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The regression-discontinuity design (RD) is a powerful methodological alternative to the quasi-
experimental design when conducting evaluations. The RD design involves testing post-test differences 
between the experimental and comparison group regression lines at the cutoff point for statistical 
significance.  Regression discontinuity models can involve linear, curvilinear, and interaction terms in the 
model specification, which are not orthogonally specified.  Consequently, a variance inflation problem 
may exist when using regression discontinuity models in evaluation designs.  This study investigated the 
impact of variance inflation on parameters specified in full and restricted regression discontinuity models.  
It is recommended that VIF be considered when including interaction effects in RD designs. 

he basic RD Design is a two-group pretest-posttest model and is depicted as follows: 
 

             C O X O 
          C  O  O 

 

 The RD design looks similar to the Non-Equivalent Group design, which uses analysis of covariance, 
but assumptions and advantages are much different.  The RD design does not have subject selection bias 
(pre-defined group membership) rather uses a pre-test measure to assign treatment or non-treatment 
status.  The basic RD model would have an intercept term, pre-test measure, and dummy-coded group 
assignment variable regressed on a post-test measure.  The pre-test measure does not have to be the same 
as the post-test measure.   
  There are five central assumptions when performing an RD analysis. These are: 
 

   1. The cutoff value must be absolute without exception. A subject selection bias is introduced 
and the treatment effect is biased if incorrect assignment to groups based on the cutoff value occurred 
(unless it is known to be random). 
   2. The pre-post distribution is a polynomial function. If the pre-post relationship is logarithmic, 
exponential or some other function, the model is misspecified and the treatment effect is biased. The data 
can be transformed to create a polynomial distribution prior to analysis to yield appropriate model 
specification. 
   3. There must be a sufficient number of pretest values in the comparison group to estimate the 
pre-post regression line.  
   4. The experimental and comparison groups must be formed from a single continuous pretest 
distribution with the division between groups determined by the cutoff value.  
   5. The treatment or program intervention must be delivered to all subjects, i.e., all receive the 
same reading program, amount of training, etc.  
 

Regression Discontinuity Model Specification 
 The major concern when analyzing data from the RD design is whether the model or regression 
equation is correctly specified.   If the regression equation or model does not reflect the data distribution, 
then biased estimates of the treatment effect will occur. For example, if the true pre-post relationship is 
curvilinear, but the regression equation only modeled linear regression effects, the treatment effects 
would be biased. Consequently, it is a good idea to visually inspect the pre-post scatter plot to see what 
type of relationship exists.   
 Three types of model specifications are possible: exactly specified, over specified, and under 
specified RD models.   An exactly specified model has an equation that fits the “true” data.   So if the 
“true” data is linear then a simple straight-line pre-post relationship with a treatment effect would yield 
unbiased treatment effects.   The RD equation would include a term for the posttest Y, the pretest X, and 
the dummy-coded treatment variable Z with no unnecessary terms. When we exactly specify the true 
model, we get unbiased and efficient estimates of the treatment effect.  If the RD equation is over 
specified it includes additional parameter estimates that are not required, i.e. interaction or curvilinear 
coefficients, and treatment effect would be inefficient.  If the RD equation is under specified it leaves out 
important parameter estimates and the treatment effect would be biased. 

T 
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RD Modeling Steps 
 The basic steps to conducting RD analyses would as follows: 
 

   1. Subtract the cut-off score from the pretest score (Xpre – Xcut). 
   2. Visually examine the pre-post scatter plot for type of data relationship.  
    3. Determine if any higher-order polynomial terms or interactions are present. 
   4. Estimate the “full” RD regression equation. 
   5. Modify the RD equation by dropping individual non-significant terms. 
 

 The “full” RD regression equation with subsequent “modified” or “restricted” regression models 
permit one to statistically determine the best fitting model for estimating treatment effects.   A “full” 
regression discontinuity model could be as outlined below. 
 

