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When conducting descriptive discriminant analysis, many researchers make use of structure coefficients, 
the correlation between individual predictor variables and a discriminant function.  However, previous 
research has demonstrated that these statistics may lead to an over-identification of variables important 
for group separation. An alternative to structure coefficients is the standardized discriminant function 
weights for the individual variables, which can be used to order variables in importance. Relatively little 
empirical research has been done examining how well they work in this regard. This study examined the 
utility of standardized weights for interpreting a discriminant function. Results suggest that the 
standardized weights may be a useful tool for ordering predictor variables and characterizing significant 
discriminant functions when the assumptions of normality and homogeneity of covariance matrices are 
met. When these assumptions are violated, the ability of the standardized weights to correctly order 
predictor variables was somewhat degraded. 

iscriminant Analysis (DA) is a commonly used statistical procedure that allows for both a 
multivariate description of group differences and the prediction of group membership for 
individual observations based upon a set of predictor variables. In the first context, typically 
referred to as Descriptive Discriminant Analysis (DDA), the focus of research is on 

characterizing differences between two or more groups by identifying which variables among a set of 
predictors most distinguishes among the groups. In contrast, the goal of Predictive Discriminant Analysis 
(PDA) is to use the predictors as a set for identifying which of the groups an individual is most likely to 
belong to. While there may be some interest in assessing the relative contribution of the variables to 
group separation when conducting a PDA, typically the researcher focuses on the accuracy of group 
prediction and its potential utility for classifying individuals in the future. It should be noted that while 
the goals of these two types of DA are different, the underlying mathematical model upon which they are 
built is the same. This model, which is discussed below, is based on the estimation of linear combinations 
of the predictors that provide maximal group separation for the sample at hand. The specific focus of the 
current study is on the utility of the standardized weights in DDA for correctly ordering a set of predictor 
variables in terms of their relative contribution to group separation in the form of statistically significant 
linear combinations. The organization of the manuscript is as follows:  First is a brief description of DDA 
and the standardized weights used to create the linear combinations. Following this is a discussion of how 
these standardized weights can be used for ordering variables in terms of their importance in 
discriminating between groups. Finally, the details of the current simulation study are discussed, followed 
by the results and discussion of their implications. 
  As mentioned above, regardless of whether the application involves description or prediction, DA 
identifies one or more linear combination of the predictor variables that provide maximum group 
separation. The number of these linear discriminant functions is equal to the smaller of the number of 
predictor variables or the number of groups – 1. The relative ability of these functions to distinguish 
between the groups declines from the first through the second and so on. In addition, it should be noted 
that although it is mathematically possible to have multiple discriminant functions, in practice not all of 
them need be statistically significant. In other words, some of these functions may not differentiate the 
groups in a meaningful way. Thus, the first step in interpretation of a DDA analysis is the examination of 
test statistics (e.g., Wilks’ Lambda) indicating which of the functions are statistically significant. Those 
that are found to be significant can then be interpreted using tools described below. For a more thorough 
discussion of the various test statistics available for use in such situations, the reader is encouraged to 
refer to multivariate texts such as Tabachnick and Fidell (2001).  
  The actual form of the discriminant function appears in equation (1). 
 
                          1 1 2 2 ...i i i ij jD d z d z d z= + + +   ;           (1) 
where Di = the standardized score for an individual on discriminant function i, dij = the standardized 
discriminant function coefficient for function i and variable j, and zj = the value of the standardized 
predictor variable j. 
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  The discriminant weights, dij, are determined so as to provide the maximum separation possible on the 
function value, Di among the groups in question(Tabachnick & Fidell, 2001). Weights are estimated for 
each of the idiscriminant functions separately, and a value of Di is obtained for each function and each 
individual in the sample. The means of these Di are known as group centroids, and their relative proximity 
can be taken as an indication of the multivariate separation among the groups in question (Huberty & 
Olejnik, 2006). 
 The standardized discrimination coefficients take the form: 

                    
*2

ijijj dds =             (2) 

where 
*
ij d = the unstandardized discriminant coefficient and 

2
j s = the variance for variable j.        

  In turn the unstandardizeddiscriminant function coefficients are estimated by solving equation (3) 
below for d

*
.  

                                   (E
-1

H – λ1I)d
*
 = 0          (3)  

where E = the Error Sums of Squares and Cross Products matrix, H = the Hypothesis Sums of Squares 
and Cross Products Matrix, λ1 = the maximum eigenvalue for the product of E

-1
H, I = an Identity matrix 

and d
*
 = a vector of unstandardized discriminant coefficients.  

