in these later generations were less than 55 in the 2000 census.  Similarly, as the oldest 
cohorts reach the age of 65, they no longer contribute data.  As a result, the number of cells with data was 
reduced to 88 cells of sample mean data drawn from 28 distinct cohorts.  Table 1 lists the actual set of 88 
data cells that define the 88 cohort observations.  The numbers listed in the cells indicate the number of 
individuals contained in the cohorts each census year.  A review of Table 1 reveals the secular movement 
of younger cohorts into the data set and older cohorts out of the data set which reduced the number of 
useable cells to 88.   
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Table 1. Total Number of Observations in Each of the 88 Cohort Cells 
 Census years 
 1940 1950 1960 1970 1980 1990 2000 
White male born:   
1906-1915 21,943 23,208 80,242 72,874  
1916-1925  26,066 94,786 92,855 86,610  
1926-1935  89,373 93,129 92,353 89,550 
1936-1945  101,325 105,428 107,078 97,284
1946-1955  152,274 155,418 146,964
1956-1965  170,077 164,808
1966-1975   131,788
Black male born:   
1906-1915 1,897 2,299 7,865 6,957  
1916-1925  2,463 9,446 9,144 8,338  
1926-1935  9,539 9,926 9,684 7,516 
1936-1945  10,805 11,685 9,648 9,511
1946-1955  18,202 15,272 15,986
1956-1965  18,152 20,151
1966-1975   17,398
White female born:   
1906-1915 23,373 25,246 84,353 82,503  
1916-1925  29,139 100,706 99,122  
1926-1935  94,274 97,827 98,293 99,286 
1936-1945  106,583 108,219 111,627 105,490
1946-1955  155,083 159,867 151,485
1956-1965  174,432 169,314
1966-1975   134,886
Black female born:   
1906-1915 2,459 2,678 8,886 8,379  
1916-1925  3,240 11,338 10,799 10,138  
1926-1935  12,208 12,660 12,431 10,221 
1936-1945  14,065 14,852 12,304 12,079
1946-1955  22,416 19,071 20,126
1956-1965  23,611 25,833
1966-1975   23,256
Mean 12,418 14,292 50,251 51,907 62,821 73,946 77,897
 
Variable Formation 
  Three different types of variables can be used to represent the various characteristics of the pseudo 
panel data cohorts.  A given characteristic can be represented by (a) a continuous variable, (b) one or 
more dummy variables, or (c) one or more proportional variables.  The type of variable or variables 
formed to represent a given characteristic is, for the most part, dictated by the type of individual 
information collected in the surveys and its relationship to the cohort definitions.   
  Continuous variable.  Some of the information used to form a pseudo panel data set may reflect a 
continuous type of measurement, such as income.  Information of this nature would be used to form a 
continuous variable in the pseudo panel data set.  For example, a continuous income variable in the 
pseudo panel data set would be formed by calculating the mean income for the individuals in each cell 
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(i.e., cohort). It would have been possible for us to form an income variable in this manner, but we did not 
because income and educational level variables were highly correlated.  We included only educational 
level variables in our analysis.  One reason for selecting educational levels rather than income was to 
avoid the problems caused by truncated income data for individuals who were not working because their 
income was too low.  Thus, it should be noted that we did not form any continuous variables to represent 
cohort characteristics.   
  Dummy variables.  Other types of information used to form a pseudo panel data set could simply 
reflect the presence or absence of a specific characteristic for a given person.  For certain cells, a 
characteristic was possessed by everyone in the cell or by no one in the cell.  Variables formed from this 
type of information are true dummy variables.  That is, these variables contain only values of zero or one.  
Dummy variables were used to represent four characteristics identified in our pseudo panel data set: (a) 
gender, (b) race, (c) generation, and (d) age.   
  Since gender and race consisted of only two categories, only one dummy variable was required to 
represent each of these characteristics.  A value of zero was assigned to every cell that contained only 
males, while a value of one was assigned to every cell that contained only females.  For example, the 
cohort of Caucasian males who were born between 1906 and 1915 and who responded in 1940 contained 
only males.  Thus, the value for the gender variable was set equal to zero for this cohort.  In the same 
fashion, a value of zero was assigned to every cohort that contained only Caucasians, while a value of one 
was assigned to every cohort that contained only African Americans.  To facilitate the interpretations of 
the models used to analyze the pseudo panel data the gender and race variables were named for the groups 
assigned the value of one.  Thus, the gender and race variables were labeled female and African 
American, respectively.  
  The generation characteristic specified whether an individual was or was not a member of a given 
generation.  Unlike the gender and race characteristics, however, the generation characteristic consisted of 
more than two categories or levels.  The generation characteristic consisted of the following seven levels: 
(a) Born 1906-1915, (b) Born 1916-1925, (c) Born 1926-1935, (d) Born 1936-1945, (e) Born 1946-1955 
(f) Born 1956-1965, and (g) Born 1966-1975. Thus, seven dummy variables, with names corresponding 
to the cohort labels, were constructed to represent this generation characteristic.   
  While the information related to age would have allowed the calculation of a continuous mean age 
variable, we instead used four dummy mean age variables defined by the cohort's birth year and the 
census year to represent four levels of age.  The four age levels were (a) Mean Age 30, (b) Mean Age 40, 
(c) Mean Age 50, and (d) Mean Age 60.  Each variable contained a zero or a one value.  We used this set 
of dummy variables with names corresponding to the cohort labels rather than a single, continuous age 
variable to avoid a linear restriction on the impact of age on the proportion of two-income spouses.  
Another reason for not using a continuous variable is that the calculation of a mean age every ten years 
for a group that is evenly distributed over ten possible birth-years results in very discontinuous mean age 
values that cluster tightly around the mean ages.   
  Proportional variables.  Even though some information may indicate the presence or absence of a 
specific characteristic for each person in a cohort, the cohort will not be uniform regarding that 
characteristic.  That is, the cohort will contain both individuals with the characteristic and individuals 
without the characteristic.  For such variables, which are called proportional variables, a value equal to 
the proportion of individuals in the cohort with the characteristic was assigned to that cell for the variable.  
Our pseudo panel data contained four characteristics that required the formation of one or more 
proportional variables.     
  The dependent variable for this study, which was named two-income spouse, was a proportional 
variable.  The 88 values formed for this variable were equal to the proportion of individuals identified as 
working and married to a working spouse in each of the 88 cells.  To illustrate, since 40% of the 
individuals in the cohort containing male Caucasians born between 1906 and 1915 who responded to the 
survey in 1940 had a working spouse, the value for that cell in the dependent variable was 0.40.  This 
value indicates the probability is 0.40 that an individual in that cohort will be a two-income spouse.   
  Proportional variables were constructed for three additional characteristics: (a) young children, (b) 
marital status, and (c) education level.  The proportional variables formed for these characteristics were 
identified as independent variables.  One proportional variable was constructed for the young children 
characteristic.  Each value contained in this variable, which was named young child present, indicated the 
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proportion of the individuals in a given cohort who had at least one child less than five years of age.  The 
marital characteristic was also represented by one proportional variable.  Each value recorded for this 
variable, which was labeled married, represented the proportion of individuals in a given cohort who were 
married.  The educational characteristic reflected four levels of education: (a) less than high school, (b) 
high school graduate, (c) more than high school but less than four years of college, and (d) four or more 
years of college.  Four proportional variables formed to represent these four education levels were named 
(a) less than HS, (b) HS graduate, (c) more than HS, and (d) four or more years of college.  Every value 
for each of these variables was the proportion in the cohort with that level of education.  For example, the 
0.60 value recorded for the cohort containing male Caucasians born between 1906 and 1915 who 
responded to the 1940 survey indicated that 60% of these individuals had an education level less than 
high school.   
 

