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When conducting descriptive discriminant analysis, many researchers make use of structure coefficients,
the correlation between individual predictor variables and a discriminant function. However, previous
research has demonstrated that these statistics may lead to an over-identification of variables important
for group separation. An alternative to structure coefficients is the standardized discriminant function
weights for the individual variables, which can be used to order variables in importance. Relatively little
empirical research has been done examining how well they work in this regard. This study examined the
utility of standardized weights for interpreting a discriminant function. Results suggest that the
standardized weights may be a useful tool for ordering predictor variables and characterizing significant
discriminant functions when the assumptions of normality and homogeneity of covariance matrices are
met. When these assumptions are violated, the ability of the standardized weights to correctly order
predictor variables was somewhat degraded.

D iscriminant Analysis (DA) is a commonly used statistical procedure that allows for both a

multivariate description of group differences and the prediction of group membership for

individual observations based upon a set of predictor variables. In the first context, typically

referred to as Descriptive Discriminant Analysis (DDA), the focus of research is on
characterizing differences between two or more groups by identifying which variables among a set of
predictors most distinguishes among the groups. In contrast, the goal of Predictive Discriminant Analysis
(PDA) is to use the predictors as a set for identifying which of the groups an individual is most likely to
belong to. While there may be some interest in assessing the relative contribution of the variables to
group separation when conducting a PDA, typically the researcher focuses on the accuracy of group
prediction and its potential utility for classifying individuals in the future. It should be noted that while
the goals of these two types of DA are different, the underlying mathematical model upon which they are
built is the same. This model, which is discussed below, is based on the estimation of linear combinations
of the predictors that provide maximal group separation for the sample at hand. The specific focus of the
current study is on the utility of the standardized weights in DDA for correctly ordering a set of predictor
variables in terms of their relative contribution to group separation in the form of statistically significant
linear combinations. The organization of the manuscript is as follows: First is a brief description of DDA
and the standardized weights used to create the linear combinations. Following this is a discussion of how
these standardized weights can be used for ordering variables in terms of their importance in
discriminating between groups. Finally, the details of the current simulation study are discussed, followed
by the results and discussion of their implications.

As mentioned above, regardless of whether the application involves description or prediction, DA
identifies one or more linear combination of the predictor variables that provide maximum group
separation. The number of these linear discriminant functions is equal to the smaller of the number of
predictor variables or the number of groups — 1. The relative ability of these functions to distinguish
between the groups declines from the first through the second and so on. In addition, it should be noted
that although it is mathematically possible to have multiple discriminant functions, in practice not all of
them need be statistically significant. In other words, some of these functions may not differentiate the
groups in a meaningful way. Thus, the first step in interpretation of a DDA analysis is the examination of
test statistics (e.g., Wilks’ Lambda) indicating which of the functions are statistically significant. Those
that are found to be significant can then be interpreted using tools described below. For a more thorough
discussion of the various test statistics available for use in such situations, the reader is encouraged to
refer to multivariate texts such as Tabachnick and Fidell (2001).

The actual form of the discriminant function appears in equation (1).

D=d,z+d,z +..+d.z. ; @

i i1"1 i2=2 ij7]
where D; = the standardized score for an individual on discriminant function i, d;j = the standardized
discriminant function coefficient for function i and variable j, and z; = the value of the standardized
predictor variable j.
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Standardized Discriminant Weights

researchers not use a single value, but rather focus on the relative magnitude of the SC’s, placing greater
emphasis on interpreting those variables with larger values. Dalgleish (1994) introduced a bootstrap
confidence interval for use with SC’s in DDA. He hoped that this approach would obviate the need for
applying arbitrary cut off values by providing information regarding whether, in the population, a given
SC differs from 0. If this were the case, Dalgleish argued that a practitioner could then know, with some
level of confidence, that a given predictor variable was associated with a significant discriminant
function.

Researchers have studied the effectiveness of SC’s for interpreting significant discriminant functions
in DDA. For example, Dalgleish (1994) found that the bootstrap confidence intervals that he developed
for SC’s had somewhat conservative Type | error rates, but generally did a better job at maintaining Type
I error near the nominal 0.05 level than did arbitrary cut values, including 0.3, 0.4 and 0.5. Finch (2007)
conducted a simulation study examining both the Type I error rates (incorrectly identifying a predictor
variable as “important” in group separation) and power (correctly identifying a predictor variable as
“important” in group separation) of various methods for interpreting SC’s, including cut values (0.3, 0.4
and 0.5), relative ordering of importance and the bootstrap confidence interval. Results of this study
indicated that in general, the use of SC’s led to an over identification of variables associated with group
separation. In other words, a researcher using any of these approaches for interpreting SC’s could expect
to conclude that one or more variables are related to the significant discriminant function when in fact
they are not. In addition, the Finch study reported that when the assumptions of normally distributed
predictors with equal covariance matrices across groups were violated, the Type | error inflation was
particularly severe.

