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Performance of the Roy-Bargmann Stepdown  
Procedure as a Follow Up to a Significant MANOVA 
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The Roy-Bargmann procedure has been suggested as a post hoc procedure for a significant MANOVA 
result.  This method, which is based on application of the univariate General Linear Model, requires the 
researcher to order the dependent variables a priori in terms of their contextual importance.  
Subsequently, if the MANOVA is found to be statistically significant for a categorical independent 
variable, these response variables are tested individually using univariate analyses in the sequence 
established a priori.  Thus, the first variable is treated as the dependent variable in an ANOVA and if the 
groups’ means are found to differ significantly on this variable, it serves as a covariate while the second 
variable in the sequence is the response and the means of the groups are once again compared.  This 
testing continues for each of the response variables, with variables higher in the sequence serving as 
covariates for those lower in importance. The current study was designed to examine the Type I error rate 
and power of this post hoc approach under a variety of data conditions.  Results show that factors such as 
distribution of the dependent variables, equality (or lack thereof) of the covariance matrices and sample 
size all have a significant impact on Type I error and power.  Furthermore, both Type I error rates and 
power of variables later in the sequence are influenced by variables earlier in the sequence. 

ultivariate Analysis of Variance (MANOVA) is a popular tool used by social science researchers 
and others, allowing for the analysis of multiple dependent variables with one or more 
independent factors.  The null hypothesis being tested by MANOVA is µ1 = µ2  = µ3 where µk is 

the vector of means for group k.  When this hypothesis is rejected due to a significant test statistic, 
researchers may be interested in to which groups or dependent variable(s) the result applies.  Given that 
rejection of the very general null hypothesis of the MANOVA indicates that there is some difference 
among the k groups on one or more of the p dependent variables.  In order to gain a more complete 
understanding of the nature of such a significant effect, a researcher may want to use a follow up analysis 
designed to illuminate the significant result in terms of group differences on the response variables 
(Tabachnick & Fidell, 2007; Stevens, 1996).  A number of such approaches have been discussed in the 
literature, including the Simultaneous Test Procedure (STP) (Gabriel, 1968), Descriptive Discriminant 
Analysis (DDA) (Huberty, 1994), a Step Down procedure (SD) (Roy, 1958), two groups multivariate 
comparisons (Stevens, 1972) and the use of univariate Analysis of Variance (ANOVA).  It should be 
noted that with the exception of the latter approach, all of these methods retain the general multivariate 
flavor of the original analysis, albeit in very different ways.  Indeed, several authors (e.g. Stevens, 1996) 
argue that whatever follow up to MANOVA is finally used, it needs to be based upon a multivariate 
platform.  Nonetheless, most researchers who make use of MANOVA will have specific questions 
regarding the nature, in terms of both the response variables and the groups, of the significant differences 
signaled by the multivariate analysis.  This study was designed to examine the performance of one of 
these follow up methods that may be effective in characterizing a significant MANOVA result.   
   
Analysis of Variance (ANOVA) 
  Perhaps the most straightforward approach to investigating a significant MANOVA result is through 
the application of individual univariate ANOVA analyses for each of the dependent variables separately.  
This approach is facilitated by common statistical software packages such as SAS and SPSS, which print 
the univariate results with the multivariate.  Despite this ease of use, the use of univariate ANOVA in this 
way has generally been rejected as a viable alternative for following up a significant MANOVA result 
because, as Enders (2003) points out, the univariate ANOVA does not accurately maintain the nominal 
Type I error rate in most cases (generally being too conservative), even when a correction such as 
Bonferroni or Holm is used. Indeed, Maxwell (1992) found that using such alpha corrections with 
univariate ANOVA to maintain the nominal experiment-wise Type I error rate only works when either the 
MANOVA null hypothesis is totally false, the MANOVA null hypothesis is totally true or the MANOVA 
null hypothesis is false for all but one of the dependent variables. In all other cases, using ANOVA to 
investigate a significant MANOVA will yield an incorrect Type I error rate. Keselman, Huberty, Lix, et al 
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(1998) assert that if the researcher is interested in a multivariate hypothesis then the follow up to a 
significant MANOVA should be multivariate in nature. 
 
