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Mallow’s Cp is used herein to select maximally accurate subsets of predictor variables in a logistic 
regression.  Across a wide variety of data sets, an examination of the cross-validated prediction accuracy, 
posited as the ultimate criterion for model performance, contrasts the leave-one-out performance of 
Mallow’s Cp selections with the accuracy afforded by optimal subsets. Losses in accuracies ranged from 
no loss in several data sets up to a maximum of 10%. The performance of Cp selected subsets can be 
viewed as promising. It is posited that one should also consider parsimony and the richness of multiple 
optimal models. 

his study investigates the proposition by Hosmer and Lemeshow (2000) that Mallow’s Cp be used 
to select subsets of maximally accurate predictor variables in a logistic regression. As accurate 
cross-validated prediction accuracy is considered the ultimate criterion for prediction model 
performance, an examination, across a wide variety of data sets, of the leave-one-out performance 

of Mallow’s Cp selected subsets (in respect to the accuracy of the optimal subset) is examined. 
Multiple regression is so thoroughly entrenched in statistical methods that it hardly needs an introduction 
herein, and is, thus, an obvious modeling technique used to examine the predictive accuracy of subsets of 
variables. Among the techniques used for solving classification problems, logistic regression (LR) and 
predictive discriminant analysis (PDA) are two of the most popular (Yarnold, Hart & Soltysik, 1994). 
Unlike PDA, LR captures the probabilistic distribution embedded in a categorical outcome variable, 
avoids violations to the assumption of homogeneity of variance, and does not require strict multivariate 
normality. Therefore, when PDA assumptions are violated, we might expect greater cross-validated 
classification accuracy with LR than PDA. 
  Although several studies have compared the classification accuracy of LR and PDA, the results have 
been inconsistent. For example, some studies (Baron, 1991; Bayne, Beauchamp, Kane, & McCabe, 1983; 
Crawley, 1979) suggest that LR is more accurate than PDA for nonnormal data. However, several 
researchers (e.g., Cleary & Angel, 1984; Knoke, 1982; Krzanowski, 1975; Lieberman & Morris, 2003; 
Meshbane & Morris, 1996; Press & Wilson, 1978) found little or no difference in the accuracy of the two 
techniques with PDA often performing better than LR. Part of the reason these results are in dispute is 
that one may consider accuracy for all groups or separate-groups. As well, one may consider a cross-
validated index of accuracy or the accuracy of reclassifying the calibration sample; these studies are not 
consistent in respect to the criterion of accuracy used. Specifically, examination of cross-validation 
accuracy in LR studies is uncommon, and when done is usually of the most basic (and unstable) sort 
(hold-out sample). No commercial computer packages support more appropriate resampling cross-
validation methods (variously called PRESS, Lachenbruch U, leave-one-out, jackknife and the bootstrap). 
  Whichever method (LR or PDA) is selected, one may consider subsets of all possible variables for 
purposes or parsimony, or to increase cross-validation accuracy of the model (Morris & Meshbane, 
1995). The most usual method is to consider accuracy in classification of the sample upon which the 
model is created (internal) with the objective of parsimony. That is, realizing that some accuracy will be 
lost in reducing the number of predictor variables in classifying the calibration sample, but compromising 
that loss with the gain in parsimony by the reduction in size of the prediction model. However, as in 
multiple regression, an increase in cross-validated prediction accuracy (the most appropriate criterion) is 
almost always available using a model composed of fewer than all available variables. Thus one may gain 
both parsimony and some degree of explanatory power for the model. In addition, although traditional 
methods considering the piecemeal change in performance of models in respect to prediction within the 
calibration sample have often been used (forward, backward, stepwise, or variants thereof), they are 
neither optimal, nor unique, and are now generally in disfavor. 
  In the case of PDA an examination of the cross-validation accuracy of all 2p-1 (where p is the number 
of predictor variables) subsets of variables has been recommended and utilized (Huberty, 1994; Huberty 
& Olejnik, 2006; Morris & Meshbane, 1995). In this case the method of cross-validation is the leave-one-
out method. In the leave-one-out procedure (Huberty, 1994, p. 88; Lachenbruch & Mickey, 1968; 
Mosteller & Tukey, 1968) a subject is classified by applying the rule derived from all subjects except the 
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one being classified. This process is repeated round-robin for each subject, with a count of the overall 
classification accuracy used to estimate the cross-validated accuracy. Clearly the same round-robin 
procedure can be used to estimate either relative or absolute accuracy in the use of multiple regression 
and has appeared in that context, with perhaps the earliest reference due to Gollob (1967). In a system 
intended to select optimal multiple regression predictor variable subsets, Allen (1971) coined the 
procedure PRESS, and he appears to be the source most often cited in the multiple regression literature. 
  In the case of PDA (and regression) a matrix identity due to Bartlett (1951) allows the task of N-1 
discriminant analyses to be accomplished with far less computational labor that would otherwise be 
necessary. However, this mathematical tool is irrelevant to the iterative method of LR optimization, thus 
N-1 LR optimizations must be completed for each of 2p-1 subsets of predictor variables. 
Unlike most LR studies that consider calibration sample statistics as the criterion for model fit (e.g., the 
Cox & Snell, or Nagelkerke R2), the criterion for model accuracy is construed in this study, as is typically 
done in PDA, as classification accuracy - that is, the proportion of correct leave-one-out cross-validated 
classifications (hit-rate) for the total sample and each separate group. Thus for a two-group problem, we 
order the accuracy of our 2p-1 candidate LR equations according to three different (total sample and each 
group) cross-validated classification accuracy criteria. 
  An alternative logistic regression variable selection strategy has been proposed by Hosmer and 
Lemeshow (2000) using a technique due to C. L. Mallows (1973). Although Mallows’ technique was 
intended for OLS regression variable subset selection, with attendant consideration of its merit in that 
context (e.g., Schumacker, 1994), the direct suggestion of Hosmer and Lemeshow of its use in variable 
subset selection in logistic regression is directly examined herein. 
 