Specification and Estimation of the Pseudo Panel Linear Regression Models 
Since panel data can vary over both time and individuals, variables in a panel data regression 

model typically have a double subscript as follows: 
 

     yit  =  α  +β xit  + uit         i = 1, …, N;     t = 1, . . . , T                    (1) 
 

where i represents the cross-section dimension (e.g., individuals, households, firms, countries, etc.)  and t 
represents the time series dimension. α is a scalar, β is a vector of K explanatory variables, and  xit is the 
ith observation from time t on K explanatory variables.  
Most panel data analyses use the following one-way error component model:  
 

        uit  = µi +  vit                    (2) 
 

where µi represents unobservable, individual specific effects that do not change over time and vit 
represents the remaining unobserved effects that vary over both individuals and time. Combining 
Equations 1 and 2, the one-way model is fully described as follows: 
 

        yit  =  α  +β xit + µi +  vit  i= 1,…,N t = 1,…,T          (3) 
 

The term one way refers to the decomposition of the error component in only the one dimension of time-
constant, individual specific unobserved effects.  The following two-way error component model is also 
possible:  
            uit  = µi + λt  +  vit                     (4) 
 

where the symbol λt represents unobservable, time-specific effects that do not change over individuals.  
An example of this type of effect would be different levels of funding in different years for a school 
district that impact all individual students in a similar, yet unobservable manner.  
 

As with true panel data, a set of T independent cross sections represented by Equation 3 is pooled 
in pseudo panel data.  Unlike true panel data, however, with pseudo panel data, N is a new, and most 
likely different set of individuals sampled in each census.  To construct pseudo panel data, a set of C 
cohorts is defined such that any individual i sampled from the population will always be in the same, 
unique cohort every year.  For example, in the data used in our analysis, an African-American male born 
in 1930 would be included in the African-American, male, 1926 -1935 cohort if that person was sampled 
in the 1960 census, and that person would be included in the same cohort if that person happened to be 
included in the 1980 sample.  
  Taking the mean value of each cohort's sample in each time period results in: 
      ctctctct xy νµβ ++=   c = 1, …,C t = 1, …, T            (5) 