These fundamental equations for DA rely upon three assumptions regarding the data in the population:  1) 
The predictor variables are normally distributed; 2) The covariance matrices for the groups are 
homogeneous; and 3) The residuals for individual subjects are independent of one another (Tabachnick & 
Fidell, 2001). There has been some research published regarding the impact on PDA of violating these 
assumptions (Finch & Schneider, 2005; Hess, Olejnik & Huberty, 2001; Meshbane & Morris, 1996: 
McLachlan, 1992). Taken together, results of these prior studies suggest that the accuracy of PDA in 
terms of correctly placing individuals in the appropriate group was negatively impacted by violations of 
the assumptions of normality and homogeneity of covariance matrices. Furthermore, the most negative 
impact was evident when both assumptions were violated simultaneously (Finch & Schneider, 2005). 
While these studies focused on the performance of PDA, the fact that the underlying model is essentially 
the same for DDA makes them relevant to the current work. Therefore, one goal of this study is to 
ascertain the extent to which violations of the normality and homogeneity of covariance matrices 
assumptions impact the standardized discriminant weights. 
  Those discriminant functions that have been identified as statistically significant, can be viewed as 
effectively differentiating the groups in question. Given such a significant outcome, a researcher would 
very likely want to gain an understanding as to the nature of such differences; i.e. what do each of the 
predictor variables contribute to the overall discriminant function that has been shown to differentiate the 
groups (Rencher, 1995)?  There are multiple approaches that have been suggested for use in 
characterizing the functions based upon the contribution of the individual predictor variables, with the 
two most common being interpretation of the standardized discriminant coefficients and interpretation of 
structure coefficients (SC’s) (Huberty&Olejnik, 2006).  
  SC’s can be interpreted as the correlation between a discriminant function and the individual 
predictor variables upon which it is based (Huberty & Olejnik, 2006). Researchers have argued that the 
SC’s are appropriate for interpreting DDA because they provide direct information regarding the 
relationship between a discriminant function that significantly differentiates among the groups and the 
individual predictors (Stevens, 2000). Thus, if a variable has a high SC, it can be concluded that it is 
highly associated with group separation. It should be noted that SC’s in DDA are similar in concept to 
factor loadings, which are used routinely in characterizing the nature of latent factors (Huberty&Olejnik, 
2006). Therefore, it may be reasonable to use them for characterizing discriminant functions in much the 
same fashion. 
 Because they are similar (though not identical) to factor loadings, some authors have suggested 
applying arbitrary cut-off values for identifying “important” variables, as is commonly done in 
exploratory factor analysis. For example, Tabachnick and Fidell (2001) have recommended that SC’s 
larger than 0.32 be considered “important” in terms of understanding the nature of the discriminant 
function. They selected this value because 0.322 is roughly 0.1, indicating that 10% of the variance in the 
predictor variable is accounted for by the discriminant function. Pedhazur (1997) recommended using a 
cut value of 0.3, while other authors (e.g., Huberty & Olejnik, 2006; Stevens, 2000) suggest that 
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researchers not use a single value, but rather focus on the relative magnitude of the SC’s, placing greater 
emphasis on interpreting those variables with larger values. Dalgleish (1994) introduced a bootstrap 
confidence interval for use with SC’s in DDA. He hoped that this approach would obviate the need for 
applying arbitrary cut off values by providing information regarding whether, in the population, a given 
SC differs from 0. If this were the case, Dalgleish argued that a practitioner could then know, with some 
level of confidence, that a given predictor variable was associated with a significant discriminant 
function.  
 Researchers have studied the effectiveness of SC’s for interpreting significant discriminant functions 
in DDA. For example, Dalgleish (1994) found that the bootstrap confidence intervals that he developed 
for SC’s had somewhat conservative Type I error rates, but generally did a better job at maintaining Type 
I error near the nominal 0.05 level than did arbitrary cut values, including 0.3, 0.4 and 0.5. Finch (2007) 
conducted a simulation study examining both the Type I error rates (incorrectly identifying a predictor 
variable as “important” in group separation) and power (correctly identifying a predictor variable as 
“important” in group separation) of various methods for interpreting SC’s, including cut values (0.3, 0.4 
and 0.5), relative ordering of importance and the bootstrap confidence interval. Results of this study 
indicated that in general, the use of SC’s led to an over identification of variables associated with group 
separation. In other words, a researcher using any of these approaches for interpreting SC’s could expect 
to conclude that one or more variables are related to the significant discriminant function when in fact 
they are not. In addition, the Finch study reported that when the assumptions of normally distributed 
predictors with equal covariance matrices across groups were violated, the Type I error inflation was 
particularly severe.  
 Some researchers have long advocated against using SC’s for interpreting significant discirminant 
functions, and in favor of the standardized weights described above (e.g., Rencher, 1992). The argument 
in favor of this approach, set forth by Rencher (1995), is that the standardized weight for a particular 
variable reflects its contribution to the discriminant function in the presence of the other predictors. On 
the other hand, Rencher argued that the SC relating this variable to the discriminant function demonstrates 
only the univariate contribution of the individual predictor in question, totally ignoring the presence of 
the others. For this reason, he asserted that “…these correlations are useless in gauging the importance of 
a given variable in the context of others because they provide no information about how the variables 
contribute jointly to separation of the groups. Consequently, they become misleading if used for 
interpretation of discriminant functions” (Rencher, 1995, p. 317). Instead, he argued on behalf of referring 
to the discriminant weights when interpreting DDA, because they do account for all of the variables in the 
model and are therefore more appropriate when one is interested in characterizing significant discriminant 
function results.  
This opinion that standardized weights are more appropriate than SC’sfor use in interpreting discriminant 
functions is not universally shared. Huberty and Wisenbaker (1992) objected to using the weights 
because, they stated, simply ordering variables in importance does not communicate anything regarding 
the different degrees of variable importance, only that one is more important than another. Huberty and 
Olejnik (2006) go on to argue against the notion of ordering variables in terms of relative importance as a 
generally useful exercise, and instead focus on characterizing the discriminant function by ascertaining 
which of the predictor variables were most highly correlated with it, based on the SC’s. 
Clearly, given the discussion above, the disagreement between methodologists regarding the appropriate 
approach for interpreting significant discriminant functions has not been resolved to date. In addition to 
the studies described above that focused on SC’s, Huberty (1975) also conducted a simulation study in 
which he compared the ability to identify predictor variables relevant to group separation of standardized 
weights and SC’s. The outcome variable in this study was the consistency of variable ranking in terms of 
relative contribution to a significant discriminant function. The data were generated from a normal 
distribution with equal covariance matrices across 3 and 5 groups for 10 predictor variables. Sample sizes 
were set at 90, 150, 300 and 450. Huberty concluded that in the 5 groups case, the SC’s were slightly 
more effective at ordering the predictors, while in the 3 groups case the standardized weights performed 
slightly better in this regard. As he stated, these results are limited to the case where groups are of equal 
size and the assumptions of equality of covariances and normality are met. 
In contrast to the Huberty study, Rencher (1992) described analytically why there may be problems with 
using the SC’s to interpret discriminant functions, and in turn why the standardized weights might be 
preferable. As noted above, he showed that in the 2-groups case, the SC’sare mathematically proportional 
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to the univariate t-test comparing the means on the predictor variable between the two groups. Thus, he 
argued, a researcher making use of the SC’s has simply taken what is inherently a multivariate problem 
and reduced it to a series of univariate ones (Rencher, 1992). Rencher concluded his paper by stating that 
standardized weights, rather than SC’s, are most appropriate for interpreting significant discriminant 
functions because they allow for a direct ordering of individual predictors in terms of importance while 
accounting for the presence of all of the other predictors. 
  Based upon prior research examining the performance of SC’s (Finch, 2007, Dalgleish, 1994) there 
remain some doubts regarding their effectiveness in helping researchers interpret significant discriminant 
functions. Specifically, regardless of the rule used, SC’s appear to over-identify the importance of 
individual variables in terms of their contribution to group separation. In addition, based upon Rencher’s 
(1992) arguments, these SC values may not be addressing the appropriate multivariate question, namely 
which variables contribute the most to group separation, in the presence of the other variables in the 
analysis?  Given these potential problems with SC’s described by Rencher and highlighted in prior 
simulation studies, and the relative lack of Monte Carlo research examining the performance of 
standardized weights in characterizing group differences in DDA, the primary goal of the current study 
was to use simulations to ascertain how well the standardized weights could order variables in terms of 
relative importance in group separation under a variety of conditions, which are outlined below. It is 
hoped that this effort will add to the literature regarding interpretation of DDA and provide some 
additional guidance to researchers in the field. The performance of the standardized weights was 
measured in terms of how well they ordered predictors with varying degrees of between group difference, 
and what aspects of the data might impact this ordering. 
 