Methods 
 Analyses from 19 two-group classification problems from Morris and Huberty (1987) were used in 
this comparison. Although not purported to represent all potential data structures, these data sets have 
been used in several classification studies as representing a wide variety of number of predictor variables, 
group separation, and covariance structures.  
  For a variety of data sets the leave-one-out cross-validated classification accuracies for the Mallows 
Cp selected variable subset was compared to that derived from the subset manifesting maximum 
classification accuracy. The difference between the maximum hit-rate and number of predictors for the 
best subset and that selected by Mallows Cp was compared. The criterion of model accuracy in this study 
is the proportion of correct leave-one-out cross validated classifications (hit rate) for the total sample and 
each separate group. 
 

Results & Discussion 
 Table 1 shows the data source, number of predictors for the full model, hit-rate for the full model, 
number of predictors in the best subset (s), and maximum hit-rate in the first five columns from left to 
right. For Mallows Cp, the final three columns show the number of predictors in the Cp selected subset, 
the hit-rate for that subset, and the percentage loss in hit-rate from the best subset chosen from the 
maximum hit-rate. 
 In all cases selection of the best performing subset (of the 2p-1 possibilities) offers a reduction in the 
number of predictor variables, often by more than half, thus parsimony is well served. In the first five data 
sets there is no loss in hit-rate accuracy and equal parsimony using Mallows Cp as with respect to all 
possible subsets. In data sets numbered seven and fifteen there is no loss in hit-rate accuracy, although the 
most parsimonious subset is not selected by Cp. In the remaining data sets, losses in accuracy incurred by 
use of the Cp strategy ranged from .97% – 10.60%.  
 In several cases one can have enhanced parsimony, hit-rate accuracy close to maximum, and reduced 
computational intensity using Mallows Cp as the predictor variable selection procedure. The performance 
of Mallows Cp could be viewed as promising.  
 Another use of the consideration of the accuracy of all possible subsets involves the treatment of 
missing data.  Table 2 demonstrates the potential use of several alternative “best” models.  These data 
represent the top twenty best subsets of variables in an 8th grade dropout profiling study including  
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Table 1. Data set, # variables (p), Hit rate for all, Maximum, and Cp selected and % Loss. 
   Hit-rate for p # Predictors in Maximum Cp Cp %  