In this equation cty is the average of  yit over all individuals belonging to cohort c at time t. Unlike µi 

obtained from the true panel data Equation 3, ctµ  retains the t subscript to indicate that each period's 
cohort mean is calculated from a new, and most likely different set of individuals. This results in a 
potentially different ctµ  value for each period.  In practice, if the number of individuals in each cell is 
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large, as is the case for the data used in this article, the assumption is made that ( ctµ  = cµ ) for every t 

and the fixed cohort effect ( cµ ) is treated like a fixed individual effect (µi), resulting in the basic pseudo 
panel equation: 
        ctcctct xy νµβ ++=   c = 1, …,C t = 1, …, T             (6) 
Additionally, if the cell size is large, random individual fixed effects will tend to be eliminated in the 
process of estimating the cell mean, leaving only the cohort fixed effect. 
  Much of Deaton's (1985) seminal work on pseudo panel data focuses on the availability of variances 
and covariance obtained in the construction of the cohorts' sample means which can then be used to 
weight the analysis of the pseudo-panel data using an "errors-in-variables" technique.  Baltagi (1995) 
notes that as the average cohort size (number of cohorts/sample size) tends to infinity, measurement errors 
as well as their estimates tend to approach zero.  Consequently, as is the practice followed by many 
applied researchers (e.g., Pencavel, 1998), the analyses presented in this article ignore the measurement 
error problem and simply weight the analysis using cell-size to address heteroscedasticity arising from the 
different levels of precision for cell means with different numbers of observations.   
 
The Random Effects Model  
  The analysis of the pseudo panel data set begins with the estimation of the Random Effects Model 
using Equation 6.  This model assumes that the cµ  error term, which represents possible bias from 
unobserved, fixed cohort heterogeneity, is identically and independently distributed (IID) with a mean of 
zero (Baltagi, 1995).  Baltagi also notes that this assumption allows the Random Effects Model to support 
inference for the population, assuming the sample is representative of the underlying population.  
Consequently, the Random Effects Model is preferred when analyzing either panel or pseudo panel data 
sets.  
  In our Random Effects Model the vector of cohort variables, xct, included the following:  
   1. The gender and race characteristics were represented by dummy variables named female and 
African American, respectively.   
   2. The characteristics of whether individuals had at least one child less than 5 and their marital 
status were represented by proportional dummy variables named young child present and married, 
respectively.   
   3. Since the four dummy variables used to represent the four levels of the age characteristic were 
linearly dependent, only three of the variables were included in the model: (a) mean age 40, (b) mean age 
50, and (c) mean age 60.  The Mean Age 30 age level served as the reference group for the coefficients 
estimated for these three variables. 
   4. Since the six dummy variables used to represent the generation characteristic were linearly 
dependent, only five of the variables were included in the model: (a) born 1916-1925, (b) born 1926-
1935, (c) born 1936-1945, (d) born 1946-1955, (e) born 1956-1965, and (e) born 1966-1975.  The Born 
1906-1915 cohort level served as the reference group for the coefficients estimated for these five 
variables. 
   5. Since the four dummy variables used to represent the four levels of the education characteristic 
were linearly dependent, only three of the variables were included in the model: (a) less than HS, (b) more 
than HS, and (c) four or more years of college.  The HS Graduate education level served as the reference 
group for the coefficients estimated for these three variables. 

As previously mentioned, the use of the Random Effects Model relies on the assumption that cµ  
is IID with a mean of zero, that is, significant fixed effects do not exist.  Thus before we begin to interpret 
the results of the Random Effects Model we must determine if significant fixed effects do, in fact, exist.  
The first step in this testing procedure is to construct and estimate a Fixed Effects Model.     
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The Fixed Effects Model and Testing for Fixed Effects.  
  The Fixed Effects Model, which is also called a Least Squares Dummy Variable (LSDV) model 
(Green, 1993), is estimated as follows when using pseudo panel data:   
          ctcctct xy νµβ ++=            (7) 
This is identical to Equation 6.  However, xct now includes a set of C cohort dummy variables.  This 
assumes the impact of each cohort contains an estimable component that is fixed across time and these 
cohort components are significantly different.  This is in contrast to the Random Effects Model which 
assumes these cohort components are IID and are simply included in the cµ  error term.  Unlike the 
Random Effects Model, inference from the results of the Fixed Effects Model is limited to the type of 
cohorts included in the analysis.  
  The Fixed Effect Model includes the same variables used to represent the characteristics of age, 
young children, and education as those included in the Random Effects Model.  However, the dummy 
variables used to represent the gender, race, and generation characteristics are fully defined by the 28 
cohort dummy variables.  Consequently, the variables used to represent these characteristics, which are 
included in the Random Effects Model, are not specified in the Fixed Effects Model.  
 As previously mentioned, the preferred Random Effects Model can only be used if there are no 
significant fixed effects.  To test for significant fixed effects the random effects estimation is compared to 
the fixed effects estimation.  Specifically, a test for joint significance of the individual fixed effect dummy 
variables is calculated as follows (Baltagi, 1995): 
 