Methods 
 This Monte Carlo simulation study involved the manipulation of a number of data conditions in order 
to identify factors influencing the utility of standardized weights for correctly ordering variables based on 
their relative importance in defining the discriminant function. All analyses were conducted with 2 groups 
and 6 predictor variables using the SAS software system, version 9.1 (SAS, 2005) PROC DISCRIM. 
Initially, standardized weights based on both the total and within groups covariance matrices were 
estimated and retained for further investigation. However, subsequent analysis of the results demonstrated 
that across all conditions manipulated in this study, the performance of the two types in terms of variable 
ordering was virtually identical. For this reason, outcomes are reported only for the weights based on the 
total sample covariance matrices. The manipulated conditions described below were completely crossed 
with another. 
 
Distribution of the Predictor Variables 
 The predictor variables were simulated to be normal or non-normal with skewness of 1.75 and 
kurtosis of 3.75. In order to maintain the desired levels of correlation (described below) among these 
predictors, the approach for simulating data described by Headrick and Sawilowsky (1999) were 
employed. These values of skewness and kurtosis were selected because they have been shown to impact 
the performance of discriminant analysis (Hess, Olejnik, & Huberty, 2001).  
Homogeneity of groups’ covariance matrices 
 In addition to the normality of the predictors, a second major assumption underlying DA is the 
homogeneity of group covariance matrices. Therefore, in order to evaluate the performance of the 
standardized weights under a range of conditions, the covariance matrices were manipulated to be either 
equal or unequal. In this study, inequality of covariance matrices was simulated with one group having 
variances for the predictors that were 5 times larger than that of the other group.  
 
Sample Size 
 Total sample sizes took four different values across the simulations:  30, 60, 100 and 150.  These 
values correspond to values seen in the applied DA literature (e.g., Glaser, Calhoun, & Petrocelli, 2002;  
Russell & Cox, 2000; Matters & Burnett, 2003).  They represent conditions from small to moderately 
large samples. 
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Sample Size Ratio 
 Three conditions for relative group size were used. In the first condition, the two groups were 
simulatedwith equal numbers of subjects. In conditions two and three, sample sizes were different such 
that the larger group had twice the number of subjects as the smaller. In condition two, group 1 had the 
larger sample size, while in condition three group 2 was the larger. Sample size ratio was completely 
crossed with covariance matrix equality/inequality. Therefore, in one set of conditions, the larger group 
had the larger variance while in another the smaller group had the larger variance. In the third 
combination, the covariances were equal, even as group size ratios were unequal. It was believed that 
examining the combination of sample size ratio and covariance matrix equality was important to examine 
because of previous evidence that the interaction of unequal sample sizes and unequal group covariance 
matrices has an impact on the performance of PDA (Finch & Schneider, 2005). 
 
Group Separation 
 Separation between the two groups was simulated using Cohen’s d, univariate effect size (Cohen, 
1988). Table 1 contains the pattern of mean differences for the various combinations of effect sizes. The 
data were simulated so that group 2 had a mean of 0 and standard deviation of 1 for all of the predictors, 
while the predictor values for group 1 were generated using the means displayed in Table 1, for each 
condition respectively. For example, in the 8/0 condition, group 1 had a mean of 0.8 on the first predictor, 
and means of 0 on the other five, while data for group 2 were generated with means of 0 on all six 
predictors.  
 

