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Accurate cross-validated prediction accuracy is posited as the ultimate criterion for prediction model 
performance. This study investigates and demonstrates, across a wide variety of data sets, the nearly 
ubiquitous benefit to classification model accuracy of optimal subset selection. Unlike popular “stepwise” 
methods often used (and abused) in the literature, this study considers only all-possible-subset cross-
validated performance as the criterion of accuracy. The superiority of variable subsets is demonstrated for 
predictive discriminant analysis and logistic regression. Computer programs are also made available. 

mong the techniques used for solving classification problems, logistic regression (LR) and 
predictive discriminant analysis (PDA) are two of the most popular (Yarnold, Hart & Soltysik, 
1994). Unlike PDA, LR captures the probabilistic distribution embedded in a categorical outcome 
variable, avoids violations to the assumption of homogeneity of covariance matrices (in the case 

of the linear PDA model), and does not require strict multivariate normality. Therefore, when PDA 
assumptions are violated, we might expect greater cross-validated classification accuracy with LR than 
PDA. 
  Although several studies have compared the classification accuracy of LR and PDA, the results have 
been inconsistent. For example, some studies (Baron, 1991; Bayne, Beauchamp, Kane, & McCabe, 1983; 
Crawley, 1979) suggest that LR is more accurate than PDA for nonnormal data. However, several 
researchers (e.g., Cleary & Angel, 1984; Knoke, 1982; Krzanowski, 1975; Lieberman & Morris, 2003; 
Meshbane & Morris, 1996; Press & Wilson, 1978) found little or no difference in the accuracy of the two 
techniques with PDA often performing better than LR. Part of the reason these results are in dispute is 
that one may look at accuracy for all groups or separate-groups. As well, one may consider a cross-
validated index of accuracy or the accuracy of reclassifying the calibration sample; these studies are not 
consistent in respect to the criterion of accuracy used. Specifically, examination of cross-validation 
accuracy in LR studies is uncommon, and when done is usually of the most basic (also non-unique and 
unstable) sort (hold-out sample). No computer packages support more appropriate resampling cross-
validation methods (variously called PRESS, Lachenbruch U, leave-one-out, jackknife and bootstrap). 
  Whichever method (LR or PDA) is selected, one may consider subsets of all possible variables for 
purposes or parsimony, and/or to increase cross-validation accuracy of the model (Morris & Meshbane, 
1995). The most usual method is to consider accuracy in classification of the sample upon which the 
model is created (internal) with the objective of parsimony. That is, realizing that some accuracy will be 
lost in reducing the number of predictor variables in classifying the calibration sample, but compromising 
that loss with the gain in parsimony afforded by the reduction in size of the prediction model. However, 
as in multiple regression, an increase in cross-validated prediction accuracy (the most appropriate 
criterion) is almost always available using a model composed of fewer than all variables available. Thus 
one may gain both parsimony and some degree of explanatory power for the model. In addition, although 
traditional methods considering the piecemeal change in performance of models in respect to prediction 
within the calibration sample have often been used (forward, backward, stepwise, or variants thereof), 
they are neither optimal, nor unique and are now generally in disfavor. 
  In the case of PDA an examination of the cross-validation accuracy of all 2p-1 (where p is the number 
of predictor variables) subsets of variables has been recommended and utilized (Huberty, 1994; Huberty 
& Olejnik, 2006; Morris & Meshbane, 1995). In this case the method of cross-validation is the leave-one-
out method. In the leave-one-out procedure (Huberty, 1994, p. 88; Lachenbruch & Mickey, 1968; 
Mosteller & Tukey, 1968) a subject is classified by applying the rule derived from all subjects except the 
one being classified. This process is repeated round-robin for each subject, with a count of the overall 
classification accuracy used to estimate the cross-validated accuracy. [Clearly the same round-robin 
procedure can be used to estimate either relative or absolute accuracy in the use of multiple regression 
and has appeared in that context, with perhaps the earliest reference due to Gollob (1967). In a system 
intended to select optimal multiple regression predictor variable subsets, Allen (1971) coined the 
procedure PRESS, and he appears to be the source most often cited in the multiple regression literature.] 
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Table 1. Data set, number of predictor variables (p), PDA hit-rate for all p variables, number of variables  
               in the best performing subset(s), hit-rate for that subset, and the % change in hit-rate. 