     F0 =  (RRSS – URSS)/ (N-1)  ~ FN-1, N(T - 1) - K              
         URSS/(NT – N – K) 
 

In this equation RRSS is the restricted residual sum of squares obtained from the random effects 
estimation and URSS is the unrestricted residual sum of squares obtained from the fixed effects 
estimation.  N represents the total number of individuals, (N = C = 28 cohorts for our analysis), while T is 
the number of time periods (7 census years for our analysis).  K represents the number of independent 
(non-cohort) variables in the xct vector of the Fixed Effects Model, (K = 8 for our analysis).  If the panel is 
balanced, C*T will result in the total number of observations used in the regressions.   
  When the data do not contain information on all cohorts in all time periods, as is the case for our 
pseudo panel data set, CT overstates the number of observations and the associated degrees of freedom.  
For example, in our data set, CT = 28*7 = 196.  However, only 88 observations are actually available due 
to the life-cycle nature of the data.  Consequently, when calculating the F value n for our pseudo panel 
data set, the NT  is equal to 88 and the denominator's degrees of freedom becomes 52 (88 - 28 - 8 = 52).   
 
Data Transformation Models 
 If significant fixed effects exit, the Random Effects Model cannot be used.  One alternative to using 
the Random Effects Model is to use the Fixed Effects Model.  The Fixed Effects Model, however, may 
result in an undesirable loss of degrees of freedom due to the addition of a large number of cohort dummy 
variables.  In these situations, the Within and the First-Differenced Models, which use transformed data, 
provide attractive alternative techniques to eliminate fixed effects without a large decrease in degrees of 
freedom.  It should be noted that even if no significant fixed effects are present, the Within 
Transformation Model and the First-Differenced Model, along with the Between Transformation Model, 
provide additional insight into the core results of the Random Effects Model.    
  Researchers should be aware that when the Fixed Effects Model or the Within Transformation Model 
and First-Differenced Model are used, they do not eliminate bias from unobserved cohort heterogeneity 
that changes over time.  In addition, the data transformations we employed for the Within and First-
Differenced Models eliminate all observed as well as unobserved time-constant variables from the 
regressions.  Despite these limitations, transformed panel data can offer a powerful rebuttal to criticisms 
that conclusions based on observed variables are actually just the result of correlation with unobserved 
variables. 
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 The Within Transformation Model. The within transformation allows estimation of an equation where 
the bias from unobserved fixed cohort effects is swept from the equation, along with observed fixed 
effects.  The within transformation controls for cohort fixed effects by calculating each variable's mean 
value across time for each cohort, then subtracting that mean from all observations.  With pseudo panel 
data, this transformation first requires the calculation of each cohort's time mean values using the set of 
the cohort's mean values found in the data cells.  Specifically, time mean values for the equation to be 
estimated are calculated as follows: 
         cccc xy νµβα +++=                (8) 
Equation 8 is identical to Equation 6, except the t subscript has been eliminated to indicate a mean value 
across time as well as across cohorts.  The µc error term represents the unobserved fixed cohort effect and 
consequently is unchanged between Equations 6 and 8.  The within transformation is obtained by 
subtracting Equation 8 from Equation 6 as follows: 
       cctcccctcct vvxxyy −+−+−+−=− µµβαα )(           (9) 
The intercept term (α), as well as the cohort fixed effect (µc), do not change over time.  Consequently, 
they are already time means by definition.  If µc is assumed to sum to 0 across all cohorts, the within 
transformation is estimated as follows (Baltagi, 1995): 
          )()( cctcctcct vvxxyy −+−=− β              (10) 
  Data for the four race-gender cohorts from the youngest generation were also eliminated from the 
estimation of the Within Transformation Model.  This was necessary because the youngest generation had 
observations in only the 2000 Census.  Consequently, the time mean equaled the actual 2000 Census 
observations and the within transformation resulted in a set of zero values for all variables.  Thus the 
number of observations for the Within Transformation Model was reduced to 84.  
  Variables used to represent characteristics that do not change over time (e.g., gender, race, and 
generation) are not included in the within transformation data set because the transformation of the values 
contained in these variables caused them to equal zero. The same set of proportional variables contained 
in the Random and Fixed Effect Models are also included in the Within Transformation Model. 
  The within transformations of true dummy variables that vary with time (e.g., the dummy variables 
for the age characteristic) cause a problem with the interpretation of the results produced by the Within 
Transformation Model.  To allow us to interpret the coefficients for such variables the values that are 
generated by the within transformation are replaced in the transformed data set by their original 0 and 1 
values.  
  If true panel data are used, the residual sum of squares (RSS) for the Within Transformation Model 
will be identical to the RSS for the Fixed Effects model.  This relationship allows researchers to test for 
significant fixed effects in large data sets (e.g., the PSID) where software limitations on matrix size 
preclude estimation of a Fixed Effects Model with thousands of dummy variables. Unfortunately, when 
the Within Transformation Model is used with pseudo panel data the RSS produced by the model is not 
identical to the Fixed Effects RSS.  This inconsistency is caused by the cell-size weighting used in pseudo 
panel estimations.  As a result, when the transformed pseudo panel data are analyzed with the Within 
Transformation Model its RSS cannot be used to test for fixed effects.   
  Fortunately, the potential problem of too many dummy variables in the Fixed Effects Model can be 
addressed with pseudo panel data by deciding how narrowly to define the cohorts.  For example, if we 
had defined generations on a one-year basis rather than a ten-year basis, an unmanageable 280 cohorts, 
and thus 280 additional dummy variables, would be required.  In that case we would not have been able to 
practically test for the presence of significant fixed effects.  Since our pseudo panel used ten-year 
generations, only 28 additional dummy variables were needed to estimate the Fixed Effects Model.  
 