Two groups multivariate comparison 
 Another MANOVA follow up approach that has been suggested in the literature is the two groups 
multivariate comparison.  As outlined by Stevens (1972), the two groups method involves using the 
Hotelling’s T2 test statistic (Hotelling, 1931) to compare all possible pairs of groups on the entire set of 
dependent variables simultaneously. As an example, if the MANOVA involved one independent 
categorical variable with 3 groups measured on 3 dependent variables, the two groups analysis would 
involve the multivariate comparison of groups 1 and 2, groups 1 and 3, and groups 2 and 3 on the 3 
response variables simultaneously. Stevens (1972) compared this approach with DDA, SD and 
multivariate contrasts and found that the results, in terms of identifying group differences, were fairly 
similar, though the two groups approach did not allow for direct identification of group differences on 
individual variables.  Thus, when two groups are found to differ the difference is for the entire set of 
responses, so that if a researcher would like to identify clearly for which of the response variables groups 
differ, (s)he could not do so using this method. 
 
Simultaneous Test Procedures 
 Gabriel (1968) expanded upon earlier work of Roy and Bose (1953) to develop multivariate 
simultaneous confidence intervals for group differences using any one of the common MANOVA test 
statistics, such as Roy’s greatest root, Pillai’s Trace, Hotelling’s trace and Wilks’ Lambda.  Various 
recommendations have been made regarding which of these is the most generally appropriate for use in 
the STP context (Sheehan, 1995; Elliott, 1993; Mudholkar, Davidson & Subbaiah, 1974; Olson, 1974).  
Simulation research on the power and Type I error control of the STP based on one or more of these 
statistics found that violations of the assumptions of normality and homogeneity of covariance matrices 
had a significant impact on their performance, such that no one approach could be identified as optimal in 
all cases (Sheehan, 1995; Bird & Hadzi-Pavlovic, 1983; Elliott, 1993).  These studies also found that the 
more restrictive the hypotheses being tested, the lower the power of the STP procedure, regardless of the 
statistic used to form the confidence intervals.  Indeed, Sheehan (1995) concluded that this approach was 
too conservative to investigate group differences on individual variables. 
 
Descriptive Discriminant Analysis 
 Several authors have recommended the use of DDA as an appropriate follow up procedure for a 
significant MANOVA (Enders, 2003; Huberty, 1994; Tabachnick & Fidell, 2007; Stevens, 1996).  The 
fact that DDA is a multivariate technique very closely related to MANOVA addresses concerns voiced by 
Keselman, et al. (1998) and Stevens (1996) that when the research questions of interest are multivariate in 
nature, then the analyses used to address these questions be multivariate as well.   DDA involves the 
identification of a linear combination of the dependent variables that maximizes the differences among 
the groups, as expressed in the between and within sums of squares and cross products matrices, SB and 
SW, respectively.  These linear combinations of the original set of dependent variables can then be used to 
characterize the nature of the difference(s) among groups identified by the significant MANOVA.  
Interpretation of these discriminant functions can be carried out in at least two ways, using either 
Structure Coefficients (SC) (Huberty, 1994), which are values representing the correlations between 
individual observed variables and the overall discriminant function or standardized discriminant function 
coefficients (Rencher, 1992).  While there is some disagreement as to which approach is preferable, in 
both cases the magnitudes of either of these values reflect the relative importance of each observed 
variable in defining the discriminant function, making them useful for identifying potentially important 
contributors (from among the set of dependent variables) to the observed differences among the groups, 
as well as providing some insight into the conceptual nature of the discriminant functions themselves 
(Enders, 2003; Huberty, 1994; Stevens, 1972; Rencher, 1992).   
 The fact that SC’s may be used in practice to ascertain which of the observed variables are related to 
the one or more discriminant functions (Tabachnick & Fidell, 2007) makes the issue of their interpretation 
very important.  By examining the magnitudes of SC’s, a researcher can determine which of the 
dependent variables are most associated with the linear combination(s) that best differentiate the groups in 
question.  Those with the largest SC’s are deemed to be most associated with the group differences, and 
are thus interpreted more fully in terms of how they might differ from group to group.  This difference is 
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often characterized by examining the means of the groups on those variables with sufficiently large SC 
values (Tabachnick & Fidell, 2007).  A difficulty with employing this method is that there is not a formal 
hypothesis test available for the SC’s, and thus various rules of thumb have been recommended as cutoffs 
for identifying “sufficiently large” values.  Schneider (2004) conducted a simulation study using cut 
points of 0.3, 0.4 and 0.5 and found that the general ability of DDA to identify statistically meaningful 
variables, in terms of group differentiation, was lower for higher cut offs, except where the differences in 
group means was characterized by a large effect size.  Schneider also found that the use of these various 
cutoff values led to the false identification of “important” variables at rates reaching as high as 0.8 in 
many cases.  In other words, a researcher using these rules of thumb, would be likely to incorrectly 
conclude that particular variables were “important” in defining the discriminant function when they were 
in fact not. 
 
