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In general linear models for categorical data analysis, goodness-of-fit statistics only provide a broad 
significance test of whether the model fits the sample data. Hypothesis testing has traditionally reported 
the chi-square or G2 likelihood ratio (deviance) statistic and associated p-value when testing the 
significance of a model or comparing alternative models. The effect size (log odds ratio) and confidence 
interval (ASE) need to receive more attention when interpreting categorical response data using the 
logistic regression model. This trend is supported by recent efforts in general linear models for continuous 
data (t-test, analysis of variance, least squares regression) that have criticized the sole use of statistical 
significance testing and the p < .05 criteria for a Type I error rate.. 

he American Psychological Association has recently advocated that hypothesis testing go beyond 
statistical significance testing at p < .05 for Type I error rate (Wilkinson, L., & APA Task Force on 
Statistical Inference, 1999). The traditional statistical significance testing has placed an emphasis 
upon the probability of a statistical value occurring beyond a chance level given the sampling 

distribution of the statistic (Harlow, Mulaik, and Steiger, 1997).  Recently, more emphasis has been 
placed on the practical interpretation of results that include effect size, confidence interval, and 
confidence intervals around an effect size; however, the discussion centered on statistical applications that 
use continuous data (Kirk, 1996). The present study highlights a typical application that uses the general 
linear model for categorical data analysis (DeMaris, 1992; Fox, 1997).  The logistic regression goodness-
of-fit criteria for categorical data analysis will be presented (Klienbaum, 1994). The results go beyond the 
statistical test of significance and highlight the important role that effect size (odds ratio, log odds ratio, 
relative risk or probability ratio) and confidence interval (asymptotic standard error; ASE) have in the 
general linear model for categorical data analysis.   
  Categorical data analysis techniques are used when subject responses are binary and mutually 
exclusive.   The typical method of analyzing relationships amongst categorical variables is to use the chi-
square statistic or phi correlation coefficient (Upton, 1978). The general linear model for categorical 
response variables however has become more widely used in the behavioral sciences because many 
research questions involve a categorical dependent variable and one or more categorical independent 
variables.  
  Logistic regression is a special case of log-linear regression where both the dependent and 
independent variables are categorical in nature (Hosmer & Lemeshow, 1989; Klienbaum, 1994). It offers 
distinct advantages over the chi-square method for analysis of categorical variables. In logit models, 
natural log odds of the frequencies are computed that allow different models and different model 
parameters to be compared given the additive nature of the G2 component for each model. If a non-
significant likelihood-ratio chi-square (G2) value is computed, then a given model fits the observed data.  
 
Goodness-of-fit Criteria 
  A theoretical logit regression model is generally postulated (null model or base model).  A common 
practice is then to create alternative models where each new model contains parameters of the previous 
model, plus a hypothesized new parameter.  The theoretical model can be tested beginning with a null 
model and adding parameters, or with a saturated model deleting parameters.   Several logit regression 
models may fit equally well based on various goodness-of-fit criteria that are used to determine whether 
the model fits the data in the logit regression model.  The goodness-of-fit criteria typically reported are: 
 
  1.  Pearson chi-square  
  2.  Likelihood-ratio chi-square (G2) 
  3.  Predictive efficacy (R-squared type measure) 
  4.  Deviance (-2 [LM – LS]) 
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  Pearson chi-square is calculated as: χ2 = Σ (O – E)2 / E.  The chi-square distribution is defined by 
degrees of freedom, df.  The mean of the chi-square distribution is equal to df with the standard deviation 
equal to df2 .  As the degrees of freedom, df, increases the chi-square sampling distribution goes from 
a right skewed distribution to a normal distribution.   
  The likelihood-ratio chi-square (G2) is based on the ratio of maximum likelihood values, Λ, and 
expressed in logarithm form as  – 2 log (Λ).   The G2 statistic can also be expressed as: G2 = 2 Σ Oij log 
(Oij / Eij) where O is the observed cell frequency, E is the expected cell frequency, and the i and j 
subscripts represent the individual cells in the cross-tabulated table.  The log transformation yields an 
approximate chi-squared sampling distribution with a minimum value of zero and larger values 
suggesting rejection of the null hypothesis. The p-value simply indicates the strength of evidence against 
the null hypothesis. 
  Predictive efficacy refers to whether a model generates accurate predictions of group membership on 
the dependent variable.  It is possible to have an excellent fit between the logit model and the data without 
having predictive efficacy. Recall, if G2 = 0, a saturated model exists which perfectly fits the data, yet 
predictive efficacy can be far from perfect. The R2 type measure for logistic regression is not meant as a 
variance accounted for interpretation, as traditionally noted in least squares regression, because it under 
estimates the proportion of variance explained in the categorical variables.  Instead, the R2 type measure 
is an approximation for assessing predictive efficacy ranging from zero (0) [independence model] to one 
(1) [saturated model].  
 The deviance value provides a way to examine differences in nested logistic regression models.  The 
G2 from one model is simply subtracted from the G2 of the second model.  This is similar to testing a full 
versus restricted model in multiple regression. The deviance value is -2[Lm -  Ls ] where L represents the 
respective log-likelihood function of each model with the degrees of freedom equal to the difference in 
the degrees of freedom of the two models. The deviance is the likelihood ratio statistic (G2) for comparing 
model M to the saturated model S. Since the saturated model has G2 = 0, this reduces to the G2 statistic for 
the hypothesized logistic regression model. If G2 is non-significant, then additional independent 
categorical predictors in the model are not needed. This type of test is only appropriate for the likelihood-
ratio chi-square and not the Pearson chi-square because adding additional independent categorical 
predictor variables will never result in a poorer fit of the model to the data. 
 