  The Between Transformation Model.  We also estimated the Between Transformation Model, which 
used data transformed by Equation 8.  It should be noted that the application of this transformation 
procedure to the pseudo panel data set produces values for the set of dummy variables used to represent 
the age characteristic that do not vary.  Hence that set of variables cannot be included in the Between 
Transformation Model. With the exception of the dummy variables used to represent the age 
characteristic, the Between Transformation Model includes the same set of variables used in the Random 
Effects Model. Rather than eliminating unobserved fixed cohort heterogeneity, the Between 
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Transformation Model isolates this heterogeneity and provides useful insights in the interpretation of the 
results of the Random Effects Model. 
 The First-Differenced Model.  If a hypothesis involving a trend is to be tested and significant fixed 
effects from unobserved cohort heterogeneity is a concern, a first-differencing transformation can be used 
to sweep away the fixed effect and retain the trend.  Calculating the first differences results in fewer 
degrees of freedom in the First-Differenced Model than exist in the Random Effects Model.  This 
difference is due to the loss of the oldest observations for all 28 cohorts. As a result, the transformed 
pseudo panel data set used in conjunction with the First- Differenced Model contains 60 observations 
rather than 88.  First-differenced data are obtained by subtracting each cohort's variable values from the 
prior year's values as follows: 
       1,1,1, )( −−− −+−+−+−=− tcctcctccttcct vvxxyy µµβαα                (11) 
  The First Differenced model is estimated as follows: 
       1,1,1, )( −−− −+−=− tccttccttcct vvxxyy β                  (12) 

The unobserved cohort fixed effect (µc) is removed from the data along with any observed variable that 
does not change over time (e.g., gender, race, and generation).  Calculating the first difference for age 
characteristic dummy variables resulted in three possible values (i.e., -1, 0 or 1).  These age characteristic 
dummy variables were dropped from the First-Differenced Model because the change in actual mean age 
for the cohorts between censuses was a constant value of ten.  Thus the only variables contained in the 
First-Differenced Model are the proportional variables representing the young children, marital status, 
and education characteristics.   
 

Interpretation of the Regression Results 
  Our analysis of the pseudo panel data set began by estimating the Random Effects and Fixed Effects 
Models.  The results produced for these models are listed in Table 2.  Once these models were estimated 
the following F test was conducted to determine whether the fixed effects were statistically significant:   

       F = (0.0769 - 0.0548)/27  = 0.773 
                (0.0548/52) 
 

where: (a) RRSS=.0769, (b) URSS=.0548, (c) N-1=28-1=27, and (d) NT-N-K = 88 - 28 – 8 = 52.   
  The probability value corresponding to the F value of .773 (p = .76) indicates the fixed effects were 
not statistically significant.  This result indicates the impacts of the gender, race, and generation 
characteristics were sufficiently consistent across all 28 cohorts such that controlling for all the 
interactions of these characteristics in the Fixed Effects Model does not significantly improve the fit of 
the regression.  Thus we are able to use the Random Effects Model as the foundation of the analysis due 
to our finding of no significant fixed cohort effect.   
 To assist in assessing the relationship of each characteristic to the dependent variable, the Within 
Transformation, Between Transformation, and First-Differenced Models were also estimated.  The results 
produced for all five models are contained in Table 2. 
 