        2 2
0 1 2 3 4 5i i i i i i i i iy Z X X Z X X Z eβ β β β β β= + + + + + +  

 

The RD regression equation terms are defined as: 
 

     yi = post test score outcome for ith subject 
  β0 = regression coefficient for intercept 
  β1 = linear pre test regression coefficient 
  β2 = mean post test different for treatment group  
  β3 = linear interaction regression coefficient between pre and group  
  β4 = quadratic regression coefficient for pretest 
  β5 = quadratic interaction regression coefficient for pre test and group  
  Xi = transformed pre test score for ith subject 
  Zi =  group assignment based on cut off score (0 = comparison, 1 = treatment) 
  ei  = residual score for ith subject. 
 

 
Variance Inflation Factor 
 When a full RD regression model is specified, multicollinearity amongst the terms is possible. 
Multicollinearity can inflate the variance amongst the variables in the model. These inflated variances are 
problematic in regression because some variables add very little or even no new and independent 
information to the model (Belsley, Kuh & Welsch, 1980).  Although Schroeder, Sjoquist and Stephen 
(1986) assert that there is no statistical test that can determine whether or not multicollinearity is a 
problem, there are ways for detecting multicollinearity (Berry and Feldman, 1985).   
 A recommended approach is to use the Variance Inflation Factor (VIF). VIF measures the impact of 
multicollinearity among the X's in a regression model on the precision of estimation.  It expresses the 
degree to which multicollinearity amongst the predictors degrades the precision of an estimate. VIF is a 
statistic used to measured possible multicollinearity amongst the predictor or explanatory variables. VIF 
is computed as 1/(1-R2) for each of the k–1 independent variable equations. For example, given 4 
independent predictor variables, the independent regression equations are formed by using each k-1 
independent variable as the dependent variable:  
  

X1 = β0 + β1X2 + β2X3 + β3X4 + e1 
X2 = β0 + β1X1 + β2X3 + β3X4 + e2 
X3 = β0 + β1X1 + β2X2 + β3X3 + e3 
 
Each independent variable model will return an R2 value and VIF value.  The term to exclude in the 
model is then based on the value of VIF. If Xj is highly correlated with the remaining predictors, its 
variance inflation factor will be very large. A general rule is that the VIF should not exceed 10 (Belsley, 
Kuh, & Welsch, 1980). When Xj is orthogonal to the remaining predictors, its variance inflation factor 
will be 1. 
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Methods 

Data Simulation 
 The appendix contains an S-PLUS program that generated the simulated data for the study.  The 
rnorm function in S-PLUS generated 100 random normal data points and output nine variables listed in 
the data command [data <-c(y,x,z,gain,ypost,xc,xz,xsq,xsqz)]. The post test scores (Y) and pre test scores 
(X) were created by adding residual error (ey or ex) to this random normal variable (true). Group 
assignment (Z) was determined based on subtracting a cut score of 20 from the pre test score (1–
treatment, 0–comparison). This 10 point treatment gain was added to the post test score (Y). Optional 
print and write statements are included to either view or save the data in a file. 
 
Regression Discontinuity Models 
 The least squares regression function, lm, was used to run the RD analyses. The S-Plus program 
includes separate lm regression functions for several regression equations.  The summary command 
produced the regression output.  The regression discontinuity models begin with a full model followed by 
a sequence of restricted models.  The full regression model and the sequence of restricted models are 
listed below: 
 

   1.  Full model:        2 2
0 1 2 3 4 5i i i i i i i i iy Z X X Z X X Z eβ β β β β β= + + + + + +  

   2.  No Quadratic Interaction:   2
0 1 2 3 4i i i i i i iy Z X X Z X eβ β β β β= + + + + +  

   3.  No Quadratic Terms:   0 1 2 3i i i i i iy Z X X Z eβ β β β= + + + +  
   4.  Linear Model:    0 1 2i i i iy Z X eβ β β= + + +  
   5.  No Pre-Test Model:        0 1i i iy Z eβ β= + +  
 

Variance Inflation Factor 
 The variance inflation factor is computed in several popular statistics packages (S-PLUS, SPSS, and 
SAS).  In this study, the data simulation, regression function, and variance inflation function were all 
written in S-PLUS.  The simulated data generated using the S-PLUS program in the appendix was created 
and used by the S-PLUS regression and variance inflation functions.  A variance inflation function, vif, 
was created and used with the summary function following the lm regression function for each of the 
regression equations.  The S-PLUS variables were labeled as follows in the full regression equation:  
ypost = xc + z + xz + xsq + xsqz. 
 