Stepdown Analysis 
 The Stepdown analysis (SD) examined here was introduced by Roy (1958) and Roy and Bargmann 
(1958) and extended by others (Marden & Perlman, 1990; Mudholkar & Subbaiah, 1988; Kabe, 1984) 
and is based on the General Linear Model (GLM) in the form of Analysis of Covariance (ANCOVA).  It 
has been recommended as a follow up procedure for a significant MANOVA by several authors, 
including Tabachnick and Fidell (2007), Stevens (1996), and Mudholkar and Subbaiah (1980).  In 
addition, the SD technique can be used to derive a test of overall significance in the multivariate context 
as demonstrated by Kabe (1984), among others.  The SD procedure involves a multi-step application of 
univariate linear models involving the dependent variables, much in the way that ANOVA does.  
However, there are some major differences between SD and ANOVA that make the former method 
potentially appealing as a MANOVA follow up, from a statistical perspective. Indeed, from one 
perspective the omnibus MANOVA test may not be required, given that an a priori ordering of the 
dependent variables is made by the researcher, implying a very specific set of hypotheses to be tested.  
Nonetheless, given the recommendations by the authors cited above to use it as a way to elucidate a 
significant MANOVA result, it is in this context that the current study was conducted. 
  As mentioned above, the SD procedure involves several steps.  In the first step the researcher places 
the dependent variables in descending order of theoretical importance.  It is crucial to note that this 
ordering is based on contextual issues and not on statistics.  Indeed, step one should always be done prior 
to any data collection so that sample estimates do not affect how variables are ordered.  In step two, an 
ANOVA is conducted in which group means on the most important response variable are compared.  In 
step three, this variable serves as a covariate and the means of the groups on the second most important 
response variable are compared using ANCOVA.  This stepping procedure continues for each dependent 
variable in turn, with response variables at a higher level of importance serving as covariates for those of 
lesser importance.   
  It has been shown that in the 2 groups case, an overall SD test statistic can be constructed that is 
equivalent to Hotelling’s T2 (Mudholkar & Subbaiah, 1980) allowing for an omnibus multivariate test.  
By including responses as covariates in subsequent analyses, correlations among the variables are 
accounted for in a way that they are not in the ANOVA analyses described above (Mudholkar & 
Subbaiah, 1975).  In order to control the Type I error rate, Bock and Haggard (1968) suggested using a 
variation of the Bonferroni approach by dividing the overall a so that more important variables are given 
a larger share of the rejection region than less important ones, while maintaining the desired overall level 
of significance.  It would also be possible to simply assign each test the same portion of the rejection 
region using Bonferroni’s correction more directly (Tabachnick & Fidell, 2007). 
 Mudholkar and Subbaiah (1980) cited several potential advantages to using the SD procedure as a 
follow up to a significant MANOVA result:  1) simplicity, 2) detailed results for specific variables and 
groups, 3) useful with small samples and 4) results for large samples that are equivalent to the omnibus 
likelihood ratio test.  Another potential strength of the SD is that a researcher can assign different levels 
of a to the dependent variables, reflecting their substantive importance in the investigation of which the 
MANOVA is a part (Subbaiah & Mudholkar, 1978; Mudholkar & Subbaiah, 1976; Bock & Haggard, 
1968).  Mudholkar and Subbaiah (1988) also suggest that under the SD procedure, test statistics such as 
the Studentized Range can be used for paired group comparisons, providing an added degree of analytic 
flexibility. 
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 While there are clear benefits to the researcher using the SD technique, it does have some weaknesses 
as well, perhaps foremost of which is the need to order the response variables in terms of theoretical 