An Analysis of the Independent Variables 
  Gender. In the Random Effects Model the coefficient for the female variable (-0.0022) was not 
significant at the 0.05 level, suggesting no significant difference between the proportion of two-income 
spouses was found in male cohorts compared to female cohorts. In addition, the coefficient for the female 
(-.0120) was not significant at the 0.05 level in the Between Transformation Model.   
 Additional information regarding the relationship between the gender characteristic and the 
proportion of two-income spouses is not produced by the Fixed Effects, the Within Transformation and 
the First-Differenced Models.  In the Fixed Effects Model the single dummy variable for gender was not 
estimated because it was interacted with the race and generation variables to produce the 28 cohort 
dummy variables.  Because gender is a time-constant variable, it was eliminated from the Within 
Transformation and First-Differenced Models.  Thus, the impact of gender cannot be estimated in those 
models.   
 Race. In the Random Effects Model the coefficient for the African American variable  
(-0.0431) was not significant at the 0.05 level, suggesting no significant difference between the 
proportion of two-income spouses found in the African-American cohorts compared to the Caucasian 
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cohorts.  In addition, the coefficient for the African American variable (-0.0583) was not significant at the 
0.05 level in the Between Transformation Model. Additional information regarding the relationship 
between the race characteristic and the proportion of two-income spouses is not produced by the Fixed 
Effects, the Within Transformation and the First-Differenced Models.  In the Fixed Effects Model the 
single dummy variable representing the race characteristic is not estimated because it was interacted with 
the gender and generation variables to produce the 28 cohort dummy variables.  Because race is a time-
constant variable, it was eliminated from the Within Transformation and First-Differenced Models.  Thus, 
the impact of race cannot be estimated in those models. 
  Age. The amount of variation in the dependent variables accounted for by the three dummy variables 
used to represent the age characteristic in the Random Effects Model was significant at the 0.01 level.  To 
understand the life-cycle work pattern we compared and tested coefficients of adjacent age cohorts.  The 
test results of those comparisons revealed that as people aged there was a significant increase in the 
proportion of two-income spouses until they reached the age category of Mean Age 60.  At that point in 
time the proportion declined to a level that was not significantly different from the proportion estimated 
for the Mean Age 30 cohort.  
  Before we drew any conclusions regarding the relationship between the age characteristics variables 
and the dependent variable, we compared the results of the Fixed Effects Model to the results of the 
Random Effects Model to assess the robustness of the relationship.  The amount of variation in the 
dependent variables accounted for by the three dummy variables used to represent the age characteristic 
in the Fixed Effects Model was also significant at the 0.01 level.  Comparisons of the adjacent age cohort 
coefficients verified the life-cycle work pattern estimated by the Random Effects Model.  The statistical 
tests of those adjacent coefficients, however, were not significant except for the decline in the coefficient 
values from the Mean Age 50 cohort to the Mean Age 60 cohort.   
  Because the Within Transformation Model is an alternative method of controlling for fixed effects, 
we anticipated it would produce similar results.  As expected, the amount of variation in the dependent 
variable accounted for by the three dummy variables used to represent the age characteristic in the Within 
Transformation Model was also significant at the 0.01 level. Comparisons of the adjacent age cohort 
coefficients verified the life-cycle work pattern and statistical significance estimated by the Fixed Effects 
Model.   
  Additional information regarding the relationship between the age characteristic and the proportion of 
two-income spouses was not produced by the Between Transformation and the First-Differenced Models 
because any variance in the age characteristic is eliminated by the transformations. Thus, the impact of 
age cannot be estimated in those models. 
 Generation.  In the Random Effects Model, the amount of variation in the dependent variable 
accounted for by the six dummy variables used to represent the generation characteristic in the Random 
Effects Model was significant at the 0.01 level.  Once again the adjacent coefficient of these variables 
were compared and tested.  The tests of adjacent coefficients were significant, which suggests that the 
proportion of two-income spouses increases with each generation.   
  The Fixed Effects Model contained 27 of the possible 28 three-way interaction variables created from 
the various levels of the gender, race, and generation characteristics.  The variable not included in the 
series of linearly dependent variables represented the cohort labeled Caucasian, Male, Born 1906-1915.  
The amount of variation in the dependent variable accounted for by these 27 dummy variables in the 
Fixed Effects Model was significant at the 0.01 level.  To determine whether the generational work 
pattern revealed by the Random Effects Model also existed for four race-gender subsets (African-
American Female, African-American Male, Caucasian Female, and Caucasian Male), we compared and 
statistically tested the coefficients of adjacent generations within these subsets. These test results 
indicated each generation had a higher proportion of two-income spouses than its preceding generation.  
The tests of adjacent coefficients were significant, except for the two youngest Caucasian, female cohorts.  
Thus the increasing generational work pattern revealed by the Random Effects Model was also found for 
each of the four race-gender subsets.    
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Table 2. Regression Results of the Random Effects, Fixed Effects, Within Transformation, Between 
Transformation, and First-Differenced Models 
   Type of Model   
Independent 
variables 

Random 
Effectsa 

Fixed 
Effectsb 

Within 
Transformationc 

Between          
Transformationd 

First 
Differencede 

Female -0.0022 
 (0.0112) 

n/a n/a -0.0120 
(0.0079) 

n/a 

African-
American 

 -0.0431 
 (0.0384) 

n/a n/a -0.0583 
(0.0320) 

n/a 

Mean age 40 0.0599* 
 (0.0269) 

0.0180 
(0.0332) 

0.0186 
(0.0353) 

n/a n/a 

Mean age 50 0.1076** 
(0.0423) 

 0.0527 
 (0.0502) 

 0.0326 
 (0.0561) 

n/a n/a 

Mean age 60 0.0117 
(0.0457) 

 -0.0207 
 (0.0534) 