Effect Size and Confidence Interval Criteria 
  Effect size measures and the asymptotic standard error (ASE) play a major role in interpreting the 
practical significance of estimated parameters in general linear models for categorical variables.  The 
parameter estimates in logistic regression are calculated using maximum likelihood estimation and 
possess asymptotic properties. As sample size increases, the parameter estimates become unbiased and 
consistent with population parameters. The sampling distribution also approaches normality with variance 
lower than other unbiased estimation procedures.  
  The effect size measures typically used in categorical data analysis are:  
  1. z test 
  2. odds ratio 
  3. log odds ratio 
  4. relative risk or probability ratio  
 
  The z test, given larger samples, can be used to test a parameter’s significance and compute a 
confidence interval.  The formula for z is: z  = B / ASE.  The confidence interval is computed as:  z +/- 
1.96*σ; where σ = [p(1-p)/n]1/2.   The significance test simply indicates whether an estimated parameter is 
reasonable whereas the confidence interval yields a range of possible values for the parameter, given 
sampling error. 
 Odds ratios are computed as:  Odds = p / 1 – p.  If the probability of success is .8, the probability of 
failure is .2, and the odds ratio is .8 / .2 = 4.  This indicates 4 successes for every one failure.  
Unfortunately, odds ratios in small to moderate samples have skewed sampling distributions and therefore 
are not widely used.   
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  The log odds ratio or natural logarithm of the odds ratio, log (θ), is preferred for interpreting an effect 
size.  Independence of categorical variables is equivalent to log (θ) = 0, i.e. odds ratio = 1 is equal to log 
odds ratio = 0.  The sampling distribution of the log odds ratio approximates a normal distribution as 
sample size increases with a mean of log (θ) and standard deviation ASE.   Parameter estimates in logit 
models can be readily interpreted as a log-odds ratio.  This is calculated as e β for a single parameter, or e 
β

1
 - β

2 for differences between two parameters.  This is useful when examining contrasts between levels of 
two independent categorical predictor variables.   
  The relative risk or probability ratio should be interpreted separately from the odds ratio (Cohen, 
2000).  The relative risk (RR) indicates a probability and is computed as probability p1 divided by 
probability p2 [RR = p1 / p2].   In contrast the odds ratio (OR) is (p1 / 1 – p1) divided by (p2 / 1 – p2).  The 
odds ratio is therefore related, but different from relative risk (OR = [PR–p1]/1–p1] or RR x [1–p2/1–p1]).   
For logistic model interpretation, a gender coefficient (male = 0 and female = 1) of  e 1.67  would indicate 
the odds of females over males participating, whereas the statement females were two-thirds more likely 
than males to participate is a relative risk or probability statement. 
 The asymptotic standard error (ASE) or standard deviation of the log transform sampling distribution 
is computed as: ASE (log π) = [1/n1 + …+ 1/nk]1/2.  A 95% confidence interval around the log odds ratio 
is then computed as log(π) +/- 1.96 ASE[log(π)].  The confidence interval should contain the value 1.0 
otherwise the true odds will be different for the two groups being compared.  The confidence interval also 
provides valuable information about the range of minimum and maximum log odd ratios.  
 

