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 Multivariate regression requires the design matrix for each of p dependent variables to be the same in 
form. Zellner (1962) formulated Seemingly Unrelated Regression (SUR) models as p correlated 
regression equations. SUR models allow each of the p dependent variables to have a different design 
matrix with some of the predictor variables being the same. Of particular relevance to path analysis, SUR 
models allow for a variable to be both in the Y and X matrices. SUR models are a flexible analytic 
strategy and are underutilized in educational research. 

tandard multivariate regression requires that each of p dependent variables has exactly the same 
design matrix such that:  
         Y(Nxp) = X(Nxk) Β(kxp) + ε(Nxp) ,             (1) 

 

where Y is a matrix of p dependent variables, X is a k-dimensional design matrix, and ε is an error matrix, 
which is assumed to be distributed as N(Nxp)(0,Σ⊗IN). Multivariate regression theory using ordinary least 
squares (OLS) assumes that all of the Β coefficients in the model are unknown and to be estimated from 
the data as:  
           -1ˆ ( ) ( )′ ′= X X X YΒ .            (2) 
 

Multivariate Regression and Multiple Univariate Regression 
  Multivariate regression is not used often in behavioral research. One reason is that the matrix algebra 
underlying parameter estimation (2) is a column solution. Thus, whether one uses multivariate regression 
or p separate univariate regression, the regression coefficients will be the same. The differences between 
univariate and multivariate regression are the types of hypotheses that can be tested and the standard 
errors for these secondary parameters. Suppose one were to regress p = 3 dependent variables (y) on to k 
= 2 predictor variables (x). The omnibus null hypothesis would be that the regression coefficients for both 
x1 and x2 on all three y variables equals zero, a multivariate test with 6 degrees-of-freedom (df). Another 
hypothesis of potential interest would that x2 has no unique relationship to any of the three y variables 
after controlling for x1, a multivariate test with df = 3. It is important to note that if one were to construct a 
“multivariate” test that reduced down to only one of the y variables, then the results will be the same as 
the univariate regression, which is another reason multivariate regression is not popular.  
 Zellner (1962) formulated the Seemingly Unrelated Regression (SUR) model as p correlated 
regression equations. The p regression equations are “seemingly unrelated” because taken separately the 
error terms would follow standard linear OLS model form. Calculating p separate standard OLS solutions 
ignores any correlation among the errors across equations; however, because the dependent variables are 
correlated and the design matrices may contain some of the same variables there may be 
“contemporaneous” correlation among the errors across the p equations. Thus, SUR models are often 
applied when there may be several equations, which appear to be unrelated; however, they may be related 
by the fact that: 1) some coefficients are assumed to be the same or zero; 2) the disturbances are 
correlated across equations; and/or 3) a subset of right hand side variables are the same. This third 
condition is of particular interest because it allows each of the p dependent variables to have a different 
design matrix with some of the predictor variables being the same. SUR models allow for a variable to be 
both in the Y and X matrices, which has particular relevance to path analysis. SUR models are an 
underused multivariate technique. Using SUR models to solve path analytic models will be explicated.  
 

SUR Model 
 The SUR model is a generalization of multivariate regression using a vectorized parameter model. 
The Y matrix is vectorized by vertical concatenation, yv. The design matrix, D, is formed as a block 
diagonal with the jth design matrix, Xj, on the jth diagonal block of the matrix. The model is then 
expressed as:  
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where mj is the number of parameters estimated (columns) by the jth design matrix, Xj.  
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To illustrate in matrix notation, the SUR model is laid out as:  
 

   E(yv)       D       Β   
   ŷ 1  (Nx1)   X1 0 . . . 0 . . . 0    β1(m1x1)   
   ŷ 2  (Nx1)   (Nxm1) X2 . . . 0 . . . 0    β2(m2x1)      (4) 
E(yv) =  . . .   =   (Nxm2) . . . 0 . . . 0       
(Npx1)   ŷ j  (Nx1)      Xj . . . 0    βj(mjx1)    ; 
   . . .      (sym)  (Nxmj)  Xp       
   ŷ p  (Nx1)        (Nxmp)    βp(mpx1)   
   (Npx1)      (NpxM)        (Mx1)   

where M is the total number of parameters estimated over the p models, M=
1

p

j
j

m
=

∑ . 