 -0.1010 
 (0.0581) 

n/a n/a 

Born  
1916-1925 

0.0939** 
(0.0258) 

n/a n/a 0.0809** 
(0.0168) 

n/a 

Born  
1926-1935 

0.1989** 
(0.0386) 

n/a n/a 0.1708** 
(0.0271) 

n/a 

Born  
1936-1945 

0.3684** 
     (0.0550) 

n/a n/a 0.3283** 
(0.0319) 

n/a 

Born  
1946-1955 

 0.5369** 
 (0.0702) 

n/a n/a 0.4783** 
(0.0368) 

n/a 

Years of 
college ≥ 4 

0.1707 
(0.3303) 

1.4238* 
(0.6658) 

0.2385 
(0.3827) 

-0.2464 
(0.3240) 

1.3633 
(0.8716)

Caucasian Male     
Born  
1916-1925 

n/a 0.2459** 
(0.0560) 

n/a n/a n/a 

Born  
1926-1935 

n/a 0.3883** 
(0.0858) 

n/a n/a n/a 

Born  
1936-1945 

n/a 0.6449** 
(0.1244) 

n/a n/a n/a 

Born  
1946-1955 

n/a 0.8108** 
(0.1494) 

n/a n/a n/a 

Born  
1956-1965 

n/a 1.0027** 
(0.1473) 

n/a n/a n/a 

Born  
1966-1975 

n/a 1.0945** 
(0.1586) 

n/a n/a n/a 

     African American Male    
Born  
1906-1915 

n/a -0.2811** 
(0.1047) 

n/a n/a n/a 

Born  
1916-1925 

n/a -0.0679 
(0.0720) 

n/a n/a n/a 

Born  
1926-1935 

n/a 0.2086** 
(0.0513) 

n/a n/a n/a 

Born  
1936-1945 

n/a 0.6149** 
(0.0831) 

n/a n/a n/a 

Born  
1946-1955 

n/a 0.8923** 
-0.1223 

n/a n/a n/a 

Born  
1956-1965 

n/a 1.1036** 
(0.1445) 

n/a n/a n/a 

Born  
1966-1975 

n/a 1.2912** 
(0.1621) 

n/a n/a n/a 
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Table 2 (Continued).  
   Type of Model   
Independent 
variables 

Random 
Effectsa 

Fixed 
Effectsb 

Within 
Transformationc 

Between          
Transformationd 

First 
Differencede 

   Coefficient   
     Caucasian  Female     
Born  
1906-1915 

n/a 0.0944** 
(0.0338)

n/a n/a n/a 

Born  
1916-1925 

n/a 0.3896** 
(0.0731)

n/a n/a n/a 

Born  
1926-1935 

n/a 0.5656** 
(0.0977)

n/a n/a n/a 

Born  
1936-1945 

n/a 0.7635** 
(0.1213)

n/a n/a n/a 

Born  
1946-1955 

n/a 0.9081** 
(0.1435)

n/a n/a n/a 

Born  
1956-1965 

n/a 1.0138** 
(0.1486)

n/a n/a n/a 

Born  
1966-1975 

n/a 1.0597** 
(0.1658)

n/a n/a n/a 

     African American Female    
Born  
1906-1915 

n/a -0.2707** 
(0.1051)

n/a n/a n/a 

Born  
1916-1925 

n/a -0.0428 
(0.0731)

n/a n/a n/a 

Born  
1926-1935 

n/a 0.2465** 
(0.0597)

n/a n/a n/a 

Born  
1936-1945 

n/a 0.6207** 
(0.0909)

n/a n/a n/a 

Born  
1946-1955 

n/a 0.9140** 
(0.1271)

n/a n/a n/a 

Born  
1956-1965 

n/a 1.0842** 
(0.1436)

n/a n/a n/a 

Born  
1966-1975 

n/a 1.2552** 
(0.1550)

n/a n/a n/a 

Constant -0.0177 
(0.1076) 

-0.9773** 
(0.2549)

0.2627** 
(0.0507) 

0.0783 
(0.0758) 

-0.0195 
(0.0207) 