# Data Set Source p Hit-rate for p # Predictors in Max Hit-rate % Change 
      Predictors Best Subset(s)     
1 Rulon Grps 1 & 2 4 .809 3 .831a 2.72 
2 Rulon Grps 1 & 3 4 .927 3 .934 .75 
3 Rulon Gps 2 & 3 4 .830 3 .836 .72 
4 Block - Grps 1 & 2 4 .679 2 .743 9.43 
5 Block - Grps 1 & 3 4 .646 4 .646 0.00 
6 Block - Grps 1 & 4 4 .603 1 .667 10.61 
7 Block - Grps 2 & 3 4 .553 1 .632 14.29 
8 Block - Grps 2 & 4 4 .600 2 .640 6.67 
9 Block - Grps 3 & 4 4 .684 3 .711 3.95 

10 Demographics 8 .581 3,6 .613 5.51 
11 Dropout from 4th 10 .702 2,3,4,5 .787 12.11 
12 Dropout from 8th 11 .739 5,6 .803 8.66 
13 Fitness 10 .588 7 .616 4.76 
14 Warncke -Grps 1 & 2 10 .482 2 .607 25.93 
15 Warncke -Grps 1 & 3 10 .571 3,5,6 .657 15.06 
16 Warncke -Grps 2 & 3 10 .402 1,5 .575 43.03 
17 Bisbey 1& 2 13 .888 5,6,7,8,9,10 .914 2.93 
18 Bisbey 2& 3 13 .839 2,4,5,6 .983 17.16 
19 Talent - Grps 1 & 3 14 .578 7 .698 20.76 
20 Talent - Grps 3 & 5 14 .772 8.9 .835 8.16 
21 Talent - Grps 1 & 5 14 .746 5,7,8 .797 6.84 
a Bold when > than LR. 

 
 In the case of PDA (and regression) a matrix identity due to Bartlett (1951) allows the task of the 
requisite N-1 matrix inversions to be accomplished with far less computational labor that would otherwise 
be necessary. However, this mathematical tool is irrelevant to the iterative method of LR optimization, 
thus N-1 LR optimizations must be completed for each of 2p-1 subsets of predictor variables. 
  Unlike most LR studies that consider calibration sample statistics as the criterion for model fit (e.g., 
the Cox & Snell, or Nagelkerke R2), the criterion for model accuracy is construed in this study, as is 
typically the case in PDA, as classification accuracy. That is, the proportion of correct leave-one-out 
cross-validated classifications (hit-rate) for the total sample and each separate group. Thus for a two-
group problem, we may order the accuracy of our 2p-1 candidate LR equations according to three 
different (total sample and each group) cross-validated classification accuracy criteria. 
 

Method 
  Analyses from 21 two-group classification problems from Morris and Huberty (1987) were used to 
illustrate the method and computer program for PDA (Table 1) and LR (Table 2). Although not purported 
to represent all potential data structures, these data sets have been used in several classification studies as 
representing a wide variety of number of predictor variables, group separation, and covariance structures. 
As the number of predictors ranges from 4 to 14, the candidate 2p-1 cross-validated subsets range from a 
very modest 15 to 16,383 for the 14 predictor variable problem. However, even in the case of the 
calculation and sorting of the16K+ cross-validated classification performances, the program executes (on 
a midrange laptop) in less than 30 seconds. 
 

Result and Conclusions 
  In the case of both PDA (Table1) and LR (Table 2), one can see that, in all cases, except #5 in PDA, 
selection of the best performing subset (of the 2p–1 possibilities) offers a reduction in the number of 
predictor variables, often by more than half, thus parsimony is well served. One may also note that,  
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Table 2. Data set, number of predictor variables (p), LR hit-rate for all p variables, number of variables 
                in the best performing subset(s), hit-rate for that subset, and the % change in hit-rate. 

# Data Set Source p Hit-rate for p # Predictors in Max Hit-rate % Change 
      Predictors Best Subset(s)     
1 Rulon Grps 1 & 2 4 0.803 3 .815 1.49 
2 Rulon Grps 1 & 3 4 0.914 3 .934 2.19 
 Rulon Gps 2 & 3 4 0.824 3 .830 0.73 

4 Block - Grps 1 & 2 4 0.692 1,2 .718 3.76 
5 Block - Grps 1 & 3 4 0.620 3,4 .620 0.00 
6 Block - Grps 1 & 4 4 0.577 1,2 .628 8.84 
7 Block - Grps 2 & 3 4 0.566 1,2 .605 6.89 
8 Block - Grps 2 & 4 4 0.587 2 .627 6.81 
9 Block - Grps 3 & 4 4 0.684 3 .697 1.90 

10 Demographics 8 0.591 4 .620a 4.91 
11 Dropout from 4th 10 0.660 4 .787 19.24 
12 Dropout from 8th 11 0.725 3 .782 7.86 
13 Fitness 10 0.591 4 .620 4.91 
14 Warncke -Grps 1 & 2 10 0.446 1 .580 30.04 
15 Warncke -Grps 1 & 3 10 0.600 4 .667 11.17 
16 Warncke -Grps 2 & 3 10 0.425 2 .563 32.47 
17 Bisbey 1& 2 13 0.879 6,7,8,9,10 .914 3.98 
18 Bisbey 2& 3 13 0.856 5,6,7 .924 7.94 
19 Talent - Grps 1 & 3 14 0.621 5 .733 18.04 
20 Talent - Grps 3 & 5 14 0.787 6,7,8,9 .858 9.02 
21 Talent - Grps 1 & 5 14 0.740 5 .797 7.70 
a Bold when > PDA.  