 

Estimators for the SUR Model 
One approach to solving the parameter estimates is:  
 
   Β̂  = [ ′D  Q-1 D]-1 [ ′D Q-1 yv]                     (5) 
     (MxNp) (NpxNp) (NpxM) (MxNp) (NpxNp) (Npx1)   

Q is weight matrix based on the residual covariance matrix of the Y variables and is formed as:   
            

( x )( x )

ˆ
Np pNp Np

= ⊗Q IΣ .              (6) 

  To elucidate, the residual covariance matrix could be computed by regressing each of the p 
dependent variables on to its design matrix and obtaining the residuals. The jth diagonal element of Σ̂  
is computed by calculating the Sum of Squares for the jth residual. The ijth off-diagonal element is 
computed by taking the cross-product of the ith and jth residuals. These values are then divided by an 
estimate for the degrees-of-freedom for each element. Using matrix notation, the ijth element of Σ̂ is 
calculated as:   

         
1ˆ

( *)ij N df
σ =

−
y′i [IN − Hi ][ IN − Hj ] yj ;           (7) 

where Hj = Xj(X′j Xj)
-1X′j is the hat matrix for the jth design matrix. Although there are several 

approaches for defining the degrees of freedom, the most common approach is to define df* as the 
average of the numerator degrees-of-freedom (df) for the ith and jth models. Thus, this SUR estimator, 
sometimes referred to as Zellner’s two-stage Aitken estimator, is an application of generalized least 
squares (GLS). In fact, because the residual covariance matrix is unknown and must be estimated from 
the data, this application is often called feasible generalized least squares (FGLS; see Timm, 2002). It 
should be noted that if Q-1 is removed from equation (5), or is defined as an identity matrix (Q-1 ≡ I), then 
the results will be the same as p separate univariate regression models. To develop robust standard errors 
or more precise estimates of B, Zellner (1962) also proposed iterating the FGLS solution (IFGLS), which 
has the same asymptotic properties as the FGLS (Kmenta & Gilbert, 1968). To obtain maximum 
likelihood (ML) estimators of Β and Σ, Kmenta and Gilbert (1968) employed an iterative procedure to 
solve the likelihood equation:  
         / 2 / 2 tr[(( , | ) (2 ) | |Np NL eπ ⊗− − ′= I)(y-D )(y-D ) ]y

−1ΣΣ Σ Β ΒΒ     (8) 
 
Park (1993) showed that the ML and IFGLS estimators are mathematically equivalent. Kmenta and 
Gilbert (1968) found that the ML (IFGLS) and FGLS estimators gave similar results; however, FGLS is 
favored in small samples. Because the FGLS estimator is always unbiased and requires the least 
computation burden, it is recommended in most applications of the SUR model with small samples. 
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SUR Model Approach to Path Analysis 
  To demonstrate how a SUR model can be 
used to solve a path analysis problem, 
suppose the path model in Figure 1. The 
“terminal” endogenous variable is y1, which 
is directly influenced by y2, y3, and x2. One 
exogenous variable, x2 also has indirect 
effects on y1 through y2 and y3. The 
exogenous variable, x1, has an indirect effect 
on y1 though y2. The exogenous variable, x3, 
has an indirect effect on y1 though y3. The 
path diagram also models correlation among 
the errors of the endogenous variables. 
Assuming standardized variables so that all 
intercepts will be zero, the correctly specified 
regression models would be:  
 

 ŷ1 = β1(y2) y2 +  β1(y3) y3 + 0 X1  + β1(X2) X2 + 0 X3   
 ŷ2 =   β2(X1) X1  + β2(X2) X2 + 0 X3  (9)
 ŷ3 =   0 X1  + β3(X2) X2 + β3(X3) X3   