importance.  It has been clearly demonstrated that the qualitative conclusions reached by researchers can 
differ substantially depending upon the variables’ ordering (Stevens, 1972; Koslowsky & Caspy, 1991; 
Mudholkar & Subbaiah, 1988).  Indeed, Stevens (1996) states that the SD procedure may not be 
appropriate when a clear a priori ordering of the response variables is not possible.  Mudholkar and 
Subbaiah (1980) suggest that when such an ordering is not reasonable, SD can still be used as a post hoc 
procedure for MANOVA if the observed variables are first subjected to analysis using a data reduction 
technique creating linear combinations, such as Principal Components Analysis.  These linear 
combinations could in turn be used with SD techniques, with combinations accounting for greater 
variance being placed higher in the sequence.  Koslowsky and Caspy (1991) observed that by applying 
the SD to multiple sequences of the response variables a researcher could engage in meaningful data 
exploration and testing of multiple hypotheses.  At the same time, Stevens (1996) points out that these 
various orderings are not independent of one another so that the actual Type I error rate across all of them 
is not known. 
 There has been some research examining the performance of the SD procedure in various conditions.  
Subbaiah and Mudholkar (1978) conducted a Monte Carlo simulation study in which they assessed the 
performance of the omnibus multivariate test statistic for the SD procedure.  They simulated data sets 
from the multivariate normal distribution with 2 response variables, equal covariance matrices across 2 
groups, each with samples of size 20.  They found that the SD procedure was able to maintain the 
nominal Type I error rates (0.01 or 0.05) while attaining power values above 0.8 for most studied 
conditions.  They also found that power was affected by the relative importance of the dependent 
variables.  If they were of unequal importance and this is reflected by unequal a values, the power of the 
SD procedure was higher than when all variables were treated as equally important in terms of a.  Finally, 
Subbaiah and Mudholkar reported that the precision of the hypothesis tests decreased for variables later in 
the ordering.  Mudholkar and Srivastava (2000) used a robust method based on trimmed estimates to 
conduct a SD analysis when the data were not normally distributed and samples were of unequal size.  
They found that this approach had greater power than did the standard parametric ANCOVA approach.   
  In addition to these simulations, other researchers have reported results obtained when using the SD 
with real data.  Stevens (1972) used both SD and DDA to compare 4 groups of subjects on 8 response 
variables.  The two methods yielded very similar results in terms of identifying variables on which the 
groups differed, while the application of univariate ANOVA’s produced a markedly different outcome.  
Stevens also demonstrated the impact on the SD analysis of different orderings of the dependent 
variables.  Koslowsky and Caspy (1991) reported on a refinement of the SD technique in which multiple 
orderings of the response variables are tested in following up a significant MANOVA.  If the qualitative 
results of these analyses differ, the researcher could conclude that there is overlap among the dependent 
variables.  Such a result would, according to the authors, help the user gain a greater understanding of the 
interrelationships among the responses while also allowing for the examination of multiple hypotheses 
about how the groups in question might differ on the measures of interest.  These authors acknowledge 
that when the number of dependent variables is 3 or more, the resulting Type I error rate could be 
somewhat inflated.  Analytic results in Mudholkar and Subbaiah (1975) match the findings of their 
simulation study (Mudholkar & Subbaiah, 1978), demonstrating that the power of hypothesis tests for 
variables lower in importance (and thus tested later in the sequence) was lower than when the variables 
were placed higher in the sequence.   
 