Some researchers have long advocated against using SC’s for interpreting significant discirminant
functions, and in favor of the standardized weights described above (e.g., Rencher, 1992). The argument
in favor of this approach, set forth by Rencher (1995), is that the standardized weight for a particular
variable reflects its contribution to the discriminant function in the presence of the other predictors. On
the other hand, Rencher argued that the SC relating this variable to the discriminant function demonstrates
only the univariate contribution of the individual predictor in question, totally ignoring the presence of
the others. For this reason, he asserted that “...these correlations are useless in gauging the importance of
a given variable in the context of others because they provide no information about how the variables
contribute jointly to separation of the groups. Consequently, they become misleading if used for
interpretation of discriminant functions” (Rencher, 1995, p. 317). Instead, he argued on behalf of referring
to the discriminant weights when interpreting DDA, because they do account for all of the variables in the
model and are therefore more appropriate when one is interested in characterizing significant discriminant
function results.

This opinion that standardized weights are more appropriate than SC’sfor use in interpreting discriminant
functions is not universally shared. Huberty and Wisenbaker (1992) objected to using the weights
because, they stated, simply ordering variables in importance does not communicate anything regarding
the different degrees of variable importance, only that one is more important than another. Huberty and
Olejnik (2006) go on to argue against the notion of ordering variables in terms of relative importance as a
generally useful exercise, and instead focus on characterizing the discriminant function by ascertaining
which of the predictor variables were most highly correlated with it, based on the SC’s.

Clearly, given the discussion above, the disagreement between methodologists regarding the appropriate
approach for interpreting significant discriminant functions has not been resolved to date. In addition to
the studies described above that focused on SC’s, Huberty (1975) also conducted a simulation study in
which he compared the ability to identify predictor variables relevant to group separation of standardized
weights and SC’s. The outcome variable in this study was the consistency of variable ranking in terms of
relative contribution to a significant discriminant function. The data were generated from a normal
distribution with equal covariance matrices across 3 and 5 groups for 10 predictor variables. Sample sizes
were set at 90, 150, 300 and 450. Huberty concluded that in the 5 groups case, the SC’s were slightly
more effective at ordering the predictors, while in the 3 groups case the standardized weights performed
slightly better in this regard. As he stated, these results are limited to the case where groups are of equal
size and the assumptions of equality of covariances and normality are met.

In contrast to the Huberty study, Rencher (1992) described analytically why there may be problems with
using the SC’s to interpret discriminant functions, and in turn why the standardized weights might be
preferable. As noted above, he showed that in the 2-groups case, the SC’sare mathematically proportional
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to the univariate t-test comparing the means on the predictor variable between the two groups. Thus, he
argued, a researcher making use of the SC’s has simply taken what is inherently a multivariate problem
and reduced it to a series of univariate ones (Rencher, 1992). Rencher concluded his paper by stating that
standardized weights, rather than SC’s, are most appropriate for interpreting significant discriminant
functions because they allow for a direct ordering of individual predictors in terms of importance while
accounting for the presence of all of the other predictors.

Based upon prior research examining the performance of SC’s (Finch, 2007, Dalgleish, 1994) there
remain some doubts regarding their effectiveness in helping researchers interpret significant discriminant
functions. Specifically, regardless of the rule used, SC’s appear to over-identify the importance of
individual variables in terms of their contribution to group separation. In addition, based upon Rencher’s
(1992) arguments, these SC values may not be addressing the appropriate multivariate question, namely
which variables contribute the most to group separation, in the presence of the other variables in the
analysis? Given these potential problems with SC’s described by Rencher and highlighted in prior
simulation studies, and the relative lack of Monte Carlo research examining the performance of
standardized weights in characterizing group differences in DDA, the primary goal of the current study
was to use simulations to ascertain how well the standardized weights could order variables in terms of
relative importance in group separation under a variety of conditions, which are outlined below. It is
hoped that this effort will add to the literature regarding interpretation of DDA and provide some
additional guidance to researchers in the field. The performance of the standardized weights was
measured in terms of how well they ordered predictors with varying degrees of between group difference,
and what aspects of the data might impact this ordering.

Methods

This Monte Carlo simulation study involved the manipulation of a number of data conditions in order
to identify factors influencing the utility of standardized weights for correctly ordering variables based on
their relative importance in defining the discriminant function. All analyses were conducted with 2 groups
and 6 predictor variables using the SAS software system, version 9.1 (SAS, 2005) PROC DISCRIM.
Initially, standardized weights based on both the total and within groups covariance matrices were
estimated and retained for further investigation. However, subsequent analysis of the results demonstrated
that across all conditions manipulated in this study, the performance of the two types in terms of variable
ordering was virtually identical. For this reason, outcomes are reported only for the weights based on the
total sample covariance matrices. The manipulated conditions described below were completely crossed
with another.