The first subscript refers to the dependent variable (y) and the second subscript in parentheses refers to the 
predictor variable. For example, β1(y3) refers to the regression coefficient (path) of y3 to y1. Because the 
dependent variables and their error terms are correlated and the design matrices contain some of the same 
variables there is “contemporaneous” correlation among the errors across the p equations. However, the 
standard OLS solutions will ignore any correlation among the errors across these three equations.    
  Appendix B shows SAS/IML code for generating data for the path model in Figure 1. The sample 
size was set at N = 5000 so that asymptotical properties could be observed. The correlations among the 
exogenous X variables were set at rx12 = 0.30, rx13 = 0.25., and rx23 = 0.15. Table 1 displays the other 
preset coefficients.  
 

Solving Parameter Estimates for SUR Models 
  The correctly specified SUR model for this path analytic problem would be laid out as such: 
 

   E(yv)       D        Β   
   ŷ11    y21 y21 x21 0 0 0  0   β1(y2)   
   ŷ12    y22 y22 x22 0 0 0  0   β1(y3)   
    . . .   . . . . . . . . .        β1(X2)   
   ŷ1N    y2N y21 x21 0 0 0  0      
   ŷ21    (Nx3)  x11 x21 0  0   β2(X1)  (10)
 E(yv) =  ŷ22   =     x12 x22 0  0      
    . . .      . . . . . .      β2(X2)   

 (3Nx1)  ŷ2N      x1N x2N 0  0      
   ŷ31    (sym) (Nx2)  x21  x31      
   ŷ32         x22  x32   β3(X2)   
    . . .         . . .  . . .      
   ŷ3N        (Nx2) x2N  x3N   β3(X3)   
   (3Nx1)      (3Nx7)        (7x1)   

 

Setting this path analysis model up as a SUR model allows for the simultaneous solution of the 
coefficients in closed form and will produce estimates of the standard errors that take the 
contemporaneous correlations into account.  
 Appendix C shows code for the SYSLIN, CALIS, and MIXED modules of SAS. In the PROC 
SYSLIN code the FIML option produces the Full Information Maximum Likelihood estimates. Other 
estimation methods include the SUR option, which produces the FGLS estimates, and the ITSUR 
(ITterative SUR) option, which produces the IFGLS estimates. 
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  Figure 1. Hypothetical Path Model 
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Table 1. Parameter Estimates from SAS PROC SYSLIN, CALIS, and MIXED. 
Coefficients for: y1  y2  y3  Correlat ions for Errors 
Parameter β1(y2) β1(y3) β1(X2) β2(X1) β2(X2) β3(X2) β3(X3) re12 re13 re23 
Values 0.25 0.35 0.20 0.35 0.20 0.40 0.25 0.10 0.20 0.10 
  SYSLIN 
    (FIML) 

0.2542 
(0.0299) 

0.3338 
(0.0421) 

0.2106 
(0.0215)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4041 
(0.0123)

0.2503 
(0.0123) 

NA NA NA 

  CALIS  
    (ML) 

0.2542 
(0.0299) 

0.3338 
(0.0421) 

0.2106 
(0.0215)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4041 
(0.0123)

0.2503 
(0.0123) 

0.0989 0.2135 0.1048

  MIXED 
    (ML) 

0.2542 
(0.0106) 

0.3338 
(0.0112) 

0.2106 
(0.0116)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4041 
(0.0123)

0.2503 
(0.0121) 

0.0989 0.2135 0.1048

  SYSLIN 
    (SUR) 

0.2980 
(0.0106) 

0.4803 
(0.0112) 

0.1324 
(0.0114)

0.3604 
(0.0131)

0.1971 
(0.0132)

0.4040 
(0.0123)

0.2511 
(0.0123) 

0.0146 0.0176 0.1047

  SYSLIN 
    (ITSUR) 

0.2521 
(0.0106) 

0.3495 
(0.0112) 

0.2043 
(0.0116)

0.3600 
(0.0131)

0.1972 
(0.0132)

0.4040 
(0.0123)

0.2511 
(0.0121) 

0.0998 0.1943 0.1048

Note: Standard Errors are in parentheses under the parameter estimates. 
 