Results 
 The descriptive statistics for the RD variables are in Table 1. The intercorrelations amongst the terms 
in the full RD regression  model equation are in Table 2. The RD regression discontinuity results with the 
VIF values for the full model are in Table 3 for the dependent variable ypost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Descriptive Statistics (N=100) 
  Mean Std. Deviation
ypost 25.5852 5.45566
xc .0899 1.35059
z .55 .500
xz 11.5740 10.53759
xsq 405.4103 53.68331
xsqz 243.8876 223.08339

 

Table 2. Pearson Correlation Matrix of Full RD Regression Model 
  ypost xc z xz Xsq xsqz 
ypost 1.000 .821 .971 .971 .821 .969
xc .821 1.000 .785 .807 .999 .827
z .971 .785 1.000 .999 .787 .994
xz .971 .807 .999 1.000 .811 .998
xsq .821 .999 .787 .811 1.000 .833
xsqz .969 .827 .994 .998 .833 1.000
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Table 3. Full Regression Model and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) -9.772 57.928 -.168 .866    
  xc -1.909 5.298 -.360 .719 .000 3467.21
  z -87.861 108.980 -.806 .422 .001 201043.10
 xz 9.978 10.576 .943 .347  841002.30
  xsq .076 .145 .526 .600 .000 4131.94
  xsqz -.257 .258 -.993 .323 .001 225640.50

 
Table 4.  Restricted Regression Model (no xsqz) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 22.580 47.898 .471 .638    
  xc 1.048 4.382 .239 .812 .000 2372.36
  z 19.149 16.345 1.172 .244 .000 4523.18
 xz -.493 .821 -.601 .549 .000 5067.20
  xsq -.005 .120 -.039 .969 .000 2825.33

 
Table 5.  Restricted Regression Model (no xsq) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 20.703 .279 74.128 .000    
  xc .876 .199 4.401 .000 .202 4.95
  z 19.748 5.807 3.401 .001 .002 576.84
  xz -.523 .289 -1.810 .073 .002 635.16

 
Table 6.  Restricted Regression Model (no xz) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 20.436 .240 85.160 .000    
  xc .628 .146 4.300 .000 .384 2.60
  z 9.259 .395 23.471 .000 .384 2.60

 
Table 7.  Restricted Regression Model (no z) and VIF 

Model   Unstandardized Coefficients t Sig. Collinearity Statistics 
   B Std. Error    Tolerance VIF 
1 (Constant) 25.287 .314 80.643 .000    
  xc 3.317 .233 14.249 .000 1.000 1.00

 
Summary & Conclusion 

 The requirement of a correctly specified RD regression model is linked to multicollinearity of the 
independent variables in the equation. Table 2 suggests that multicollinearity is present amongst the 
independent predictors in the RD regression equation, i.e. β1 = linear pre test regression coefficient (xc); 
β2 = mean post test different for treatment group (z); β3 = linear interaction regression coefficient between 
pre and group (xz); β4 = quadratic regression coefficient for pretest (xsq); and β5 = quadratic interaction 
regression coefficient for pre test and group (xsqz).  Table 3 indicates that VIF is well beyond the 
acceptable level of 10 for each of the independent predictor variables in the model.  Similar results were 
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found for the set of independent predictor variables in Table 4, especially note the non-significant 
treatment effect (z) with an extreme VIF factor. Table 5 indicated that the linear pre test regression 
coefficient (xc) was acceptable, however, the other independent predictors VIF were too high, i.e., the 
treatment effect is now significant, but has an extreme VIF factor.  In Table 6, a two predictor model with 
linear pre test and treatment group had both a significant t-test value (t = 23.471, p = .0001) and an 
acceptable VIF factor; thus an acceptable RD model.  Table 7, indicated a baseline RD model with linear 
pre test scores and an expected corresponding VIF = 1.0. 
 The regression discontinuity approach to analyzing evaluation data is more robust to violations than 
the corresponding quasi-experimental design that is commonly used in state and federal grant data 
analysis.  However, model misspecification can result in erroneous conclusions regarding program gains.  
Correspondingly, if the variance inflation factor is not considered along with model specification, then 
multicollinearity amongst the predictor variables can inflate the variance leading to misinterpretation of 
the R-squared values and treatment gain.  A visual presentation of overlap by the independent variables is 
also possible (Stine, 1995).  It is therefore recommended that model specification along with the variance 
inflation factor be checked when using regression discontinuity. 
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APPENDIX 