Distribution of the Predictor Variables

The predictor variables were simulated to be normal or non-normal with skewness of 1.75 and
kurtosis of 3.75. In order to maintain the desired levels of correlation (described below) among these
predictors, the approach for simulating data described by Headrick and Sawilowsky (1999) were
employed. These values of skewness and kurtosis were selected because they have been shown to impact
the performance of discriminant analysis (Hess, Olejnik, & Huberty, 2001).
Homogeneity of groups’ covariance matrices

In addition to the normality of the predictors, a second major assumption underlying DA is the
homogeneity of group covariance matrices. Therefore, in order to evaluate the performance of the
standardized weights under a range of conditions, the covariance matrices were manipulated to be either
equal or unequal. In this study, inequality of covariance matrices was simulated with one group having
variances for the predictors that were 5 times larger than that of the other group.

Sample Size

Total sample sizes took four different values across the simulations: 30, 60, 100 and 150. These
values correspond to values seen in the applied DA literature (e.g., Glaser, Calhoun, & Petrocelli, 2002;
Russell & Cox, 2000; Matters & Burnett, 2003). They represent conditions from small to moderately
large samples.

22 Multiple Linear Regression Viewpoints, 2008, Vol. 34(1)
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Sample Size Ratio

Three conditions for relative group size were used. In the first condition, the two groups were
simulatedwith equal numbers of subjects. In conditions two and three, sample sizes were different such
that the larger group had twice the number of subjects as the smaller. In condition two, group 1 had the
larger sample size, while in condition three group 2 was the larger. Sample size ratio was completely
crossed with covariance matrix equality/inequality. Therefore, in one set of conditions, the larger group
had the larger variance while in another the smaller group had the larger variance. In the third
combination, the covariances were equal, even as group size ratios were unequal. It was believed that
examining the combination of sample size ratio and covariance matrix equality was important to examine
because of previous evidence that the interaction of unequal sample sizes and unequal group covariance
matrices has an impact on the performance of PDA (Finch & Schneider, 2005).

Group Separation

Separation between the two groups was simulated using Cohen’s d, univariate effect size (Cohen,
1988). Table 1 contains the pattern of mean differences for the various combinations of effect sizes. The
data were simulated so that group 2 had a mean of 0 and standard deviation of 1 for all of the predictors,
while the predictor values for group 1 were generated using the means displayed in Table 1, for each
condition respectively. For example, in the 8/0 condition, group 1 had a mean of 0.8 on the first predictor,
and means of 0 on the other five, while data for group 2 were generated with means of 0 on all six
predictors.

Table 1. Differences (in Cohen’s d) in Predictor Means between Group 1 and Group 2.
Predictor Variable Condition Label

X1 Xz X3 X4 Xs Xs

0.5 0 0 0 0 0 5/0
0.8 0 0 0 0 0 8/0
0 0.5 0.5 0.5 0.5 0.5 0/5
0 0.8 0.8 0.8 0.8 0.8 08
3.0 25 2.0 15 1.0 0.5 5/5
48 40 3.2 24 1.6 0.8 8/8
08 05 0.5 0.5 0.5 0.5 8/5
05 08 0.8 0.8 0.8 0.8 5/8

Correlation Between the Predictor Variables

The correlations among the predictors were manipulated at three levels: 0.3, 0.5 and 0.8. In order to
maintain these correlations even as the skewed distribution was simulated, the methodology outlined by
Headrick and Sawilowsky (1999) was used.

The outcome of interest in this study was the degree to which standardized weights provided correct
information regarding the order of importance of predictor variables in terms of group separation. It
would be expected that the absolute value of these weights should be larger for those variables associated
with greater group separation (Rencher, 1995). Thus, in the context of this study, the weights associated
with larger values of Cohen’s d should themselves be larger than those weights associated with smaller
effect sizes. The specific outcome in this study then, is the proportion of cases across simulation
replications in which, for adjacent pairs of variables, the predictor associated with the larger effect size
(greater group separation) had the larger standardized weight. In the cases where predictor effect sizes
were the same, we anticipate the standardized weights for one of the variables in a pair will be higher than
the other roughly half of the time. The appendix contains an S-PLUS program that generated the
simulated data for the study. The rnorm function in S-PLUS generated 100 random normal data points
and output nine variables listed in the data command [data <-c(y,X,z,gain,ypost,xc,xz,xsg,xsgz)]. The post
test scores (Y) and pre test scores (X) were created by adding residual error (ey or ex) to this random
normal variable (true). Group assignment (Z) was determined based on subtracting a cut score of 20 from
the pre test score (1-treatment, O—comparison). This 10 point treatment gain was added to the post test
score (Y). Optional print and write statements are included to either view or save the data in a file.

Results
As mentioned above, results for the total and within groups weights were essentially identical across
conditions, therefore the discussion henceforth will focus only on the performance of the total values. In
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addition, an examination of results revealed virtually identical outcomes regardless of the sample size
ratios simulated. Therefore, in order to limit the length of the manuscript unnecessarily, this variable will
also not be included in the following discussion of results. The results are organized by the assumptions
of normality and homogeneity of covariance matrices. As stated above, the outcome of interest in this
case was the proportion of cases in which the standardized weights correctly reflected the variables’ order
of importance in terms of group separation. For example, referring to Table 1, in the 5/0 condition, the
weight for the first variable should be larger than the weights for the other variables, while the weights for
variables 2-6 should be equal (within sampling error) so that no one of these should consistently be larger
than the others.