Focus of the Current Study 
 This study is designed to extend the work in studies reviewed above.  Specifically, the goals of this 
research are to ascertain the performance of the SD method for following up a significant MANOVA in 
terms of both power and Type I error rate and to identify data specific factors influencing the performance 
of this approach. Given that the SD approach has been recommended in popular multivariate texts for use 
in the post hoc investigation of significant MANOVA results, and has been studied relatively infrequently 
in this role, it is hoped that this study helps to fill a gap in the literature.  As has been reported above, a 
number of other approaches for following up a significant MANOVA have major problems that have 
been identified using Monte Carlo methods. For example, the STP appears to have low statistical power 
to investigate group differences on individual response variables, while DDA does not allow for 
hypothesis testing of individual dependent variables and cutoff values used with it appear to be somewhat 
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problematic to interpret.  The two groups multivariate approach, while appearing to be reasonably 
effective in differentiating multivariate group means, does not easily allow for comparisons on individual 
variables.  There has been relatively little work conducted in investigating the performance of the SD 
approach in terms of power and Type I error rates in the post hoc context, with most prior research 
focusing on its use in constructing an omnibus test statistic.  It is hoped, therefore, that this study will add 
greater understanding in this regard. 
 

Methodology 
  A Monte Carlo simulation study was used to investigate the performance of the SD follow up for 
MANOVA.  In this case, focus was on the SD results, rather than those of MANOVA, so that results of 
the omnibus MANOVA were not used in the conduct of the simulation. In other words, while in actual 
practice the SD procedure would not be used unless a significant MANOVA were first obtained, because 
the focus of the current study was on the SD procedure, an assumption was made that the omnibus 
MANOVA test was found to be statistically significant. A number of factors were manipulated in this 
study with all combinations being crossed, and 1000 replications were generated for each.  All 
simulations were conducted using SAS IML and PROC GLM.  The following factors were manipulated: 
  Sample size. The total sample size conditions were 30, 60, 100 and 150.  These values were selected 
in an effort to replicate sample size conditions appearing in published research using MANOVA. 
  Sample size ratio.  Two sample size ratio conditions were simulated, including equal and unequal 
group sizes.  In the unequal condition, the first group (group 1) had half the number of subjects as did 
group 2.   
  Number of dependent variables. Data were simulated with either 2 or 4 dependent variables.  
Variables earlier in the sequence were assumed to be more important than those later in the sequence and 
were tested as such.  The lower value (2) was simulated so as to provide information about the simplest 
case possible, while the latter (4) was selected because it conforms to examples used in prior research 
(e.g., Fan & Wang, 1999). 
  Correlation. The dependent variables were simulated with pooled within groups correlations of 0.3, 
0.5 and 0.8.  All inter-variable correlations were the same in the 4 variables condition. 
  Effect size. A total of 8 effect size combinations, based on Cohen’s d (Cohen, 1988), were simulated 
in this study to create univariate group separation.  The effect sizes used were 0 (no group separation), 0.5 
and 0.8. The latter values were chosen so as to correspond with Cohen’s (1988) benchmarks of medium 
and large effects. The combinations used appear in Table 1. It is important to note that effect size values 
for variables 2, 3 and 4 in the 4 variable case are identical.  In the case where the group variances were 
equal, this value was used as the denominator in the calculation of effect size, whereas in the unequal 
variances case, a pooled within-cell standard deviation was used. 
  Distribution of response variables. The dependent variables were distributed either as standard 
normal or with skewness of -1.5 and kurtosis of 3, with the latter distribution selected because it conforms 
to that used in earlier research and which has been shown to be associated with inflated Type I error rates 
in standard MANOVA testing (Finch, 2005).  In order to maintain the desired correlation values among 
these variables in the non-normal condition, a method proposed by Fleishman (1977) was used to 
simulate the data. 
 Covariance matrices. The group covariance matrices were simulated to either by equal or unequal. In 
the latter condition, the variances for group 2 were simulated to 5 be times larger than that for group 1, 
which was set at a value of 1. The latter value matches that which has been demonstrated previously to 
lead to inflated Type I error rates for MANOVA test statistics (e.g., Finch, 2005; Sheehan-Holt, 1998). 
The outcomes of interest were the Type I error rate and power for each variable in the sequence.  In order 
to ascertain which of the manipulated factors had a significant impact on the performance of the SD 
follow up, ANOVA and variance components analysis were used, treating either Type I error rate or 
power as the dependent variable and the manipulated factors as the independent. 
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Table 1:  Effect size combinations for simulation 
Variable 1 Variable 2 (3 and 4) 

0.5 0 
0.8 0 
0 0.5 
0 0.8 

0.5 0.5 
0.8 0.8 
0.8 0.5 
0.5 0.8 

 
Results 

Type I error rate 
 The results of the ANOVA/variance components analyses for the 2 and 4 variable cases yielded 
similar results in terms of identifying factors that influenced the Type I error rate of the SD procedure.  
For this reason, results of the ANOVA are only reported for the 2 variable case.  Results for the second 
variable in the two groups case are nearly identical to those for variables 2, 3 and 4 in the 4 variable case.  
Specifically, for the Type I error rate of the first response variable (variable 1), the 2-way interaction of 
equality of the covariance matrices and the distribution of the variables was the highest order significant 
interaction, and accounted for 90.9% of the observed variability.  The 3-way interaction of the correlation 
between the response variables by equality of the covariance matrices by variable distribution was the 
highest order significant term for the second variable (variable 2), accounting for 46% of the variation in 
Type I error rates. The 2-way interaction of correlation and response variable distribution was also 
significant for variable 2 and accounted for an additional 20% of variation in Type I error rate.  Other 
main effects and interactions were also statistically significant for the Type I error rates of both variables, 
but none accounted for more than 10% of the variation, and will therefore not be considered further.  
 Table 2 contains the Type I error rates for the 2 and 4 variable cases by the inter-variable correlation, 
covariance status (equal or unequal) and distribution of the response variables.  It appears that the Type I 
error rate for the first variable in the set is near the nominal level of 0.05, except when the assumptions of 
normality and equality of covariance matrices underlying the ANCOVA have both been violated. The 
Type I error rates for variables 2 through 4 were found to be inflated for most of the conditions displayed 
in Table 2.  The Type I error inflation for these variables also increased somewhat with increasing 
correlation among the variables.  Although all Type I error conditions for the later variables in the 
sequence were inflated, the severity of this inflation was less when the assumptions of normality and 
equality of covariance matrices were both met. 
 
