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Estimation Methods for Cross-Validation  
Prediction Accuracy: A Comparison of Proportional Bias 

David A. Walker 
Northern Illinois University 

Using empirical data, the performance of the predictive effectiveness of four algorithms and a bootstrap 
method for cross-validation of a multiple regression equation were examined. Results indicated that the 
Browne algorithm was the most accurate in 8 of the 9 data situations. The Rozeboom algorithm, in a 
majority of conditions, had the second least amount of proportional bias. The Nicholson and Lord and 
Stein-Darlington formulas demonstrated a consistent pattern of low relative accuracy in many situations, 
with the most amount of proportional bias in 4 of 9 and in 6 of 9 data sets, respectively. The bootstrap 
method showed no discernable pattern of relative accuracy with results ranging from the most accurate in 
a situation to the least accurate in three different data situations. 

or prediction studies derived via multiple regression that estimate how well a sample equation 
generalizes to other samples, or as Rozeboom (1978, p. 1350) called this “a sample regression’s 
generalized validity,” the use of empirical methods such as cross-validation or double cross-
validation have been studied in the past (Lord & Novick, 1968; Mosier, 1951). However, there are 

cautions with these techniques. For example, when applied to small sample sizes, where the sample is 
split into two sub-samples, this can lead to less precise estimates of prediction (Browne, 1975; Cattin, 
1980a; Cotter & Raju, 1982). To resolve this major limitation, the use of estimation algorithms has been 
noted in the scholarly literature, where the sample size is not split, but left whole, exacting a more 
accurate estimate of the criterion score estimation for cross-validation of a multiple regression equation 
(Allen, 1971; Claudy, 1978; Cotter & Raju, 1982; Gollob, 1967; Huberty & Mourad, 1980; Morris, 1984; 
1986).  
  From a review of the literature in the area of proposed cross-validation techniques, the vast majority 
of the research conducted on the predictive effectiveness of multiple regression equations derived via an 
algorithm has been conducted as Monte Carlo studies. That is, very few studies reported results from 
cross-validation algorithms when empirical data were used. Of the small number of studies that did 
implement empirical data, most used data from large samples derived from business, government, or 
educational institutions (cf. Cotter & Raju, 1982; Huberty & Mourad, 1980; Kromrey & Hines, 1995). A 
few exceptions found in the literature that applied empirical data sets from smaller samples were Krus and 
Fuller (1982) who used cross-validation algorithms with data from a textbook, and Morris (1986) who 
employed Allen’s (1971) PRESS (Predicted Error Sum of Square) technique with data from journal 
articles, textbooks, and professional conference papers. 
  Various formulas have been proposed for use as estimation algorithms for cross-validating a 
regression equation. From the literature, four formulas emerge as viable estimators. Many of the 
subsequent formulas are decidedly related algebraically and/or are hybrids of one another. Formulas 1, 2, 
and 4 are found in Huberty & Mourad (1980) and formula 3 is from Cattin (1980b). 
Nicholson (1960) and Lord (1950) proposed 2

NLR , where:   
  

       2
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1
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Stein (1960) and Darlington (1968) proposed 2
SDR , where: 
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Browne (1975) proposed 2
BR , rearranged by Cattin (1980b), where: 

 

        2
BR  = 

2 2 2

2

[( 3)( ) ]
[( 2 2) ]
N p R R
N p R p
− − +
− − +

          (3) 

 

Rozeboom (1978) restructured Browne’s (1975) algorithm and proposed a simpler version, 2
RR , where: 

 

        2
RR  = 21 1N p R

N p
⎡ ⎤+ ⎡ ⎤− −⎢ ⎥ ⎣ ⎦−⎣ ⎦

          (4) 

 

where, N = Sample size, p = Number of X variables, and R2 = Squared multiple correlation coefficient. 
  Finally, in prediction studies derived via multiple regression that have the intention of closely 
approximating a sample prediction equation, the bootstrap method, as well as the leave-one-out method 
and the jackknife method, have been found to be similar to cross-validation techniques (Efron, 1983; 
Gong, 2003; Huberty & Mourad, 1980; Kromrey & Hines, 1995; Lachenbruch, 1967). The bootstrap is a 
resampling method where the sampling properties of a statistic, in this instance R2, are derived by 
recomputing its value for artificial samples. Thus, the sample data from this study will serve as pseudo-
populations and 1,000 random samples with replacement will be drawn from these full samples. One 
thousand iterations will be used as an established threshold where all of the nine empirical data sets will 
have had convergence. Once the bootstrap method is repeated 1,000 times on each empirical data set, a 
distribution of bootstrapped estimates for R2 will emerge, where the mean value (i.e., 2

BOOTR ) of each 
bootstrapped distribution is the estimate for R2. 
 