Table 1. Differences (in Cohen’s d) in Predictor Means between Group 1 and Group 2. 
Predictor Variable 

X1 X2 X3 X4 X5 X6 

 

Condition Label 

0.5 0 0 0 0 0 5/0 
0.8 0 0 0 0 0 8/0 
0 0.5 0.5 0.5 0.5 0.5 0/5 
0 0.8 0.8 0.8 0.8 0.8 08 

3.0 2.5 2.0 1.5 1.0 0.5 5/5 
4.8 4.0 3.2 2.4 1.6 0.8 8/8 
0.8 0.5 0.5 0.5 0.5 0.5 8/5 
0.5 0.8 0.8 0.8 0.8 0.8 5/8 

 
Correlation Between the Predictor Variables 
 The correlations among the predictors were manipulated at three levels:  0.3, 0.5 and 0.8. In order to 
maintain these correlations even as the skewed distribution was simulated, the methodology outlined by 
Headrick and Sawilowsky (1999) was used. 
 The outcome of interest in this study was the degree to which standardized weights provided correct 
information regarding the order of importance of predictor variables in terms of group separation. It 
would be expected that the absolute value of these weights should be larger for those variables associated 
with greater group separation (Rencher, 1995). Thus, in the context of this study, the weights associated 
with larger values of Cohen’s d should themselves be larger than those weights associated with smaller 
effect sizes. The specific outcome in this study then, is the proportion of cases across simulation 
replications in which, for adjacent pairs of variables, the predictor associated with the larger effect size 
(greater group separation) had the larger standardized weight. In the cases where predictor effect sizes 
were the same, we anticipate the standardized weights for one of the variables in a pair will be higher than 
the other roughly half of the time. The appendix contains an S-PLUS program that generated the 
simulated data for the study. The rnorm function in S-PLUS generated 100 random normal data points 
and output nine variables listed in the data command [data <-c(y,x,z,gain,ypost,xc,xz,xsq,xsqz)]. The post 
test scores (Y) and pre test scores (X) were created by adding residual error (ey or ex) to this random 
normal variable (true). Group assignment (Z) was determined based on subtracting a cut score of 20 from 
the pre test score (1–treatment, 0–comparison). This 10 point treatment gain was added to the post test 
score (Y). Optional print and write statements are included to either view or save the data in a file. 
 

Results 
  As mentioned above, results for the total and within groups weights were essentially identical across 
conditions, therefore the discussion henceforth will focus only on the performance of the total values. In 
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addition, an examination of results revealed virtually identical outcomes regardless of the sample size 
ratios simulated. Therefore, in order to limit the length of the manuscript unnecessarily, this variable will 
also not be included in the following discussion of results. The results are organized by the assumptions 
of normality and homogeneity of covariance matrices. As stated above, the outcome of interest in this 
case was the proportion of cases in which the standardized weights correctly reflected the variables’ order 
of importance in terms of group separation. For example, referring to Table 1, in the 5/0 condition, the 
weight for the first variable should be larger than the weights for the other variables, while the weights for 
variables 2-6 should be equal (within sampling error) so that no one of these should consistently be larger 
than the others. 
 
Normal Distribution, Homogeneous Covariance Matrices 
 Table 2 reflects the results for the case when both assumptions of normality and homogeneous 
covariance matrices were met, by effect size and correlation among the predictors. Across correlations, 
when variable 1 had the null effect size and variable 2 did not (05, 08 conditions), the proportion of cases 
in which variable 2 correctly had the larger standardized weight was greater than 0.90, and increased 
concomitantly with the correlation value. In contrast, when only the first variable was associated with 
group separation (80, 50 conditions), the first weight was correctly larger than that of variable 2 at much 
lower rates. Indeed, for correlations of 0.5 and 0.8, the first weight was correctly larger in less than 30% 
of the simulation replications.  
  The proportion of cases in which the standardized weight of the first variable was correctly larger 
than that of the second in the 88 and 55 conditions, where all of the variables were involved in group 
separation though to a different degree, was much higher than when only variable 1 differed between 
groups. Furthermore, as with the 05 and 08 cases, the proportion of replications where the first 
standardized weight was larger than the second increased along with the correlation among predictors, 
with the exception of the 55 case for a correlation of 0.8. Finally, when considering the 85 and 58 
conditions, the standardized weights were better able to order the variables in the latter case versus the 
former. In other words, the proportion of cases displaying correct ordering was greater when the second 
variable had the larger effect size, as opposed to when the first variable had the larger effect size.Note that 
this outcome follows a very similar pattern to the 05/08 versus 50/80, where variable ordering was correct 
more frequently in the former than the latter. The proportion of correct ordering outcomes increased with 
increasing correlation, except for the 85 condition with r = 0.8. 
 When considering the comparisons of the standardized weights for the adjacent pairs in variables 2 
through 6, it is important to remember that these variables were all simulated with the same effect size 
values separating the groups, except for the 88 and 55 conditions. Thus, we would expect them to have 
very similar standardized weight values across simulation replications. In fact, results for the 80, 50, 08, 
05, 85, and 58 conditions revealed that the proportion of times the weights for one of these variables was 
larger than that of the adjacent one was very close to 0.5 in all cases, indicating that they were comparable 
in size across replications. Given the similarity of these results in the expected way, the data presented in 
the tables for variables 2 through 6 only includes rates for the 88 and 55 conditions, where effect size 
values were not uniform. It is hoped that the tables will more clearly display relevant outcomes that are 
not obscured by a large number of redundant results. 
  In general, for both the 88 and 55 conditions it appears that the proportion of cases exhibiting a 
correct ordering of standardized weights declined somewhat for variable pairs further down the list (e.g., 
X3 vs. X4, X4 vs. X5, etc.).For example, in the 88 condition the weight for variable 2 was correctly larger 
than that of variable 3 at rates comparable to those for the variable 1 versus 2 comparison. In contrast, for 
the final adjacent pair in the set, variable 5 correctly had a larger standardized weight than variable 6 at 
lower rates, generally differing by between 0.06 and 0.10 for different values of r. The rate of correct 
ordering by the standardized weights was higher for larger correlation values, with the exception of the 55 
condition with r = 0.8. 
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Table 2. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
correlation among predictors: Normal distribution and homogeneous covariance matrices. 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.912     