 
particularly with larger models, multiple sets of predictors and size models often achieve maximum 
accuracy. In addition, one can see that due to the reduction in the number of predictor variables, cross-
validation accuracy increased from less than 1% all the way up to more than 40%. Only in data set #5 
(PDA & LR) did the reduced model perform the same as the full model. In the case of LR, still offering 
the same accuracy, but with increased parsimony, and in the case of PDA, offering no advantage. The 
mean increase in cross-validated hit-rate due to the reduction in the number of predictor variables over all 
21 data sets was about 5% for LR and 10% for PDA. Thus one can have parsimony and increased 
accuracy. Through this procedure and computer programs, researchers will be able to make better 
decisions about optimally accurate classification model construction.  
 Although not the focus of this study, it is difficult to ignore potential comparisons between PDA an 
LR performance. As was stated, greater parsimony and accuracy is afforded in almost every case by 
selecting an optimally performing subset. As has been previously documented, cross-validation 
performance was often very close between PDA and LR. However, if one considers only the optimally 
performing subsets the advantage seems to go to PDA herein. PDA is best in 12 data sets, LR in 5, and 
performance is the same in 4. 
 Further consideration of the advantage of the availability of multiple optimally performing subsets 
should also be noted. Missing data is almost always a difficulty in dealing with real data. First, a model 
depending on a smaller number of variables has not only the philosophical advantage of parsimony, but 
may also afford the opportunity to accommodate missing data; there is more opportunity for the model to 
be applicable as the number of variables decreases. Moreover, if several equally performing (or nearly so) 
superior subsets are available, the opportunity to accommodate the missing data of an individual score 
vector is increased; one can use alternative models for alternate missing data configurations, unless, of 
course, that variable that is missing is including in all of the best subsets. Table 3 illustrates the top 20 (of 
256 possibilities) subset accuracies for PDA prediction of dropout from high school from 8 predictors. 
One can see that the optimal subset contains 4 variables, but many subsets are close, such that 
performance is maintained. Such information can aid in handling missing data. That is, one might argue 
that if the four variables in the best performing model are available for a subject (SCHOOLS8, MATH8, 
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Table 3. Ranked 20 best (of 255) performing subsets, and total model. 
                                                                               Variables Included in the Model: 
Hit-Rate  SCHOOLS8 REPEATS8 READING8 MATH8 LANG8 SCIENCE8 SOCST8 DSFS8 

0.753  √   √  √  √ 
0.747  √   √    √ 
0.747  √       √ 
0.747  √    √ √ √ √ 
0.747  √   √ √ √ √ √ 
0.741  √  √  √  √ √ 
0.741  √   √  √ √ √ 
0.735  √  √  √ √  √ 
0.735  √   √   √ √ 
0.735  √ √ √    √  
0.735  √   √ √  √ √ 
0.735  √     √ √ √ 
0.735  √  √ √ √   √ 
0.735  √ √      √ 
0.735  √ √ √      
0.728  √ √    √ √  
0.728  √     √  √ 
0.728  √ √    √  √ 
0.728  √ √ √   √  √ 
0.728  √ √    √   

         
Total Model         

0.679  √ √ √ √ √ √ √ √ 
Note: SCHOOLS8: Accumulated # of schools attended by grade 8. 
  REPEATS8:  Accumulated # of Grades repeated by grade 8. 
  READING8:   8th Grade Reading grade. 
  MATH8:         8th Grade Math grade. 
  LANG8:         8th Grade Language grade. 
  SCIENCE8:    8th Grade Science grade. 
  SOCST8:  8th Grade Social Studies grade. 
  DSFS8:   Accumulated # of D and F grades over all subjects by grade 8. 
 
SCIENCE8, DSFS8) it should be used. However, if for some reason MATH8 and SCIENCE8 (as well as 
REPEATS8, READING8, LANG8, and SOCST8) are missing from a case, then a model that 
demonstrates essentially the same performance is available using only SCHOOLS8 and DSFS8. In this 
case, the SCHOOLS8 is the number of schools the child had attended by the 8th grade and DSFS8 is the 
number of “D” and “F” grades the child had accumulated, whereas MATH8 and SCIENCE8 are grades in 
those specific subjects in the 8th grade. So, as an example, for a teacher, or school not reporting subject 
grades, but the more “global” accumulated variables of SCHOOLS8 and DSFS8 are retained in the 
county database, the alternate model could be used with the expectation of attaining essentially the same 
accuracy. 
 Note, however, in this case, that if SCHOOLS8 is not available, optimal accuracy appears 
improbable. It is a “don’t leave home without it” variable. The programs used herein (one for PDA and 
one for LR) for the examination and ordering of the 2p–1 possible subsets of predictor variables by their 
leave-one-out accuracy are available from the senior author at: jdmorris@fau.edu. They are available as 
Intel based EXE files (compiled from FORTRAN). 
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