Purpose 
  Using empirical data, the intention of the current research is to determine the stability of predictive 
effectiveness of the criterion score estimation of four algorithms and the bootstrap method for cross-
validation of a multiple regression equation. The stability of predicative effectiveness is defined as the 
performance of the techniques in terms of relative accuracy as determined from bias and proportional bias 
(cf. Aaron, Kromrey, & Ferron, 1998; Morris, 1986). As bias multiples, the distance between the 2

CVR  
value and the R2 value increases, which leads to diminished stability and a lesser proportion of the 
criterion score variance accounted for in the predicted Y value than in the original sample’s Y value. The 
measures of bias are: 
            Bias = R2 – 2

CVR                 (5) 
 

           Proportional Bias = Bias / R2  =  1 – ( 2
CVR  / R2)              (6) 

 

where, 2
CVR  is defined by either 2

NLR , 2
SDR , 2

RR , 2
BR , or 2

BOOTR . 
  Thus, this study will compare the performance of four algorithms and the bootstrap method in a three-
tier situation: (1) in the first set of empirical data, each will contain two regressor variates (p=2), variable 
sample sizes (N) = 12, 20, 30, and variable R2 values = .799, .255, .358; (2) in the second set of data, each 
will have p =3, N = 20, 30, 93, and R2 = .943, .617, .261; (3) in the third set of data, each will have p = 4, 
N = 13, 30, 36, and R2 = .982, .640, .355. 
 

Methods 
  The data sets for this research came from Agresti and Finlay (1986), Cohen and Cohen (1983), Hald 
(1965), Kerlinger and Pedhazur (1973), Rulon, Tiedeman, Tatsuoka, and Langmuir (1967), Sprinthall 
(2000), and Thurstone (1947). These data are well-known and found in textbooks utilized in graduate-
level research design and statistics courses. Also, they exemplify the types of data often applied in social 
science research, with varying distributional characteristics, multicollinearity, sample sizes, regressor 
variates, and criterion variables such as predicting grade point average, psychiatric impairment, or job 
success. 
  The previously listed N, p, and R2 values from the data sets will be entered into the four formulas for 

2
NLR , 2

SDR , 2
RR , and 2

BR , which are part of a program written in SPSS (Statistical Package for the Social 
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Sciences) v. 14.0 by the author (see Appendix A). The data sets also will be bootstrapped in the program 
AMOS v. 5.0 (Analysis of Moment Structures) for 2

BOOTR .  
 

Results and Discussion 
 Table 1 shows that in terms of the relative accuracy of prediction, overall, the Browne algorithm, 2

BR , 

was superior in every data situation, except one. The 2
BR  showed a distinct pattern of low bias and high 

stability and appeared to have the most relative accuracy for predictive effectiveness of criterion score 
estimation. Furthermore, following the standard set by Kromrey and Hines (1995), estimates within .01 of 
the sample R2 value can be thought of as statistically unbiased, which occurred in two situations with 2

BR  
(i.e., the Thurstone and Hald data sets). 
  For the other three algorithm estimation techniques, none were noticeably superior in all nine of the 
data sets. That is, based on empirical data with varying sample sizes, regressor variates, and R2 values, no 
generalizable rules can be constructed concerning which of the remaining three algorithm-based cross-
validation methods were the “best” to use in a particular condition. However, patterns from the results do 
emerge to allow for some suggestions. For example, in the majority of data sets (i.e., 6 of 9), the 
Rozeboom algorithm ( 2

RR ) had the second least amount of proportional bias of the remaining formulas. In 
the other three data situations, this formula’s prediction accuracy was the next most precise. Though 
research by Huberty and Mourad (1980) and Cotter and Raju (1982) studied the same three cross-
validation formulas (e.g., 2