 08 0.966     
 50 0.578     
 80 0.650     
 58 0.789     
 85 0.809     
 88 0.853 0.860 0.844 0.797 0.761 
 55 0.824 0.829 0.797 0.784 0.769 

0.5 05 0.945     
 08 0.984     
 50 0.293     
 80 0.227     
 58 0.849     
 85 0.831     
 88 0.885 0.894 0.862 0.827 0.777 
 55 0.863 0.866 0.839 0.814 0.803 

0.8 05 0.985     
 08 0.999     
 50 0.053     
 80 0.021     
 58 0.940     
 85 0.626     
 88 0.895 0.914 0.883 0.838 0.801 
 55 0.603 0.611 0.609 0.588 0.582 

 

 Table 3 displays the proportion of correctly ordered variables by effect size and sample size when the 
assumptions of normality and homogeneity of covariances were met. In general, the pattern of results 
across effect sizes was very similar to those described above. The proportion of cases correctly ordered 
for the first 2 variables increased concomitantly with sample size, except for the 50 and 80 conditions. In 
other words, when only the first variable was simulated to be different between the groups, the proportion 
of times that the standardized weight for variable 1 was larger than that of variable 2 declined as sample 
size increased. With respect to the comparisons among the adjacent pairs for variables 2 through 6, the 
proportion of correctly ordered pairs declined for variables further down the list. In addition, the rate of 
correct ordering improved with larger sample sizes. Indeed, for a total sample size of 150, the 
standardized weights were ordered correctly in more than 80% of cases for all adjacent pairs. Even for a 
sample size of 100, the lowest proportion of accurately ordered pairs was 0.774 for variables 5 and 6 in 
the 55 condition. 
 

Normal Distribution, Heterogeneous Covariance Matrices 
  Results for the case where the predictors were simulated to be normally distributed and the covariance 
matrices between the groups were heterogeneous appear in Tables 4 and 5. Across correlation conditions 
(Table 4), the proportion of correctly ordered weights was lower than when both assumptions were met 
(Table 2). The lone exception to this result was for correlations of 0.5 and 0.8 in conjunction with the 50 
and 80 effect size conditions, where the proportion correctly ordered was somewhat higher when the 
covariance matrices were heterogeneous. It should be noted, however, that in general, for the 50 and 80 
cases the proportion of correctly ordered weights remained low. The most dramatic reduction in the 
proportion of correct ordering for the normally distributed heterogeneous covariance case occurred in 
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Table 3. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
sample size:  Normal Distribution and Homogeneous Covariance Matrices. 

N Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
30 05 0.860     
 08 0.946     
 50 0.365     
 80 0.332     
 58 0.753     
 85 0.636     
 88 0.758 0.779 0.750 0.704 0.682 
 55 0.688 0.702 0.681 0.655 0.652 
60 05 0.951     
 08 0.990     
 50 0.314     
 80 0.288     
 58 0.837     
 85 0.754     
 88 0.869 0.879 0.842 0.801 0.756 
 55 0.772 0.781 0.748 0.731 0.717 
100 05 0.981     
 08 0.998     
 50 0.279     
 80 0.263     
 58 0.900     
 85 0.833     
 88 0.927 0.931 0.912 0.872 0.813 
 55 0.829 0.826 0.808 0.783 0.774 
150 05 0.994     
 08 0.999     
 50 0.258     
 80 0.241     
 58 0.936     
 85 0.874     
 88 0.965 0.971 0.947 0.913 0.864 
 55 0.863 0.863 0.847 0.830 0.813 

 

the 88 and 55 effect size conditions with r = 0.8. When the data were normally distributed with 
heterogeneous covariance matrices, the proportion of correctly ordered cases dropped by approximately 
0.35 to 0.45 for all adjacent pairs of variables, as compared to the normal homogeneous case.  
 With respect to the impact of sample size for the normal distribution and heterogeneous covariance 
condition, results in Table 5 suggest that larger samples did ameliorate the negative impact of 
heterogeneous covariance matrices for some effect size combinations, but not others. For example, when 
groups differed on all but the first variable (05, 08), the proportions of correctly ordered standardized 
weights in Table 5 become very similar to those in Table 3 for samples of 100 and particularly 150. On 
the other hand, when group separation was isolated in the first variable only (50, 80), the proportion of 
correctly ordered ldf weights declined with increasing sample size, a pattern also apparent in Table 3. In 
the other effect size conditions simulated in this study, a larger sample size was associated with improved 
accuracy in ordering the variables, though the rates did not match those found when both assumptions of 
normality and homogeneity of variance were satisfied.  
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Table 4. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size  
and correlation among predictors:  Normal Distribution and Heterogeneous Covariance Matrices. 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.798     
 08 0.904     
 50 0.522     
 80 0.574     
 58 0.706     
 85 0.708     
 88 0.804 0.803 0.773 0.752 0.736 
 55 0.762 0.749 0.741 0.722 0.720 
0.5 05 0.843     
 08 0.940     
 50 0.353     
 80 0.304     
 58 0.758     
 85 0.688     
 88 0.838 0.838 0.816 0.785 0.779 
 55 0.778 0.772 0.759 0.746 0.741 
0.8 05 0.934     
 08 0.979     
 50 0.131     
 80 0.055     
 58 0.854     
 85 0.519     
 88 0.429 0.443 0.453 0.434 0.430 
 55 0.203 0.225 0.229 0.236 0.244 