S-PLUS Program 
# 
# Data for Normal Distribution  
# Pretest X cutoff score is 20 (mean X) 
# Program Gain is 10 
# Mean Posttest Y is 30 
# XC is Pre test minus cut score to center at 0 point 
# ex and ey add residual error to true score 
# 
 
seed <-1357 
set.seed(seed)              # same seed value so results can be reproduced 
 
true <- rnorm(100,20,1) 
ex   <- rnorm(100,0,1) 
ey   <- rnorm(100,0,1) 
 
x <- true + ex              # create y and x scores with residual error 
y <- true + ey 
 
z <- ifelse(x >= 20, 1, 0)  # assign treatment group using pretest cutoff score 
 
gain <- (10 * z)            # add 10 point to treatment group (z = 1) 
 
ypost <- y + gain           # add 10 points to post test score 
 
xc<- (x-20)                 # subtract cut score from pre test 
 
xz<-x*z                     # linear interaction pre test and group   
 
xsq<-x*x                    # quadratic interaction 
 
xsqz<-xsq*z                 # quadratic interaction pre test and group  
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data<-c(y,x,z,gain,ypost,xc,xz,xsq,xsqz) 
 
RD.data<-matrix(data,nrow=100,byrow=F) 
dimnames(RD.data) 
dim(RD.data)  #100 rows 9 columns 
variables<-c("y","x","z","gain","ypost","xc","xz","xsq","xsqz") 
dimnames(RD.data)<-list(NULL,variables) 
 
#print(RD.data)  
#save generated data in ASCII file 
write.table(RD.data, file = "RD.txt", sep=",", append=F) 
 
# 
#Variance Inflation Factor Function  
# 
 
vif <- function(object, ...) 
UseMethod("vif") 
 
vif.default <- function(object, ...) 
stop("No default method for vif.  Sorry.") 
 
vif.lm <- function(object, ...)  
 
{        
  V <- summary(object)$cov.unscaled 
  Vi <- crossprod(model.matrix(object)) 
        nam <- names(coef(object)) 
  if(k <- match("(Intercept)", nam, nomatch = F)) { 
                v1 <- diag(V)[-k] 
                v2 <- (diag(Vi)[-k] - Vi[k, -k]^2/Vi[k,k]) 
                nam <- nam[-k] 
        } else { 
                v1 <- diag(V) 
                v2 <- diag(Vi) 
                warning("No intercept term detected.  Results may surprise.") 
        } 
        structure(v1*v2, names = nam) 
} 
 
# 
#RD Regression models with Variance Inflation Factor 
# 
#Sequence of RD equations 
# 
 
fit <- lm (ypost~xc + z + xz + xsq + xsqz) 
summary(fit) 
vif(fit) 
 
fit <- lm (ypost~xc + z + xz + xsq) 
summary(fit) 
vif(fit)        
 
fit <- lm (ypost~xc + z + xz) 
summary(fit) 
vif(fit) 
 
fit <- lm (ypost~xc + z) 
summary(fit) 
vif(fit) 
 
fit <- lm (ypost~xc) 
summary(fit) 
vif(fit) 