Normal Distribution, Homogeneous Covariance Matrices

Table 2 reflects the results for the case when both assumptions of normality and homogeneous
covariance matrices were met, by effect size and correlation among the predictors. Across correlations,
when variable 1 had the null effect size and variable 2 did not (05, 08 conditions), the proportion of cases
in which variable 2 correctly had the larger standardized weight was greater than 0.90, and increased
concomitantly with the correlation value. In contrast, when only the first variable was associated with
group separation (80, 50 conditions), the first weight was correctly larger than that of variable 2 at much
lower rates. Indeed, for correlations of 0.5 and 0.8, the first weight was correctly larger in less than 30%
of the simulation replications.

The proportion of cases in which the standardized weight of the first variable was correctly larger
than that of the second in the 88 and 55 conditions, where all of the variables were involved in group
separation though to a different degree, was much higher than when only variable 1 differed between
groups. Furthermore, as with the 05 and 08 cases, the proportion of replications where the first
standardized weight was larger than the second increased along with the correlation among predictors,
with the exception of the 55 case for a correlation of 0.8. Finally, when considering the 85 and 58
conditions, the standardized weights were better able to order the variables in the latter case versus the
former. In other words, the proportion of cases displaying correct ordering was greater when the second
variable had the larger effect size, as opposed to when the first variable had the larger effect size.Note that
this outcome follows a very similar pattern to the 05/08 versus 50/80, where variable ordering was correct
more frequently in the former than the latter. The proportion of correct ordering outcomes increased with
increasing correlation, except for the 85 condition with r = 0.8.

When considering the comparisons of the standardized weights for the adjacent pairs in variables 2
through 6, it is important to remember that these variables were all simulated with the same effect size
values separating the groups, except for the 88 and 55 conditions. Thus, we would expect them to have
very similar standardized weight values across simulation replications. In fact, results for the 80, 50, 08,
05, 85, and 58 conditions revealed that the proportion of times the weights for one of these variables was
larger than that of the adjacent one was very close to 0.5 in all cases, indicating that they were comparable
in size across replications. Given the similarity of these results in the expected way, the data presented in
the tables for variables 2 through 6 only includes rates for the 88 and 55 conditions, where effect size
values were not uniform. It is hoped that the tables will more clearly display relevant outcomes that are
not obscured by a large number of redundant results.

In general, for both the 88 and 55 conditions it appears that the proportion of cases exhibiting a
correct ordering of standardized weights declined somewhat for variable pairs further down the list (e.g.,
X3 VS. X4, X4 VS. X, etc.).For example, in the 88 condition the weight for variable 2 was correctly larger
than that of variable 3 at rates comparable to those for the variable 1 versus 2 comparison. In contrast, for
the final adjacent pair in the set, variable 5 correctly had a larger standardized weight than variable 6 at
lower rates, generally differing by between 0.06 and 0.10 for different values of r. The rate of correct
ordering by the standardized weights was higher for larger correlation values, with the exception of the 55
condition with r = 0.8.
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Table 2. Proportion of cases in which variable ordering is correct based on Idf weights, by effect size and
correlation among predictors: Normal distribution and homogeneous covariance matrices.

r Effect Size X1 VS X Xo VS X3 X3 VS X4 X4 VS Xs X5 VS X

0.2 05 0.912

08 0.966

50 0.578

80 0.650

58 0.789

85 0.809

88 0.853 0.860 0.844 0.797 0.761

55 0.824 0.829 0.797 0.784 0.769
0.5 05 0.945

08 0.984

50 0.293

80 0.227

58 0.849

85 0.831

88 0.885 0.894 0.862 0.827 0.777

55 0.863 0.866 0.839 0.814 0.803
0.8 05 0.985

08 0.999

50 0.053

80 0.021

58 0.940

85 0.626

88 0.895 0.914 0.883 0.838 0.801

55 0.603 0.611 0.609 0.588 0.582

Table 3 displays the proportion of correctly ordered variables by effect size and sample size when the
assumptions of normality and homogeneity of covariances were met. In general, the pattern of results
across effect sizes was very similar to those described above. The proportion of cases correctly ordered
for the first 2 variables increased concomitantly with sample size, except for the 50 and 80 conditions. In
other words, when only the first variable was simulated to be different between the groups, the proportion
of times that the standardized weight for variable 1 was larger than that of variable 2 declined as sample
size increased. With respect to the comparisons among the adjacent pairs for variables 2 through 6, the
proportion of correctly ordered pairs declined for variables further down the list. In addition, the rate of
correct ordering improved with larger sample sizes. Indeed, for a total sample size of 150, the
standardized weights were ordered correctly in more than 80% of cases for all adjacent pairs. Even for a
sample size of 100, the lowest proportion of accurately ordered pairs was 0.774 for variables 5 and 6 in
the 55 condition.