 

Non-Normal Distribution, Homogeneous Covariance Matrices 
  The third combination of conditions to be examined in this study was the non-normal, homogeneous 
covariance case. One pattern of results apparent across values of the correlation was that the proportion of 
correctly ordered weights in the X1 versus X2 comparison was higher in the non-normal homogeneous 
covariance condition than for the normal heterogeneous covariance condition when the first variable was 
associated with a larger group difference (50, 80, 88, 55). The lone exception to this pattern was the 85 
condition, in which the first variable was associated with a large effect while the other variables were 
associated with a medium effect. Conversely, when the first variable was associated with a null effect size 
(05, 08) as well as in the 58, 85 cases, the proportion of correct ordering was lower in the non-normal, 
homogeneous covariance situation. In general, the proportion of correctly ordered standardized weights 
was lower than when both assumptions were met.  
  With respect to the adjacent variable comparisons other than X1 versus X2, the proportion of correctly 
ordered weights was somewhat higher earlier in the sequence for the non-normal homogeneous case as 
compared to the normal heterogeneous data, and somewhat lower for X4 versus X5 and X5 versus X6. In 
addition, the sharp decline in accuracy that occurred in the normal heterogeneous case for r = 0.8 was not 
in evidence in the non-normal, homogeneous case. With the exception of the 50 and 80 conditions, the 
proportion of correctly ordered standardized weights increased with increasing sample sizes in Table 7. In 
addition, for the 88 and 55 effect size cases, the proportion of correctly ordered weights was comparable 
or slightly higher in this condition than when both assumptions were met. 
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Table 5. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
sample size:  Normal Distribution and Heterogeneous Covariance Matrices 

N Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
30 05 0.719     
 08 0.844     
 50 0.390     
 80 0.375     
 58 0.670     
 85 0.545     
 88 0.650 0.665 0.648 0.621 0.618 
 55 0.570 0.570 0.576 0.568 0.567 
60 05 0.837     
 08 0.945     
 50 0.363     
 80 0.317     
 58 0.744     
 85 0.611     
 88 0.710 0.718 0.703 0.675 0.665 
 55 0.772 0.621 0.607 0.598 0.595 
100 05 0.912     
 08 0.980     
 50 0.312     
 80 0.281     
 58 0.790     
 85 0.688     
 88 0.762 0.757 0.742 0.716 0.709 
 55 0.656 0.651 0.635 0.630 0.628 
150 05 0.951     
 08 0.994     
 50 0.294     
 80 0.264     
 58 0.862     
 85 0.751     
 88 0.788 0.782 0.764 0.743 0.732 
 55 0.680 0.676 0.669 0.655 0.655 

 

Non-normal Distribution, Heterogeneous Covariance Matrices 
  This combination of conditions represents the situation where neither of the foundational assumptions 
underlying DA were met. Table 8 reveals that across nearly all conditions the ordering of the standardized 
weights was correct at markedly lower rates than when both assumptions were met (Table 2). The only 
exceptions to this pattern were for the 50 and 80 cases, when all group difference was isolated in the first 
variable only. The pattern of declining accuracy for variables entered later in the equation that was 
evident in the other distribution and covariance conditions was also apparent when neither assumption 
was met. In fact, the relative decline in accuracy rates for adjacent pairs further down the sequence was 
greater in this condition than when both assumptions were met. Larger correlations among the predictors 
were associated with greater accuracy rates for the 88 and 55 conditions particularly, for the X1 versus X2, 
X2 versus X3 and X3 versus X4 adjacent pairs. However, for the X4 versus X5 and X5 versus X6 variable 
pairs, the proportion of correctly ordered standardized weights actually declined with increasing 
correlation values. 
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Table 6:  Proportion of cases in which variable ordering is correct based on ldf weights, by effect size 
and correlation among predictors:  Non-Normal Distribution and Homogeneous Covariance Matrices 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.579     
 08 0.734     
 50 0.527     
 80 0.617     
 58 0.682     
 85 0.683     
 88 0.869 0.836 0.800 0.754 0.637 
 55 0.852 0.817 0.775 0.726 0.611 
0.5 05 0.571     
 08 0.703     
 50 0.506     
 80 0.575     
 58 0.697     
 85 0.629     
 88 0.907 0.871 0.830 0.733 0.490 
 55 0.897 0.853 0.809 0.707 0.472 
0.8 05 0.577     
 08 0.693     
 50 0.470     
 80 0.472     
 58 0.763     
 85 0.490     
 88 0.905 0.881 0.812 0.616 0.220 
 55 0.665 0.658 0.609 0.514 0.366 

 
 