NLR ; 2
SDR ; 2

RR ) in different ways, and came to some differing conclusions 
pertaining to predictive accuracy, they both concluded that RR

2 was a precise estimator in most empirical 
data circumstances. Another apparent pattern from the current study’s results was that after 2

BR  and 2
RR , 

the Nicholson and Lord ( 2
NLR ) and the Stein-Darlington ( 2

SDR ) formulas demonstrated consistent patterns 
of low relative accuracy in many situations, with the most amount of proportional bias in 4 of 9 and in 6 
of 9 data sets, respectively. 
  For the bootstrap method, 2

BOOTR  showed no discernable pattern of relative accuracy with results 
ranging from the most accurate in a situation to the least accurate in three different data situations. Of 
interest is that the 2

BOOTR  method had the least amount of proportional bias, in fact it was less than 0.01, 
when used with the Hald data set, which was the only data set with multicollinearity (e.g., variance 
inflation factor > 38 and tolerance < 0.03). This situation was checked with a data set independent from 
the others used in this study, which also manifested multicollinearity (e.g., variance inflation factor > 30 
and tolerance < .02). In the scholarly literature, results from a study conducted by Ayabe (1985) using a 
technique similar to the bootstrap method, the jackknife procedure, found inferior estimates as well. 
Kromrey and Hines (1995) found mixed results, similar to the current study’s findings, with use of the 
bootstrap method with small sample sizes. However, when sample sizes were N ≥ 100, they found more 
unbiased estimates when using the bootstrap.   
 

Conclusion 
  Given the very unique characteristics of each data set in this study in the areas of dissimilar N, p, and 
R2 values, the 2

BR  algorithm was the most accurate in 8 of the 9 data situations. None of the remaining 
three proposed cross-validation algorithms, or the bootstrap method, were exceedingly superior or inferior 
to each other when compared based on proportional bias. Although it may be convenient to run all four 
cross-validation methods from the program in Appendix A to determine which one has the least amount 
of bias given a specific data situation, the definite preference is toward 2

BR  in nearly every  
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Table 1. Bias Affiliated with Cross-Validation Estimation Methods 
Data Set R2 Biases 2

NLR  2
SDR  2

RR  2
BR  2

BOOTR  
Kerlinger (1973) 
N = 12 
p = 2 
DV = Attitude Score 

0.799 2
CVR  

Bias 
Proportional
Bias 

0.693 
0.106 
0.133 

0.667 
0.132 
0.165 

0.719 
0.080 
0.100 

0.775 
0.024 
0.030 

0.675 
0.124 
0.155 

Sprinthall (2000) 
N = 20 
p = 2 
DV = Anger Score 

0.255 2
CVR  

Bias 
Proportional
Bias 

0.042 
0.213 
0.835 

0.016 
0.239 
0.937 

0.089 
0.166 
0.651 

0.221 
0.034 
0.133 

0.073 
0.182 
0.714 

Agresti (1986) 
N = 30 
p = 2 
DV = Psychiatric Impairment 

0.358 2
CVR  

Bias 
Proportional
Bias 

0.241 
0.117 
0.327 

0.233 
0.125 
0.349 

0.266 
0.092 
0.257 

0.336 
0.022 
0.061 

0.215 
0.143 
0.399 

Thurstone (1947) 
N = 20 
p = 3 
DV = Volume of a Box 

0.943 2
CVR  

Bias 
Proportional
Bias 

0.919 
0.024 
0.025 

0.915 
0.028 
0.03 

0.923 
0.02 

0.021 

0.935 
0.008 
0.008 

0.929 
0.014 
0.015 

Kerlinger (1973) 
N = 30 
p = 3 
DV = GPA 

0.617 2
CVR  

Bias 
Proportional
Bias 

0.516 
0.101 
0.164 

0.506 
0.111 
0.18 

0.532 
0.085 
0.138 

0.588 
0.029 
0.047 

0.478 
0.139 
0.225 

Rulon (1967) 
N = 93 
p = 3 
DV = Success Score 

0.261 2
CVR  

Bias 
Proportional
Bias 

0.203 
0.058 
0.222 

0.202 
0.059 
0.226 

0.212 
0.049 
0.188 

0.246 
0.015 
0.057 

0.167 
0.094 
0.360 

Hald (1965) 
N = 13 
p = 4 
DV = Heat Evolved (Cement) 