 Another approach to solving the parameter estimates is to set the equations up as a multivariate (or 
SUR in this case) linear mixed model (LMM) and use SAS PROC MIXED. However, multivariate LMMs 
have received scant treatment in the literature. Reinsel (1984) derived closed-form estimates with 
completely observed data and balanced designs. More recently, Shah, Laird, and Schoenfeld (1997) 
extended the EM-type algorithm of Laird and Ware (1982) to a bivariate (p = 2) setting. In econometric 
terminology, their model is analogous to SUR. Schafer and Yucel (2002) note that the added generality of 
the SUR model comes at a high cost, making the resulting algorithms impractical for more than a few 
response variables. Thus, it may be possible to recast the multivariate model as a univariate one by 
stacking the columns of yj and applying SAS PROC MIXED with a user-specified covariance structure 
(see Appendix B for the code to stack the data). In most applications, however, this approach quickly 
becomes impractical. Examples for only p = 2 response variables with complete data (Shah et al., 1997) 
and incomplete data (Verbeke & Molenberghs, 2000) require complicated SAS macros. As the number of 
variables and number of individuals per cluster grows, the dimension of the response vector increases 
rapidly, and usage of SAS PROC MIXED can become practically impossible.  
  Fortunately, Park (1993) showed that the ML and IFGLS estimators are mathematically equivalent. 
As can be seen in Table 1 the estimates from PROC MIXED with an ML estimator and PROC CALIS 
with an ML estimator produce identical parameter estimates but slightly different standard errors. The 
results from PROC SYSLIN with the ITSUR option (IFGLS estimator) are virtually identical to those 
from PROC MIXED. PROC CALIS with an ML estimator and PROC SYSLIN with the FIML option 
produce identical parameter estimates and standard errors, but PROC SYSLIN does not report the 
correlation among the regression equations (error terms for the y variables). The SUR (FGLS) option 
gives similar results but the solution has not been iterated as in the ITSUR (IFGLS) option. A full-scale 
simulation study would be necessary to determine which approach would provide the most accurate and 
valid results. A researcher interested in conducting a simulation study could compare the bias in the 
coefficients and standard errors of the correctly specified regression (9) and SUR (10) models and the 
results from structural equation modeling software (e.g. SAS PROC CALIS). One could also assess 
power and Type I error of correctly specified and misspecified models. For example, on could analyze a 
model that incorrectly assumes a direct path from x1 to y1 and then investigate the Type I error rates 
produced by the different analytic approaches. Furthermore, one could compare the statistical properties 
of different estimation procedures under any of these circumstances.It would seem, however, that SAS 
PROC MIXED, although viable, may be inefficient due to computational demands. 
 

Applications  
 There many situations in educational and behavioral research in which multiple dependent variables 
are of interest. Oftentimes these variables may take the pattern of path analytic model, but there are many 
other cases where they do not. However, it is commonplace for educational researchers to conduct 
separate analyses for multiple dependent variables even though they are likely to be correlated and have 
similar although not identical design matrices. For example, researchers in counseling often have multiple 
outcomes (measure of symptoms, coping, etc.) that are assumed to have some of the same predictors but 
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to also have predictors that are unique to each measure. This is a situation that calls for a SUR model; 
however, a search of ERIC and PSYCHINFO located 11 applications of SUR models despite the 
enormous number of articles that analyze multiple dependent variables (see Appendix A). SUR models 
are underutilized and should be give more consideration as an analytic technique. The issue begins with 
education, and thus, we as statistics educators should devote more time to covering SUR models as a 
flexible analytic method in our multivariate analyses courses.  
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Appendix B 
(SAS/IML Code to Generate Data for Figure 1) 