# Data Set Source p Predictors Best Subset(s) Hit-rate # Predictors Hit-Rate Loss 
1 Rulon Grps 1 & 2 4 0.803 3 .815 3 .815 0.00a 
2 Rulon Grps 1 & 3 4 0.914 3 .934 3 .934 0.00 
3 Rulon Gps 2 & 3 4 0.824 3 .830 3 .830 0.00 
4 Block - Grps 1 & 2 4 0.692 1,2 .718 1 .718 0.00 
5 Block - Grps 1 & 3 4 0.620 3,4 .620 3 .620 0.00 
6 Block - Grps 1 & 4 4 0.577 1,2 .628 2 .615 0.02 
7 Block - Grps 2 & 3 4 0.566 1,2 .605 2 .605 0.00 
8 Block - Grps 2 & 4 4 0.587 2 .627 1 .587 6.37 
9 Block - Grps 3 & 4 4 0.684 3 .697 1 .632 9.32 

10 Demographics 8 0.591 4 .620 3 .609 1.77 
11 Dropout from 4th 10 0.660 4 .787 4 .681 10.60
12 Dropout from 8th 11 0.725 3 .782 4 .746 4.60 
13 Fitness 10 0.591 4 .620 4 .588 5.16 
14 Warncke-Grps 1 & 3 10 0.600 4 .667 3 .619 7.19 
15 Bisbey 1& 2 13 0.879 6,7,8,9,10 .914 9 .914 0.00 
16 Bisbey 2& 3 13 0.856 5,6,7 .924 3 .915 .97 
17 Talent - Grps 1 & 3 14 0.621 5 .733 2 .707 3.54 
18 Talent - Grps 3 & 5 14 0.787 6,7,8,9 .858 7 .811 5.47 
19 Talent - Grps 1 & 5 14 0.740 5 .797 7 .751 5.77 

a Bold denotes equal performance and parsimony. 
 

Table 2. Ranked 20 best (of 255) performing subsets, and total model. 
HIT-
RATE SCHOOLS8 REPEATS8 READING8 MATH8 LANG8 SCIENCE8 SOCST8 DSFS8 

0.753 √   √  √  √ 
0.747 √   √    √ 
0.747 √       √ 
0.747 √    √ √ √ √ 
0.747 √   √ √ √ √ √ 
0.741 √  √  √  √ √ 
0.741 √   √  √ √ √ 
0.735 √  √  √ √  √ 
0.735 √   √   √ √ 
0.735 √ √ √    √  
0.735 √   √ √  √ √ 
0.735 √     √ √ √ 
0.735 √  √ √ √   √ 
0.735 √ √      √ 
0.735 √ √ √      
0.728 √ √    √ √  
0.728 √     √  √ 
0.728 √ √    √  √ 
0.728 √ √ √   √  √ 
0.728 √ √    √   

Total Model        
0.679 √ √ √ √ √ √ √ √ 
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number of schools attended by the 8th grade, standardized test scores, and the number of D’s and F’s 
obtained during the 8th grade year. Depending on which variables are missing for a subject, with 
knowledge of the best performing subsets, it may be possible to select a superior subset appropriate for 
data that a subject has available.  An advantage to looking at all possible subsets is the allowance for the 
elimination of variables for which numbers of subjects are missing data.  
 The table shows a check mark if a variable appears in each of the top twenty models (out of two 
hundred and fifty five). Considering column-wise entries, a frequent notion of variable importance seems 
appropriate. When parsimony and accuracy are considerations for model fit, it is clear from these data 
that, for example, schools attended by 8th grade is a ‘don’t leave home without it’ variable, as it appears 
in all of the top twenty models. Similarly, Number of D’s and F’s obtained by eighth grade appears in 
most models as does number of science courses taken by eighth grade. The other variables, although 
desirable, may demonstrate little adequacy, in an additive sense, for inclusion in a prediction model. 
Therefore, this view of variable importance is such that since some variables appear in all or most models, 
one might suggest this as a defensible measure of variable importance. 
 In this particular case, since current emphases on standardized testing, and other indices of 
achievement, tend to focus on predicting success and profiling students at risk, while lessening the drain 
on time consumption and fiscal resources, such a measure of variable importance may be considered a 
vital aspect of any prediction formula. 
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