0.982 2
CVR  

Bias 
Proportional
Bias 

0.963 
0.019 
0.019 

0.954 
0.028 
0.029 

0.966 
0.016 
0.016 

0.974 
0.008 
0.008 

0.975 
0.007 
0.007 

Kerlinger (1973) 
N = 30 
p = 4 
DV = GPA 

0.640 2
CVR  

Bias 
Proportional
Bias 

0.513 
0.127 
0.198 

0.497 
0.143 
0.223 

0.529 
0.111 
0.173 

0.599 
0.041 
0.064 

0.508 
0.132 
0.206 

Cohen (1983) 
N = 36 
p = 4 
DV = Religious Attitude 

0.355 2
CVR  

Bias 
Proportional
Bias 

0.171 
0.184 
0.518 

0.152 
0.203 
0.572 

0.194 
0.161 
0.454 

0.303 
0.052 
0.146 

0.222 
0.133 
0.375 

 
empirical data cross-validation circumstance. Thus, it is probably prudent to apply 2

BR  first while 

regarding the proportional bias derived from 2
RR  as a comparison. The remaining two algorithms, 2

NLR  

and 2
SDR , did not perform well in virtually any data situation. Though use of the AMOS bootstrap 

technique it not difficult (cf. Fan, 2003 for application instructions), the mixed results derived from 
2
BOOTR  should afford caution when used with small sample sizes (i.e., N < 100), except in situations of 

multicollinearity where the 2
BOOTR  method showed the least amount of proportional bias. 
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Appendix A.  Cross-Validation Algorithms Program 
 
****************************************************************************** 
Copyright David A. Walker, 2006 
Contact dawalker@niu.edu 
Northern Illinois University, 101J Gabel, DeKalb, IL 60115 
  **APA 5th Edition Citation** 
Walker, D. A. (2006). Four estimators for sample cross-validation [Computer 
 program]. DeKalb, IL: Author. 
******************************************************************************. 
 
          
****************************************************************************** 
NOTE: Between BEGIN DATA and END DATA, insert the multiple correlation 
coefficient (R2), the sample size (N), and the number of regressor variates (p) 
derived from your data 
******************************************************************************. 
 
DATA LIST LIST / R2(F9.3) p(F8.0) N(F8.0). 
BEGIN DATA 
.799 2 12 
.255 2 20 
.358 2 30 
.943 3 20 
.617 3 30 
.261 3 93 
.982 4 13 
.640 4 30 
.355 4 36  
END DATA. 
COMPUTE RNICHOL = (N+p+1)/ (N-p-1).  
COMPUTE RLORD = (N-1)/(N). 
COMPUTE RNICLORD = (1-(RNICHOL*RLORD)* (1-R2)). 
COMPUTE RSTEIN1 = (N-1)/ (N-p-1).  
COMPUTE RSTEIN2 = (N-2)/ (N-p-2).  
COMPUTE RDARLING = (N+1)/(N). 
COMPUTE RSTDARL = (1-(RSTEIN1*RSTEIN2*RDARLING)* (1-R2)). 
COMPUTE RROZE = (1- (N+p)/ (N-p) * (1-R2)). 
COMPUTE RBROWNE1 = ((N-p-3) * (R2)**2)+R2. 
COMPUTE RBROWNE2 = ((N-2*p-2) * R2)+p. 
COMPUTE RBROWNE = RBROWNE1 / RBROWNE2. 
EXECUTE. 
FORMAT RNICHOL TO RBROWNE (F9.3). 
VARIABLE LABELS R2 'Multiple Correlation Coefficient'/p 'Number of Predictor Variables'/ N 'Sample 
Size'/RNICLORD 'Nicholson-Lord'/ RBROWNE 'Browne'/RSTDARL 'Stein-Darlington'/ RROZE 
'Rozeboom'/. 
REPORT FORMAT=LIST AUTOMATIC ALIGN (CENTER) 
MARGINS (*,110) 
  /VARIABLES=N p R2 RNICLORD RSTDARL RROZE RBROWNE  
  /TITLE "Estimation of the Sample Cross-Validity Expectancy". 
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