proc iml; 
N=5000;** sample Size **; 
r_e12=0.10;r_e13=0.20;r_e23=0.10;** Correlation among Error terms **; 
Rey=(1||r_e12||r_e13)//(r_e12||1||r_e23)//(r_e13||r_e23||1); 
r_x12=0.30;r_x13=0.25;r_x23=0.15;** Correlation among Exogeneous Variables **; 
Rxx=(1||r_x12||r_x13)//(r_x12||1||r_x23)//(r_x13||r_x23||1); 
b1_y2=0.25;b1_y3=.35;********** Path Coefficients for Y1 **; 
b1_x2=0.20;******************** Path Coefficients for Y1 **; 
b2_x1=0.35;b2_x2=0.20;b2_x3=0;* Path Coefficients for Y2 **; 
b3_x1=0;b3_x2=0.40;b3_x3=0.25;* Path Coefficients for Y3 **; 
R2_y3=(b3_x1||b3_x2||b3_x3)*Rxx*((b3_x1||b3_x2||b3_x3)`); 
R2_y2=(b2_x1||b2_x2||b2_x3)*Rxx*((b2_x1||b2_x2||b2_x3)`); 
Rxxe=(Rxx||(j((nrow(Rxx)),1,0)))//(((j(1,(nrow(Rxx)),0)))||1); 
vecre23=(0||0||0||r_e23);Rxxe=Rxxe//vecre23;Rxxe=Rxxe||((vecre23`)//1); 
R_y23=(b2_x1||b2_x2||b2_x3||((1-R2_y2)##.5)||0) 
*Rxxe*((b3_x1||b3_x2||b3_x3||0||((1-R2_y3)##.5))`); 
R_y2x2=(b2_x1||b2_x2||b2_x3)*Rxx[,2]; 
R_y3x2=(b3_x1||b3_x2||b3_x3)*Rxx[,2]; 
Rxy1=(1||R_y23||R_y2x2)//(R_y23||1||R_y3x2)//(R_y2x2||R_y3x2||1); 
print 'Rxx Correlation matrix for Y1' ;print Rxy1; 
R2_y1=(b1_y2||b1_y3||b1_x2)*Rxy1*((b1_y2||b1_y3||b1_x2)`); 
Rxy1e1=1||(((1-R2_y2)##.5)#r_e12)||(((1-R2_y3)##.5)#r_e13); 
Rxy1e1=Rxy1e1//( (((1-R2_y2)##.5)#r_e12)||1||0); 
Rxy1e1=Rxy1e1//( (((1-R2_y3)##.5)#r_e13)||0||1); 
print 'Correlation Matirx for Y2-Y3-X2';print Rxy1e1; 
R_y1e1=(b1_y2||b1_y3||b1_x2)*Rxy1*((b1_y2||b1_y3||b1_x2)`); 
ry1e1=((((1-R2_y2)##.5)#r_e12)||(((1-R2_y3)##.5)#r_e13)||0) 
*((b1_y2||b1_y3||b1_x2)`);ry1e1=ry1e1/(R2_y1##.5); 
print 'Correlation of Y1-e1' ry1e1; 
print 'R-squares';print R2_y1 R2_y2 R2_y3 R_y23 R_y2x2 R_y3x2; 
seed=13;** Setting Seed gives the same Result everytime ; 
*** For Errors of Y *******************; 
lame=eigval(rey);*** LATENT ROOTS OF rey  *******************; 
lsqrte=diag(lame##0.5);** DIAGONAL MATRIX WITH THE SQUARE ROOT OF EIGENVALUES; 
eve=eigvec(rey);** EIGENVECTORS OF rey  *************************; 
fre=eve*lsqrte;** CREATE FACTOR SCORE MATRIX (fre)      ******; 
Ze= rannor(j(N,3,seed));Ze=fre*Ze`;Ze=Ze`; 
*** For X variables *******************; 
lamx=eigval(rxx);***  LATENT ROOTS OF Rxx  *******************; 
lsqrtx=diag(lamx##0.5);** DIAGONAL MATRIX WITH THE SQUARE ROOT OF EIGENVALUES; 
evx=eigvec(rxx);** EIGENVECTORS OF Rxx  *************************; 
frx=evx*lsqrtx;** CREATE FACTOR SCORE MATRIX (frx)   ******; 
Zx= rannor(j(N,3,0));Zx=frx*Zx`;Zx=Zx`; 
**********************************; 
e1=Ze[,1];e2=Ze[,2];e3=Ze[,3]; 
x1=Zx[,1];x2=Zx[,2];x3=Zx[,3]; 
y3=(b3_x1#x1)+(b3_x2#x2)+(b3_x3#x3)+(((1-R2_y3)##.5)#e3); 
y2=(b2_x1#x1)+(b2_x2#x2)+(b2_x3#x3)+(((1-R2_y2)##.5)#e2); 
qb=-2#(R2_y1##.5)#ry1e1;** Define the qb coefficient for Quadratic Equation *; 
m=(qb+(((qb##2)-(4#(R2_y1-1)))##.5))/2;* Solve positive root of Quad Eq. ****; 
print 'Coefficient for e1' m; 
y1=(b1_y2#y2)+(b1_y3#y3)+(b1_x2#x2)+(m#e1); 
dats=y1||y1a||y2||y3||x1||x2||x3||e1||e2||e3; 
varname={'y1'  'y2' 'y3' 'x1' 'x2' 'x3' 'e1' 'e2' 'e3'};  
create outs from dats [colname=varname];  
   append from dats; 
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Appendix C 
(SAS Code to Perform SUR Model and Path Analyses of Data from Figure 1) 