Power 
The ANOVA and variance components analyses for the power rates indicated that for variable 1, the 
statistically significant interaction between covariance matrix equality/inequality and distribution of the 
variables accounted for 78.5% of the variability in power.  No other term in the model was both 
statistically significant and accounted for more than 10% of the variance in power for variable 1.  Three 
terms were found to be statistically significant and account for more than 10% each of the variation in 
power for variable 2 (3 and 4).  The highest order interaction, accounting for 25% of power variation, was 
covariance matrix equality/inequality by correlation by distribution, while effect size (15.5%) and sample 
size (12.1%) were the two statistically significant main effects that accounted for more than 10% of 
variation in power.  As with the Type I error rates, the same factors contributed significantly to observed 
power in the 2 and 4 variable cases. 
 Table 3 displays the power rates by covariance matrix equality/inequality, correlation and distribution 
for all of the variables. One outcome to note is that across these conditions power rates generally diminish 
through the sequence from variable 1 to 4. Power for the first variable in the set was higher in the normal 
distribution condition when the groups’ covariance matrices were also equal than when the data were 
normal but the variances were unequal. However, when the covariance matrices were unequal, the 
opposite pattern can be seen, where variable 1 power was greater in the skewed condition. It 
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Table 2:  Type I error rate by correlation among dependent variables, covariance equality/inequality and 
response distribution: 2 and 4 variables 

2 response variables 
Correlation Covariance Distribution V1 V2 
0.3 Equal Normal 0.051 0.141 
  Skewed 0.047 0.252 
 Unequal Normal 0.036 0.063 
  Skewed 0.848 0.674 
0.5 Equal Normal 0.047 0.142 
  Skewed 0.044 0.259 
 Unequal Normal 0.038 0.132 
  Skewed 0.852 0.784 
0.8 Equal Normal 0.053 0.234 
  Skewed 0.046 0.317 
 Unequal Normal 0.034 0.488 
  Skewed 0.850 0.827 

4 response variables 
Correlation Covariance Distribution V1 V2 V3 V4 
0.3 Equal Normal 0.050 0.143 0.138 0.107 
  Skewed 0.047 0.251 0.212 0.181 
 Unequal Normal 0.050 0.144 0.144 0.140 
  Skewed 0.849 0.674 0.540 0.512 
0.5 Equal Normal 0.053 0.135 0.125 0.150 
  Skewed 0.044 0.266 0.267 0.249 
 Unequal Normal 0.036 0.137 0.133 0.151 
  Skewed 0.852 0.690 0.652 0.640 
0.8 Equal Normal 0.051 0.236 0.228 0.208 
  Skewed 0.049 0.366 0.450 0.362 
 Unequal Normal 0.034 0.490 0.324 0.287 
  Skewed 0.849 0.870 0.831 0.830 

 

is important to keep in mind that it was in this combination of conditions (unequal covariance matrices 
and skewed data) that the Type I error rate for variable 1 was elevated.  For this reason, these high power 
rates in the skewed/nonnormal condition are not particularly meaningful.  With respect to variables 2, 3 
and 4, a pattern similar to that for variable 1 was evident, where power was higher for the normal (versus 
skewed) distribution when the covariances were also equal, while the opposite pattern by distribution was 
evident when the covariance matrices were unequal.  Again, given the aforementioned Type I error 
inflation when neither assumption was met, it is not meaningful (nor particularly surprising) that power in 
this case was also higher.   
  Table 4 includes power by effect size combination. Please note that the category “50” in the table 
refers to the condition where the first variable has an effect size difference of 0.5 between the groups for 
the first response variable and no difference for variable 2 (as well as 3 and 4 where applicable).  In like 
fashion, “05” refers to the condition where the first variable has no group difference but variable 2 (3 and 
4) is characterized by an effect size difference of 0.5.  The remaining combinations should be interpreted 
similarly. Results in this table for variable 1 show that a greater effect size, reflecting larger group 
separation, was associated with higher power.  Furthermore, the power for variable 1 was unaffected by 
the effect size of the accompanying variable(s).  Of course, this would be expected given that it is the first 
variable in the sequence, and thus tested independently of the others. 
 Results in Table 4 demonstrate that, as with variable 1, greater effect size was associated with higher 
power for variables 2 through 4. However, an important outcome for these latter variables was that the 
effect size of the first variable had an impact on their power. For example, in the two variables condition, 
the power for the second variable in the 05 case (where there was not a group difference for the first 
response and a difference of 0.5 for the second response) was 0.365, while when the first variable was 
characterized by a large effect size difference and the second by this same moderate effect (85), the 
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Table 3:  Power by correlation among dependent variables, covariance equality/inequality and response 
distribution:  2 and 4 variables 