Normal Distribution, Heterogeneous Covariance Matrices

Results for the case where the predictors were simulated to be normally distributed and the covariance
matrices between the groups were heterogeneous appear in Tables 4 and 5. Across correlation conditions
(Table 4), the proportion of correctly ordered weights was lower than when both assumptions were met
(Table 2). The lone exception to this result was for correlations of 0.5 and 0.8 in conjunction with the 50
and 80 effect size conditions, where the proportion correctly ordered was somewhat higher when the
covariance matrices were heterogeneous. It should be noted, however, that in general, for the 50 and 80
cases the proportion of correctly ordered weights remained low. The most dramatic reduction in the
proportion of correct ordering for the normally distributed heterogeneous covariance case occurred in
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Table 3. Proportion of cases in which variable ordering is correct based on Idf weights, by effect size and
sample size: Normal Distribution and Homogeneous Covariance Matrices.

N Effect Size X1 Vs X, Xo VS X3 X3 VS X4 X4 VS X5 X5 VS X
30 05 0.860

08 0.946

50 0.365

80 0.332

58 0.753

85 0.636

88 0.758 0.779 0.750 0.704 0.682

55 0.688 0.702 0.681 0.655 0.652
60 05 0.951

08 0.990

50 0.314

80 0.288

58 0.837

85 0.754

88 0.869 0.879 0.842 0.801 0.756

55 0.772 0.781 0.748 0.731 0.717
100 05 0.981

08 0.998

50 0.279

80 0.263

58 0.900

85 0.833

88 0.927 0.931 0.912 0.872 0.813

55 0.829 0.826 0.808 0.783 0.774
150 05 0.994

08 0.999

50 0.258

80 0.241

58 0.936

85 0.874

88 0.965 0.971 0.947 0.913 0.864

55 0.863 0.863 0.847 0.830 0.813

the 88 and 55 effect size conditions with r = 0.8. When the data were normally distributed with
heterogeneous covariance matrices, the proportion of correctly ordered cases dropped by approximately
0.35 to 0.45 for all adjacent pairs of variables, as compared to the normal homogeneous case.

With respect to the impact of sample size for the normal distribution and heterogeneous covariance
condition, results in Table 5 suggest that larger samples did ameliorate the negative impact of
heterogeneous covariance matrices for some effect size combinations, but not others. For example, when
groups differed on all but the first variable (05, 08), the proportions of correctly ordered standardized
weights in Table 5 become very similar to those in Table 3 for samples of 100 and particularly 150. On
the other hand, when group separation was isolated in the first variable only (50, 80), the proportion of
correctly ordered Idf weights declined with increasing sample size, a pattern also apparent in Table 3. In
the other effect size conditions simulated in this study, a larger sample size was associated with improved
accuracy in ordering the variables, though the rates did not match those found when both assumptions of
normality and homogeneity of variance were satisfied.
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Table 4. Proportion of cases in which variable ordering is correct based on Idf weights, by effect size
and correlation among predictors: Normal Distribution and Heterogeneous Covariance Matrices.

r Effect Size X1 VS X, Xo VS X3 X3 VS X4 X4 VS Xs X5 VS Xg

0.2 05 0.798

08 0.904

50 0.522

80 0.574

58 0.706

85 0.708

88 0.804 0.803 0.773 0.752 0.736

55 0.762 0.749 0.741 0.722 0.720
0.5 05 0.843

08 0.940

50 0.353

80 0.304

58 0.758

85 0.688

88 0.838 0.838 0.816 0.785 0.779

55 0.778 0.772 0.759 0.746 0.741
0.8 05 0.934

08 0.979

50 0.131

80 0.055

58 0.854

85 0.519

88 0.429 0.443 0.453 0.434 0.430

55 0.203 0.225 0.229 0.236 0.244

Non-Normal Distribution, Homogeneous Covariance Matrices

The third combination of conditions to be examined in this study was the non-normal, homogeneous
covariance case. One pattern of results apparent across values of the correlation was that the proportion of
correctly ordered weights in the X; versus X, comparison was higher in the non-normal homogeneous
covariance condition than for the normal heterogeneous covariance condition when the first variable was
associated with a larger group difference (50, 80, 88, 55). The lone exception to this pattern was the 85
condition, in which the first variable was associated with a large effect while the other variables were
associated with a medium effect. Conversely, when the first variable was associated with a null effect size
(05, 08) as well as in the 58, 85 cases, the proportion of correct ordering was lower in the non-normal,
homogeneous covariance situation. In general, the proportion of correctly ordered standardized weights
was lower than when both assumptions were met.