 
*significant at the 5% level 
**significant at the 1% level 
aRandom Effects Model: N=88; F(16,71)=157.1**; R2=.97; Root MSE=.033; RSS=.0769 
bFixed Effects Model: N=88; R2=.98; F(35,52)=74.5**; Root MSE=.033; RSS=.0548 
cWithin Transformation Model: N=84; R2=.8237; F(8,75)=43.8**; Root MSE=.047;RSS=.1665 
dBetween Transformation Model: N=28; R2=.99; F(13,14)=521.0**; Root MSE=.011; RSS=.0016 
 eFirst-Differenced Model: N=60; R2=.7331; F(5,54)=29.7**; Root MSE=.0610; RSS=.2012 
fThe standard errors are enclosed in parentheses 
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  In the Between Transformation Model, the amount of unique variation in the dependent variable 
accounted for by the six dummy variables used to represent the generation characteristic was significant 
at the 0.01 level.  The tests of adjacent coefficients found the same pattern of a significant increase in the 
proportion of two-income spouses with each generation that was found in the Random Effects and Fixed 
Effects Models, further supporting the robustness of the generational pattern. 
  Since generation is a time-constant variable, it was eliminated from the Within Transformation and 
First-Differenced Models.  Thus, these models could not provide additional information regarding the 
relationship between the generation characteristic and the proportion of two-income spouses.   
  Young children. In the Random Effects Model the coefficient for the young child present variable 
(-0.2873) was significant at the 0.01 level. Because this is a proportional variable, interpreting the 
coefficient for a one-unit change in the variable is the method of interpretation. A more realistic 
interpretation is that a 0.10 increase in the proportion of a cohort with at least one young child present 
was associated with a 0.02873 decrease in the proportion of two-income spouses. The Fixed Effects 
Model confirmed this same, significant relationship.  
  In the Within Transformation Model the coefficient for the young child present variable (-0.2778) 
was also significant. This suggests that over the course of a cohort's life-cycle, the timing of when couples 
choose to have children significantly impacts changes in the proportion of two-income spouses within 
that cohort. The coefficient for the young child present variable was not significant in the Between 
Transformation model at the 0.05 level.  This suggests that cohorts which average a higher proportion of 
individuals with young children present do not have a significantly lower proportion of two-income 
spouses.  Finally, in the First-Differenced Model, the coefficient for the young child present variable 
(-0.6781) was significant at the 0.01 level. This provided further confirmation of the inverse relationship 
between the proportion of two-income spouses and the proportion of individuals with young children that 
was found in the Random Effects, Fixed Effects, and Within Transformation Models.  
  Marital status.  To control for changes in a cohort's proportion of married individuals, all five models 
included a married variable that measured the proportion of a cohort that was married.  This variable was 
not significant at a 0.05 level in any of the models.  
  Education. In all five models, the amount of unique variation in the dependent variable accounted for 
by the three dummy variables used to represent the education characteristic was significant at the 0.01 
level. The coefficient for the less than HS variable in the Random Effects Model (0.4774) was significant 
at α = 0.01. Apparently, individuals with the least amount of education are more likely to be two-income 
spouses relative to individuals with a high school education. Assuming education and income are 
correlated, this finding may be due to greater pressure for both spouses to work if income is low. The 
coefficient for less than HS variable was also significant and positive in the Fixed Effects and Between 
Transformation Models, which supports the pattern suggested by the Random Effects Model. The 
coefficient in the Within Transformation Model was also positive, but it was not significant at α = 0.05.  
  The coefficient for less than HS variable in the First-Differenced Model (3.0199) was significant at 
the 0.01 level.  Because our data set excludes individuals younger than age 25, this indicates that a 
significant number of individuals completed their high school education after age 25. It should be noted 
that this coefficient has the largest of any of the proportional variables used to represent the educational 
characteristics. This coefficient indicated that a 0.10 increase between censuses in the proportion of a 
cohort with at least a high school education was associated with a 0.30199 decrease in the proportion of 
two-income spouses. We compared the coefficients for each level of education beyond high school with 
the coefficient for the adjacent level of education and found no significant difference in the coefficients 
for any of the five models at the 0.05 level. This suggests that the incentive for both spouses to work to 
earn the higher salary available with increased education is approximately offset by the decreased need 
for both spouses to work as higher education allows one spouse to contribute more income to the 
household.   
 

Summary 
  In an attempt to identify characteristics that are related to the increase in the proportion of two-
income spouses we constructed a pseudo panel data set from the Decennial United States Census 
collected from 1940 to 2000.  A comparison between the Random Effects Model and the Fixed Effects 
Model revealed that the fixed effects were not statistically significant.  Consequently, the Random Effects 
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Model formed the core of our analysis. Additional insights regarding the relationships of the various 
characteristics and the proportion of two-income spouses were provided by the results produced by the 
Within Transformation, Between Transformation, and First-Differenced Models, which used transformed 
data sets.  The Random Effects Model revealed a significant life-cycle pattern of increasing probability of 
two-income spouses as the cohorts age. The Random Effects, the Fixed Effects, and the Between 
Transformation Models all showed a significant increase across generation cohorts in the proportion of 
two-income spouses.  
  Our findings consistently support the hypothesis that within a cohort, the presence of young children 
reduces the probability of two-income spouses. Moving from less than a high school education to a high 
school level of education was significantly associated with a decrease in the proportion of two-income 
spouses, possibly due to decreased pressure to work as incomes increased with education.  The 
insignificant coefficients for education levels beyond high school appear to reflect offsetting incentives 
for spouses to work to take advantage of higher potential income and the reduced need to work if 
household income is higher. 
  We have sought to provide a reference or guide to researchers who encounter questions that can be 
addressed with the use of panel data, yet find no true panel data set is available.  This paper demonstrated 
how pseudo panel data can be constructed to address the lack of a true panel data set with special 
attention given to some of the nuances inherent in its construction.  We also described and illustrated how 
the Random Effects, Fixed Effects, Within Transformation, Between Transformation, and First-
Differenced Models were constructed and interpreted when applied to a pseudo panel data set. It is our 
hope this article will encourage researchers to investigate questions that may have been left unanswered 
due to a lack of panel data. 
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