  The total sample size appears to have been associated with standardized weight ordering accuracy for 
only some of the effect size combinations when the data were not normally distributed and covariance 
matrices were not equal between groups. Specifically, from Table 9 when the first variable accounted for 
more of the group separation (50, 80, 85, 88 and 55 effect size combinations) the proportion of correctly 
ordered weights for the X1 versus X2 comparison increased concomitantly with sample size. This increase 
in accuracy was most notable in the 88 and 55 cases. For adjacent pairs other than X1 and X2, there was a 
clear positive relationship between sample size and weight ordering accuracy for the X2 versus X3 and X3 
versus X4 comparisons. On the other hand, for the last two pairs in the sequence, there appears not to have 
been this positive relationship between sample size and the accuracy rate. 
The goal of this Monte Carlo study was to examine the potential utility of standardized weights for 
ordering predictor variables in terms of their relative importance in defining a significant discriminant 
function. Prior simulation research has found that other methods for characterizing group separation in 
DDA, such as the use of SC’s, may be less than optimal in many situations. Thus, the current research 
was designed to ascertain how effective an alternative the standardized weights might be for this purpose. 
The study conditions were selected so as to replicate those in earlier studies that focused on SC’s, and the 
outcome of interest was the proportion of cases in which the weights correctly ordered the variables in 
terms of their relative importance in separating two groups.  
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Table 7:  Proportion of cases in which variable ordering is correct based on ldf weights, by effect size 
combination and sample size:  Non-Normal Distribution and Homogeneous Covariance Matrices 

N Effect size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
30 05 0.511     

 08 0.570     
 50 0.502     
 80 0.534     
 58 0.609     
 85 0.532     
 88 0.780 0.744 0.694 0.617 0.468 
 55 0.711 0.681 0.644 0.588 0.488 

60 05 0.555     
 08 0.673     
 50 0.501     
 80 0.538     
 58 0.687     
 85 0.578     
 88 0.879 0.836 0.782 0.681 0.447 
 55 0.792 0.758 0.707 0.635 0.483 

100 05 0.599     
 08 0.772     
 50 0.502     
 80 0.572     
 58 0.762     
 85 0.620     
 88 0.943 0.916 0.855 0.736 0.440 
 55 0.840 0.814 0.763 0.672 0.483 

150 05 0.638     
 08 0.825     
 50 0.500     
 80 0.576     
 58 0.798     
 85 0.671     
 88 0.974 0.954 0.915 0.772 0.441 
 55 0.876 0.851 0.810 0.699 0.484 

 

Discussion 
  The results described above indicated that under some conditions, the standardized weights did 
indeed provide an accurate ordering of the predictor variables, particularly when both the assumptions of 
normality and homogeneity of covariance matrices were met. These accuracy rates were frequently over 
90% for samples of 100 and 150 subjects. Furthermore, the ordering accuracy rates for all adjacent pairs 
improved when the correlations among the predictors increased in several of the conditions simulated 
here.  The major exception to these positive results when both assumptions were met occurred when 
group separation was only present for the first predictor variable. In this case, the accuracy rates were 
much lower than for the other conditions, and they declined with increasing correlations among the 
variables. In other words, when the group difference was truly univariate in nature and centered in the 
first variable, the standardized weight for the second variable was frequently (incorrectly) larger than that 
of the first. Finally, the accuracy of the standardized weight ordering approach was somewhat higher for 
variable pairs earlier in the sequence, even though the relative difference in group separation later in the  
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Table 8. Proportion of cases in which variable ordering is correct based on ldf weights, by effect size and 
correlation among predictors: Non-Normal distribution and heterogeneous covariance matrices 

r Effect Size X1 vs X2 X2 vs X3 X3 vs X4 X4 vs X5 X5 vs X6 
0.2 05 0.503     

 08 0.484     
 50 0.547     
 80 0.587     
 58 0.510     
 85 0.518     
 88 0.759 0.714 0.648 0.565 0.439 
 55 0.648 0.596 0.557 0.525 0.444 

0.5 05 0.487     
 08 0.445     
 50 0.569     
 80 0.634     
 58 0.509     
 85 0.527     
 88 0.821 0.757 0.679 0.527 0.303 
 55 0.708 0.640 0.576 0.473 0.371 

0.8 05 0.488     
 08 0.440     
 50 0.597     
 80 0.695     
 58 0.479     
 85 0.569     
 88 0.888 0.830 0.698 0.430 0.167 
 55 0.793 0.726 0.596 0.433 0.253 