 
data outs;set outs;id=_n_;run; 
proc corr data=outs;run; 
proc standard data = outs out=surpath mean=0 std=1;var y1 y2 y3 x1 x2 x3;run; 
proc syslin data=surpath FIML; ** OTHER OPTIONS include SUR and ITSUR ***; 
endogenous  y1 y2 y3;          **             INSTEAD of FIML         ***; 
instruments x1 x2 x3; 
      y1: model y1 = y2 y3    x2    / noint stb; 
      y2: model y2 =       x1 x2    / noint stb; 
      y3: model y3 =          x2 x3 / noint stb;run; 
proc calis data=surpath method=ML; 
LINEQS   
      y3 = b3_x2 X2 + b3_x3 X3 + e_3, 
      y2 = b2_x1 X1 + b2_x2 X2 + e_2, 
      y1 = b1_y2 Y2 + b1_y3 Y3 + b1_x2 X2 + e_1; 
STD X1=v_x1, X2=v_x2, X3=v_x3, e_3=v_e3, e_2=v_e2, e_1=v_e1; 
COV e_1 e_2 = c_e12, e_1 e_3 = c_e13, e_2 e_3 = c_e23; run; 
data stack;set surpath; ** STACKING THE DATA for PROC MIXED   ******; 
do mod = 1 to 3; 
  if mod = 1 then do; 
   y=y1;b1_0=1;b1_y2=y2;b1_y3=y3;b1_x2=x2; 
        b2_0=0;b2_x1= 0;b2_x2= 0; 
        b3_0=0;b3_x2= 0;b3_x3= 0; 
   output; 
  end; 
  if mod = 2 then do; 
   y=y2;b1_0=0;b1_y2= 0;b1_y3= 0;b1_x2= 0; 
        b2_0=1;b2_x1=x1;b2_x2=x2; 
        b3_0=0;b3_x2= 0;b3_x3= 0; 
   output; 
  end; 
  if mod = 3 then do; 
   y=y3;b1_0=0;b1_y2= 0;b1_y3= 0;b1_x2= 0; 
        b2_0=0;b2_x1= 0;b2_x2= 0; 
        b3_0=1;b3_x2=x2;b3_x3=x3; 
   output; 
  end; 
end; 
run; 
proc mixed data=stack method=ML   ;class mod id; 
    model y =  b1_y2 b1_y3 b1_x2  
               b2_x1 b2_x2  
               b3_x2 b3_x3  /noint solution DDFM=KENWARDROGER   ; 
    repeated mod / type=un subject=id r rcorr;run; 
 
 
 
 
 
 
 
 
 
 