2 response variables 
Correlation Covariance Distribution V1 V2 
0.3 Equal Normal 0.721 0.513 
  Skewed 0.193 0.122 
 Unequal Normal 0.359 0.243 
  Skewed 0.872 0.693 
0.5 Equal Normal 0.718 0.454 
  Skewed 0.194 0.176 
 Unequal Normal 0.357 0.228 
  Skewed 0.873 0.136 
0.8 Equal Normal 0.717 0.456 
  Skewed 0.194 0.278 
 Unequal Normal 0.355 0.297 
  Skewed 0.872 0.070 

4 response variables 
Correlation Covariance Distribution V1 V2 V3 V4 
0.3 Equal Normal 0.687 0.360 0.400 0.301 
  Skewed 0.176 0.097 0.096 0.073 
 Unequal Normal 0.690 0.361 0.397 0.296 
  Skewed 0.873 0.682 0.522 0.398 
0.5 Equal Normal 0.688 0.352 0.323 0.218 
  Skewed 0.175 0.173 0.076 0.057 
 Unequal Normal 0.336 0.150 0.144 0.099 
  Skewed 0.869 0.593 0.544 0.531 
0.8 Equal Normal 0.691 0.464 0.315 0.207 
  Skewed 0.175 0.312 0.079 0.052 
 Unequal Normal 0.334 0.254 0.157 0.103 
  Skewed 0.875 0.535 0.522 0.521 

 
Table 4:  Power by effect size:  2 and 4 variables 

2 response variables 
Effect size combination V1 V2 
50 / 05* 0.424 0.365 
80 / 08* 0.610 0.582 
85 0.610 0.188 
58 0.426 0.449 
88 0.611 0.235 
55 0.424 0.158 

4 response variables 
Effect size combination V1 V2 V3 V4 
50 / 05* 0.454 0.395 0.237 0.163 
80 / 08* 0.641 0.613 0.365 0.255 
85 0.643 0.199 0.115 0.092 
58 0.454 0.479 0.267 0.183 
88 0.643 0.263 0.177 0.132 
55 0.452 0.178 0.126 0.099 

*The effect size combination to the left of / is for variable 1, while to the right of / is the corresponding 
combination for variable 2. 
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Table 5:  Power by sample size:  2 and 4 variables 
2 response variables 

Sample size V1 V2 
30 0.296 0.158 
60 0.509 0.263 
100 0.626 0.359 
150 0.711 0.441 

4 response variables 
Sample size V1 V2 V3 V4 
30 0.307 0.140 0.102 0.080 
60 0.524 0.235 0.173 0.121 
100 0.640 0.330 0.255 0.178 
150 0.719 0.406 0.327 0.239 

 

power for variable 2 was 0.188.  In other words, the power for detecting mean differences for variable 2 
decreased between the two examples, though the degree of group separation in the two cases was 
identical.  This result was present across all effect size combinations for all three latter variables in the 
sequence.  As noted above, power declined from variable 2 through variable 4 in the testing sequence.  
This outcome was true even though the variables were characterized by comparable effect sizes in the 4 
variables condition.  In other words, even though in the population group separation was equivalent for 
variables 2, 3 and 4, power was higher for those variables tested earlier in the sequence. 
  Table 5 contains power rates by sample size.  In interpreting all of these power results, it is important 
to keep in mind that the Type I error rates presented in Table 2 were elevated above the nominal error rate 
of 0.05 for many of the conditions studied here.  Power for all variables in both the 2 and 4 variable 
conditions increased concomitantly with increases in sample size.  As was evident from results in Table 4, 
power was lower for variables tested later in the sequence than those tested earlier. 
 