With respect to the adjacent variable comparisons other than X; versus X,, the proportion of correctly
ordered weights was somewhat higher earlier in the sequence for the non-normal homogeneous case as
compared to the normal heterogeneous data, and somewhat lower for X, versus Xs and Xs versus Xs. In
addition, the sharp decline in accuracy that occurred in the normal heterogeneous case for r = 0.8 was not
in evidence in the non-normal, homogeneous case. With the exception of the 50 and 80 conditions, the
proportion of correctly ordered standardized weights increased with increasing sample sizes in Table 7. In
addition, for the 88 and 55 effect size cases, the proportion of correctly ordered weights was comparable
or slightly higher in this condition than when both assumptions were met.
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Table 5. Proportion of cases in which variable ordering is correct based on Idf weights, by effect size and
sample size: Normal Distribution and Heterogeneous Covariance Matrices

N Effect Size  X;vs X Xo VS X3 X3 VS X4 X4 VS X5 X5 VS Xg
30 05 0.719

08 0.844

50 0.390

80 0.375

58 0.670

85 0.545

88 0.650 0.665 0.648 0.621 0.618

55 0.570 0.570 0.576 0.568 0.567
60 05 0.837

08 0.945

50 0.363

80 0.317

58 0.744

85 0.611

88 0.710 0.718 0.703 0.675 0.665

55 0.772 0.621 0.607 0.598 0.595
100 05 0.912

08 0.980

50 0.312

80 0.281

58 0.790

85 0.688

88 0.762 0.757 0.742 0.716 0.709

55 0.656 0.651 0.635 0.630 0.628
150 05 0.951

08 0.994

50 0.294

80 0.264

58 0.862

85 0.751

88 0.788 0.782 0.764 0.743 0.732

55 0.680 0.676 0.669 0.655 0.655

Non-normal Distribution, Heterogeneous Covariance Matrices

This combination of conditions represents the situation where neither of the foundational assumptions
underlying DA were met. Table 8 reveals that across nearly all conditions the ordering of the standardized
weights was correct at markedly lower rates than when both assumptions were met (Table 2). The only
exceptions to this pattern were for the 50 and 80 cases, when all group difference was isolated in the first
variable only. The pattern of declining accuracy for variables entered later in the equation that was
evident in the other distribution and covariance conditions was also apparent when neither assumption
was met. In fact, the relative decline in accuracy rates for adjacent pairs further down the sequence was
greater in this condition than when both assumptions were met. Larger correlations among the predictors
were associated with greater accuracy rates for the 88 and 55 conditions particularly, for the X; versus X,
X, versus Xz and Xz versus X, adjacent pairs. However, for the X4 versus Xs and Xs versus Xg variable
pairs, the proportion of correctly ordered standardized weights actually declined with increasing
correlation values.
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Table 6: Proportion of cases in which variable ordering is correct based on Idf weights, by effect size
and correlation among predictors: Non-Normal Distribution and Homogeneous Covariance Matrices

r Effect Size X1 VS X, X, VS X3 X3 VS X4 X4 VS Xs X5 VS X
0.2 05 0.579

08 0.734

50 0.527

80 0.617

58 0.682

85 0.683

88 0.869 0.836 0.800 0.754 0.637

55 0.852 0.817 0.775 0.726 0.611
0.5 05 0.571

08 0.703

50 0.506

80 0.575

58 0.697

85 0.629

88 0.907 0.871 0.830 0.733 0.490

55 0.897 0.853 0.809 0.707 0.472
0.8 05 0.577

08 0.693

50 0.470

80 0.472

58 0.763

85 0.490

88 0.905 0.881 0.812 0.616 0.220

55 0.665 0.658 0.609 0.514 0.366

The total sample size appears to have been associated with standardized weight ordering accuracy for

only some of the effect size combinations when the data were not normally distributed and covariance
matrices were not equal between groups. Specifically, from Table 9 when the first variable accounted for
more of the group separation (50, 80, 85, 88 and 55 effect size combinations) the proportion of correctly
ordered weights for the X; versus X, comparison increased concomitantly with sample size. This increase
in accuracy was most notable in the 88 and 55 cases. For adjacent pairs other than X; and X,, there was a
clear positive relationship between sample size and weight ordering accuracy for the X, versus Xz and X3
versus X, comparisons. On the other hand, for the last two pairs in the sequence, there appears not to have
been this positive relationship between sample size and the accuracy rate.
The goal of this Monte Carlo study was to examine the potential utility of standardized weights for
ordering predictor variables in terms of their relative importance in defining a significant discriminant
function. Prior simulation research has found that other methods for characterizing group separation in
DDA, such as the use of SC’s, may be less than optimal in many situations. Thus, the current research
was designed to ascertain how effective an alternative the standardized weights might be for this purpose.
The study conditions were selected so as to replicate those in earlier studies that focused on SC’s, and the
outcome of interest was the proportion of cases in which the weights correctly ordered the variables in
terms of their relative importance in separating two groups.
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Table 7: Proportion of cases in which variable ordering is correct based on Idf weights, by effect size
combination and sample size: Non-Normal Distribution and Homogeneous Covariance Matrices