Method 
  The logistic regression model (log(π)  =   α + β1 X1 +… +   βk Xk) was applied to a set of categorical 
data (Stokes, Davis, & Koch, 1995).  The goodness-of-fit criteria, effect size, confidence interval, and 
confidence interval around the effect size are reported.  The importance of effect size and confidence 
interval reporting above and beyond significance testing is then discussed.   
 
Data Analysis 
  An example data set relating myocardial infarction and aspirin use is provided as follows (Agresti, 
1996): 
     Group   Yes      No      Total  
     Placebo   189    10,845    11,034 
     Aspirin   104    10,933    11.037  
 
  The proportion, p1, or placebo odds ratio is 189 / 11,034 = .0171 and indicates that .0171 percent 
suffered myocardial infarction while taking a placebo.  In contrast, proportion, p2, or aspirin odds ratio is 
104 / 11,037 and indicates that .0094 suffered myocardial infarction while taking aspirin.  The percent 
difference is .0077 with standard error of .0015. z = .0077/.0015 = 5.133, which is statistically significant.  
The 95% confidence interval for this true difference is .0077 + /- 1.96(.0015) or (.005, .011), so taking 
aspirin appears to diminish the risk of myocardial infarction.  The relative risk is .0171 divided by .0094 
or 1.82.  Using relative risk, the proportion of MI cases was 82% higher for the group taking the placebo. 
The 95% confidence interval is (1.43, 2.30), thus we can be 95% confident that the proportion of MI 
cases for the group taking the placebo was at least 43% higher than the group taking the aspirin.  The 
relative risk indicates that the difference isn’t trivial and may have important health implications.     
The natural log odds ratio is log (1.82) = .599. The ASE (log π) is computed as [1/189 + 1/10,845 + 1/104 
+ 1/10,933]1/2  = .123.  The 95% confidence interval for log (π) is (.358, .840).  The corresponding 
confidence interval for π is (1.43, 2.30). Since it does not contain 1.0, the true odds of myocardial 
infarction appear to be different for the two groups.   
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Results and Interpretation 

  The categorical data example indicates a statistically significant z-test of the difference between the 
proportion of myocardial infarction cases for the placebo and aspirin usage groups.  The effect size (odds 
ratio, log odds ratio, and relative risk or probability ratio) provides a more practical interpretation of the 
efficacy of using aspirin to thwart myocardial infarction in patients.  Moreover, the confidence interval 
and especially the confidence interval around the effect size (log odds ratio) provided important 
additional information to our interpretation of results.  
  Statistical significance testing has come under attack by scholars in recent years because it is 
influenced by a researcher’s choice of sample size, power, and Type I error rate.  The reported research 
literature however has focused on continuous data analysis techniques and not fully included categorical 
data analysis methods.  The American Psychological Association and Editors of several popular journals 
are now requiring educational researchers to report effect size and confidence intervals.  The use and 
interpretation of effect size and confidence interval in categorical data analysis is therefore also important 
to understand and report. 

References 
Agresti, A. (1996).  An Introduction to Categorical Data Analysis. NY:  John Wiley & Sons, Inc. 
Cohen, M.P. (2000).  Note on the Odds Ratio and the Probability Ratio.  Journal of Educational and 

Behavioral Statistics, 25(2), 249-252. 
DeMaris, A. (1992). Logit modeling:  Practical Applications. Sage University Paper series on 

Quantitative Applications in the Social Sciences, no. 07-086. Newbury Park, CA:  Sage. 
Fox, J. (1997).  Applied Regression Analysis, Linear Models, and Related Methods. Newbury Park, CA:  

Sage. 
Harlow, L.L., Mulaik, S.A., & Steiger, J.H. (editors.) (1997). What if there were no significance tests? 

NJ:  Lawrence Erlbaum Associates, Inc. 
Hosmer, D.W. & S. Lemeshow (1989).  Applied Logistic Regression. NY:  John Wiley & Sons, Inc. 
Kirk, R. (1996). Practical significance: A concept whose time has come. Educational and Psychological 

Measurement, 56, 746-759. 
Kleinbaum, D.G. (1994).  Logistic Regression.  NY: Springer-Verlag. 
Stokes, M.E., C.S. Davis, & G.G. Koch (1995).  Categorical Data Analysis Using the SAS System.  Cary, 

NC:  SAS Institute, Inc. 
 Send correspondence to:  Randall E. Schumacker, Ph.D. 
          University of North Texas 
         Health Science Center 
         Email: rschumacker@unt.edu 