Discussion 
  The purpose of this study was to explore the effectiveness of the Roy-Bargmann stepdown procedure 
as a follow up to a significant MANOVA as has been recommended in some popular multivariate 
statistics texts in the social sciences (Tabachnick & Fidell, 2007; Stevens, 1996). Using this method, a 
researcher would conclude that dependent variables for which significant results on the individual 
ANCOVA’s were found could be identified as “important” contributors to the group separation identified 
by the MANOVA (Mudholkar and Subbaiah, 1980). The results of this study indicate that when both the 
assumptions of normality and equality of covariance matrices are not met, the Type I error rate for the 
first variable in the sequence was inflated, while in all other cases it was near the nominal 0.05 level.  
This result should serve to encourage researchers using the SD as a post hoc to a significant MANOVA to 
assess the viability of both the normality and equality of covariance matrices assumptions prior to making 
use of the technique.  However, the Type I error rates of subsequent variables in the sequence were 
inflated in most cases studied here, including when the assumptions underlying ANCOVA are met. This 
widespread Type I error inflation for the latter variables in the testing sequence must call into question the 
findings for power, though they have been presented in order to fully inform the reader as to the results of 
the study. In general, power rates declined further into the testing sequence so that even with the same 
effect size in the population, power was lower for testing variable 2 than for variable 1 and for variable 3 
than for variable 2, etc. Furthermore, the power for later variables in the sequence was influenced by the 
effect size of the first variable, such that larger group differences on variable 1 were associated with lower 
power on variables 2, 3 and 4, regardless of the effect size characterizing these latter variables.  
 

Implications for practice 
 It should be remembered that this study was conducted under the presumption that a researcher would 
elect to use the SD approach prior to the conduct of analysis. Thus, by implication a reasonable ordering 
of the variables, based on contextual issues germane to the area being studied and not statistical concerns, 
is possible. In cases where this ordering is not reasonable, the SD procedure would not be an  
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appropriate approach, and some other method would clearly seem to be better as a follow-up for 
MANOVA.  
 The results of this research must, to some degree, call into question the use of the Roy-Bargmann 
stepdown procedure as a follow-up to a significant MANOVA, despite recommendations for its use (e.g., 
Tabachnick & Fidell, 2007; Stevens, 1996).  Prior research (e.g., Kabe, 1984; Mudholkar & Subbaiah, 
1980) has shown that this approach works well in many conditions in terms of constructing an omnibus 
test of significance in the multivariate case.  However, the current study does not support the use of this 
technique in trying to identify specific variables for which the groups might differ, other than the first 
one.  When groups didn’t differ on the latter variables in the testing sequence, the Type I error rate was 
generally inflated above the nominal rate, while when they did differ, power tended to be lower than for 
variable 1.  Furthermore, in cases where the first variable in the sequence was characterized by a large 
effect size (0.8), power for the latter variables was even more diminished. 
 For these reasons, it does not seem prudent to use this technique to ascertain which variables might be 
significantly different between groups. This does not call into question the potential utility of this 
procedure for an omnibus test in the MANOVA context, as mentioned previously.  In that case, the 
hypothesis being tested is very different from those addressed by the method as studied here.  In addition, 
given the inflated Type I error rates for the tests of all but variable 1, practitioners who do choose to use 
this approach in the manner outlined here should be very wary of significant results for all but the first 
variable in the testing sequence, particularly in (though not limited to) cases when the assumptions of 
normality and homogeneity of variances are not met. 
 

Limitations and directions for future research 
There are some methodological limitations to this study that should be addressed in future research 
efforts. Perhaps chief among these is the somewhat limited set of effect size values used.  The 6 
combinations reported here were selected in order to allow for an investigation of Type I error rate and 
power under a variety of conditions while maintaining a manageable study size.  These values selected 
corresponded to the benchmarks of medium and large effects laid out by Cohen (1988).  It is recognized, 
however, that more work is needed with a greater variety of patterns in order to gain a more complete 
understanding of the performance of the Roy-Bargmann approach to post hoc testing for a significant 
MANOVA.  Such a future effort should include both a different set of effect size values, particularly 
those smaller than 0.5, as well as a more complex pattern of values in the 4 variables condition.  In the 
current study, variables 2, 3 and 4 all had the same effect size value for all conditions, which may not be 
representative of the wide array of possibilities seen in real data.  At the same time, given that this study is 
one of the first Monte Carlo efforts to examine the performance of the Roy-Bargmann method in this 
MANOVA post hoc context, it was felt that in order to maintain a manageable study design and ease 
interpretation, this somewhat limited set of combinations was advisable. Furthermore, it is not clear that 
major differences in results would be expected from those presented here. 
A second recommendation for future research would be to include more group conditions.  As stated 
above, it was felt that since this study was examining this approach in a fairly different way from previous 
research, a simpler design was preferable. However, in order to broaden its generalizability, future efforts 
should include more groups. 
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