N Effect size X1 VS X Xo VS X3 X3 VS X4 X4 VS Xs X5 VS X
30 05 0.511

08 0.570

50 0.502

80 0.534

58 0.609

85 0.532

88 0.780 0.744 0.694 0.617 0.468

55 0.711 0.681 0.644 0.588 0.488
60 05 0.555

08 0.673

50 0.501

80 0.538

58 0.687

85 0.578

88 0.879 0.836 0.782 0.681 0.447

55 0.792 0.758 0.707 0.635 0.483
100 05 0.599

08 0.772

50 0.502

80 0.572

58 0.762

85 0.620

88 0.943 0.916 0.855 0.736 0.440

55 0.840 0.814 0.763 0.672 0.483
150 05 0.638

08 0.825

50 0.500

80 0.576

58 0.798

85 0.671

88 0.974 0.954 0.915 0.772 0.441

55 0.876 0.851 0.810 0.699 0.484

Discussion

The results described above indicated that under some conditions, the standardized weights did
indeed provide an accurate ordering of the predictor variables, particularly when both the assumptions of
normality and homogeneity of covariance matrices were met. These accuracy rates were frequently over
90% for samples of 100 and 150 subjects. Furthermore, the ordering accuracy rates for all adjacent pairs
improved when the correlations among the predictors increased in several of the conditions simulated
here. The major exception to these positive results when both assumptions were met occurred when
group separation was only present for the first predictor variable. In this case, the accuracy rates were
much lower than for the other conditions, and they declined with increasing correlations among the
variables. In other words, when the group difference was truly univariate in nature and centered in the
first variable, the standardized weight for the second variable was frequently (incorrectly) larger than that
of the first. Finally, the accuracy of the standardized weight ordering approach was somewhat higher for
variable pairs earlier in the sequence, even though the relative difference in group separation later in the
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Table 8. Proportion of cases in which variable ordering is correct based on Idf weights, by effect size and
correlation among predictors: Non-Normal distribution and heterogeneous covariance matrices

r Effect Size X1 Vs X, X, Vs X3 X3 VS X4 Xa VS X5 X5 VS Xg

0.2 05 0.503

08 0.484

50 0.547

80 0.587

58 0.510

85 0.518

88 0.759 0.714 0.648 0.565 0.439

55 0.648 0.596 0.557 0.525 0.444
0.5 05 0.487

08 0.445

50 0.569

80 0.634

58 0.509

85 0.527

88 0.821 0.757 0.679 0.527 0.303

55 0.708 0.640 0.576 0.473 0.371
0.8 05 0.488

08 0.440

50 0.597

80 0.695

58 0.479

85 0.569

88 0.888 0.830 0.698 0.430 0.167

55 0.793 0.726 0.596 0.433 0.253

sequence was identical. For example, Table 1 shows that the difference between group means for variable
2 was simulated to be 4.0 in the 88 effect size case, while the difference for variable 3 was simulated to be
3.2. Thus the difference in conditions was 0.8 (4.0-3.2). The difference between group means for variable
4 was simulated to be 2.4, which was 0.8 units different from the group separation for variable 3.
However, the proportion of correctly ordered weights for variable 2 versus variable 3 was greater than
that for variable 3 versus variable 4 across correlation conditions. A similar pattern was evident for the
other adjacent variable pairs further down the sequence.

In general, the results of this study demonstrated that when the assumptions of normality and/or
homogeneity of covariance matrices were not met, the standardized weights were less accurate in ordering
predictor variables based on their relative importance in group separation. The performance of these
weights was generally most degraded when neither assumption was met. The lone exception to this last
pattern occurred when the predictors were normally distributed but the covariance matrices were unequal
and the correlation among the predictors was 0.8. In this case, the ordering accuracy rates were well
below 50% for both the 88 and 55 effect size conditions. Under most conditions where one or both of
these assumptions were unmet, larger sample sizes served to mitigate problems with ordering accuracy to
some extent, though rarely did accuracy match that when both assumptions were met. The positive
impact of increased sample sizes was particularly evident when the data were non-normal. Indeed, in the
88 and 55 effect size conditions, the accuracy rates were comparable (or nearly so) to the normal,
homogeneous covariance case for both of the non-normal situations when the sample size was 150. It
should also be noted that when the first variable was not associated with group separation (08, 05) the
accuracy rates in the normal distribution, heterogeneous covariance condition were higher than when the
data were not normally distributed, and for samples of 100 and 150 were above 0.9.
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Implications for Practice

Some authors (e.g., Rencher, 1995) have recommended that researchers using DDA to differentiate
two or more groups in the multivariate case consider relying on these standardized weights to characterize
the nature of the significant discriminant functions. Rencher (1992) argued that they are superior to other
tools, such as SC’s, because they incorporate information about all of the variables in the analysis, rather
than simply reproducing univariate analyses. The results of this study appear to support the potential
utility of these standardized weights for characterizing multivariate group differences in some situations,
but not others. Following are some potential implications for practice based on results discussed above. It
should be noted that guidelines for what would be acceptable performance are not available. Ideally, of
course, the rates of correct variable ordering would be 100%, though such a perfect outcome would be
unlikely for any statistical procedure. Rather than select an arbitrary cut off for what is acceptable
performance, we have elected in this manuscript to discuss the rates in relative terms and allow readers to
make their own judgments regarding the acceptability (or not) of the standardized weights’ performance.