 
sequence was identical. For example, Table 1 shows that the difference between group means for variable 
2 was simulated to be 4.0 in the 88 effect size case, while the difference for variable 3 was simulated to be 
3.2.  Thus the difference in conditions was 0.8 (4.0-3.2). The difference between group means for variable 
4 was simulated to be 2.4, which was 0.8 units different from the group separation for variable 3. 
However, the proportion of correctly ordered weights for variable 2 versus variable 3 was greater than 
that for variable 3 versus variable 4 across correlation conditions. A similar pattern was evident for the 
other adjacent variable pairs further down the sequence. 
  In general, the results of this study demonstrated that when the assumptions of normality and/or 
homogeneity of covariance matrices were not met, the standardized weights were less accurate in ordering 
predictor variables based on their relative importance in group separation.  The performance of these 
weights was generally most degraded when neither assumption was met.  The lone exception to this last 
pattern occurred when the predictors were normally distributed but the covariance matrices were unequal 
and the correlation among the predictors was 0.8.  In this case, the ordering accuracy rates were well 
below 50% for both the 88 and 55 effect size conditions.  Under most conditions where one or both of 
these assumptions were unmet, larger sample sizes served to mitigate problems with ordering accuracy to 
some extent, though rarely did accuracy match that when both assumptions were met.  The positive 
impact of increased sample sizes was particularly evident when the data were non-normal.  Indeed, in the 
88 and 55 effect size conditions, the accuracy rates were comparable (or nearly so) to the normal, 
homogeneous covariance case for both of the non-normal situations when the sample size was 150.  It 
should also be noted that when the first variable was not associated with group separation (08, 05) the 
accuracy rates in the normal distribution, heterogeneous covariance condition were higher than when the 
data were not normally distributed, and for samples of 100 and 150 were above 0.9.   
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Implications for Practice 
  Some authors (e.g., Rencher, 1995) have recommended that researchers using DDA to differentiate 
two or more groups in the multivariate case consider relying on these standardized weights to characterize 
the nature of the significant discriminant functions. Rencher (1992) argued that they are superior to other 
tools, such as SC’s, because they incorporate information about all of the variables in the analysis, rather 
than simply reproducing univariate analyses. The results of this study appear to support the potential 
utility of these standardized weights for characterizing multivariate group differences in some situations, 
but not others. Following are some potential implications for practice based on results discussed above. It 
should be noted that guidelines for what would be acceptable performance are not available. Ideally, of 
course, the rates of correct variable ordering would be 100%, though such a perfect outcome would be 
unlikely for any statistical procedure. Rather than select an arbitrary cut off for what is acceptable 
performance, we have elected in this manuscript to discuss the rates in relative terms and allow readers to 
make their own judgments regarding the acceptability (or not) of the standardized weights’ performance.  
  First of all, it does appear that when the assumptions of normality and group homogeneity of 
covariance matrices are both satisfied, variables are accurately ordered in terms of relative contribution to 
group separation at rates above 80% when the sample size is 100 or greater and the group differences are 
multivariate in nature (all effect size conditions except for 80 and 50). Indeed, when the sample size was 
as least 60 and all the variables were associated with group separation, the standardized weights would 
accurately order variables 1 and 2 in importance more than 80% of the time, except when the second 
variable was associated with a moderate effect and the first was associated with a moderate or large effect 
(85, 55 conditions).  
  While performance of the weights in variable ordering was often relatively goodwhen the groups 
were separated on multiple predictors (and the foundational assumptions were met), in cases where the 
groups only differed on one variable (the first in the sequence in this study), theydid not accurately reflect 
this fact very well, regardless of sample size. This problem was more acute when the predictor variables 
were more highly correlated. Therefore, researchers using DDA should carefully consider the variables 
that they have selected as predictors so that any significant group differences not beunivariate in nature. 
Furthermore, if results of the analysis appear to indicate that the groups differ on only one variable, the 
researcher should be very careful when interpreting variable ordering with these standardized weights. 
  When the predictor variables do not conform to the assumptions of normality and homogeneity of 
covariance matrices, researchers should also exercise caution when using standardized weights to 
interpret discriminant functions. Results of this study suggest that when the predictor variables are not 
normally distributed and/or the group covariance matrices are not equal, the weights may frequently order 
the variables incorrectly in terms of their relative importance, particularly when both assumptions are 
violated simultaneously. Therefore, researchers considering the use of these weights for characterizing the 
nature of significant group separation should be very careful to check these assumptions. If they do not 
hold, the weights may not be appropriate for ordering the variables. It is important to note that larger 
overall sample sizes do not fully ameliorate this problem. 
  A fourth implication of these results is that the correlations among the predictor variables have an 
impact on the performance of standardized weights when the assumptions of normality and homogeneity 
of covariances are met. In general, higher correlations among the predictors were typically associated 
with more accurate ordering based on the standardized weights. The lone exception to this outcome 
occurred when only the first variable was associated with group difference, in which case higher 
correlations resulted in the weight of the second variable (not different between groups) being larger 
(incorrectly) than that of the first, at very high rates. Researchers considering the use of standardized 
weights for interpreting DDA thus need to be cognizant of these correlations. If they select a number of 
variables that have relatively low correlations, they may have more difficulty in correctly identifying 
which of these is most associated with the significant discriminant function, and the associated group 
differences. It is also interesting to consider this result in light of Rencher’s (1992) argument in favor of 
using standardized weights:  namely that they account for the presence of the other predictors in the 
model. The fact that performance generally improved with higher correlations appears to validate this 
earlier observation. 
  Finally, when compared with results of earlier simulation research examining the SC’s as a tool for 
interpreting discriminant functions, the standardized weights appear to perform favorably. Finch (2007) 
reported very high rates (often in excess of 0.5) of incorrect identification of “important” variables using 
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these SC’s. In addition, under several data conditions similar to those included in this study, rates of 
correct identification of such “important” variables were not higher than those reported here for the 
standardized weights. Therefore, given the high Type I error rates for the SC’s, along with the comparable 
power, it would appear that the standardized weights may prove to be a worthwhile alternative for 
interpreting significant discriminant functions. 
 
Limitations and Directions for Future Research 
  Future studies should be designed to improve on the current research. For example, results described 
in this manuscript are limited to the two groups case. Thus, one logical next step in this area is to examine 
the utility of standardized weights for differentiating among more than two groups. By including multiple 
groups, interpretation of more than one significant discriminant function would also be possible. 
A second area for future research is the examination of the performance of standardized weights for a 
different set of effect size combinations. In the current study, most of the differences among the predictors 
with respect to group separation were between variable 1 and the others. With the exception of the 88 and 
55 conditions, variables 2 through 6 were associated with the same effect size difference between the 
groups. Future studies should use a different variety of such group differences in order to provide a more 
complete understanding of the effectiveness of the weights for ordering the predictor variables. 
  Future studies in this area should also examine a different set of non-normal distributions for the 
predictors. While this is the first study in this area to use non-normal data, generalizations of the results 
herein are limited to those non-normal cases where the predictors have skewness of 1.75 and kurtosis of 
3.75. For example, some research has shown that a related statistical analysis, Multivariate Analysis of 
Variance (MANOVA), is impacted by variables with truncated tails (e.g., Finch, 2005). Thus, it seems 
reasonable that DDA, which is based upon the same multivariate linear model, might also experience 
problems with such a distribution. 
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