First of all, it does appear that when the assumptions of normality and group homogeneity of
covariance matrices are both satisfied, variables are accurately ordered in terms of relative contribution to
group separation at rates above 80% when the sample size is 100 or greater and the group differences are
multivariate in nature (all effect size conditions except for 80 and 50). Indeed, when the sample size was
as least 60 and all the variables were associated with group separation, the standardized weights would
accurately order variables 1 and 2 in importance more than 80% of the time, except when the second
variable was associated with a moderate effect and the first was associated with a moderate or large effect
(85, 55 conditions).

While performance of the weights in variable ordering was often relatively goodwhen the groups
were separated on multiple predictors (and the foundational assumptions were met), in cases where the
groups only differed on one variable (the first in the sequence in this study), theydid not accurately reflect
this fact very well, regardless of sample size. This problem was more acute when the predictor variables
were more highly correlated. Therefore, researchers using DDA should carefully consider the variables
that they have selected as predictors so that any significant group differences not beunivariate in nature.
Furthermore, if results of the analysis appear to indicate that the groups differ on only one variable, the
researcher should be very careful when interpreting variable ordering with these standardized weights.

When the predictor variables do not conform to the assumptions of normality and homogeneity of
covariance matrices, researchers should also exercise caution when using standardized weights to
interpret discriminant functions. Results of this study suggest that when the predictor variables are not
normally distributed and/or the group covariance matrices are not equal, the weights may frequently order
the variables incorrectly in terms of their relative importance, particularly when both assumptions are
violated simultaneously. Therefore, researchers considering the use of these weights for characterizing the
nature of significant group separation should be very careful to check these assumptions. If they do not
hold, the weights may not be appropriate for ordering the variables. It is important to note that larger
overall sample sizes do not fully ameliorate this problem.

A fourth implication of these results is that the correlations among the predictor variables have an
impact on the performance of standardized weights when the assumptions of normality and homogeneity
of covariances are met. In general, higher correlations among the predictors were typically associated
with more accurate ordering based on the standardized weights. The lone exception to this outcome
occurred when only the first variable was associated with group difference, in which case higher
correlations resulted in the weight of the second variable (not different between groups) being larger
(incorrectly) than that of the first, at very high rates. Researchers considering the use of standardized
weights for interpreting DDA thus need to be cognizant of these correlations. If they select a number of
variables that have relatively low correlations, they may have more difficulty in correctly identifying
which of these is most associated with the significant discriminant function, and the associated group
differences. It is also interesting to consider this result in light of Rencher’s (1992) argument in favor of
using standardized weights: namely that they account for the presence of the other predictors in the
model. The fact that performance generally improved with higher correlations appears to validate this
earlier observation.

Finally, when compared with results of earlier simulation research examining the SC’s as a tool for
interpreting discriminant functions, the standardized weights appear to perform favorably. Finch (2007)
reported very high rates (often in excess of 0.5) of incorrect identification of “important” variables using
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these SC’s. In addition, under several data conditions similar to those included in this study, rates of
correct identification of such “important” variables were not higher than those reported here for the
standardized weights. Therefore, given the high Type I error rates for the SC’s, along with the comparable
power, it would appear that the standardized weights may prove to be a worthwhile alternative for
interpreting significant discriminant functions.

Limitations and Directions for Future Research

Future studies should be designed to improve on the current research. For example, results described

in this manuscript are limited to the two groups case. Thus, one logical next step in this area is to examine
the utility of standardized weights for differentiating among more than two groups. By including multiple
groups, interpretation of more than one significant discriminant function would also be possible.
A second area for future research is the examination of the performance of standardized weights for a
different set of effect size combinations. In the current study, most of the differences among the predictors
with respect to group separation were between variable 1 and the others. With the exception of the 88 and
55 conditions, variables 2 through 6 were associated with the same effect size difference between the
groups. Future studies should use a different variety of such group differences in order to provide a more
complete understanding of the effectiveness of the weights for ordering the predictor variables.

Future studies in this area should also examine a different set of non-normal distributions for the
predictors. While this is the first study in this area to use non-normal data, generalizations of the results
herein are limited to those non-normal cases where the predictors have skewness of 1.75 and kurtosis of
3.75. For example, some research has shown that a related statistical analysis, Multivariate Analysis of
Variance (MANOVA), is impacted by variables with truncated tails (e.g., Finch, 2005). Thus, it seems
reasonable that DDA, which is based upon the same multivariate linear model, might also experience
problems with such a distribution.
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