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Previous research suggests that equal weights tend to outperform statistically optimal weights in cross-
validation studies. This paper argues that the findings from the equal weights literature are relevant for 
researchers that predict college grades and/or assess differential prediction of college grades by student 
characteristics. An application of the criterion profile methodology (CPM) is presented to demonstrate 
how to examine individual criterion profiles. This study showed how to use the CPM to determine the 
extent to which equal and statistically optimal coefficients differentially predicted college grades for 
minority and majority students. The results support previous findings, in that, 92.5% of the explained 
variance in college grades was attributed to equal weights, where standardized test scores and high 
school rank were weighted equally, and 7.5% of the explained variance was accounted for by statistically 
optimal coefficients that weighted ACT Math scores less than ACT English and high school rank. 
Additionally, equally weighting admission information was more accurate for predicting Asian 
Americans’ future academic performance than European Americans. 

rediction is an important aspect of scientific endeavors. For instance, educators predict student ach-
ievement, psychologists classify clients into different diagnoses, university personnel place 
students into developmentally appropriate courses, and economists forecast stock prices and 

economic conditions. Multiple regression is an important statistical tool for making these types of 
predictions. 
  One classic application of multiple regression is the prediction of college grades with standardized 
test scores and measures of high school academic success (Hills, 1964; McKelpin, 1965; Munday, 1965; 
Richards & Lutz, 1968; Sassenrath & Pugh, 1965; Stanley & Porter, 1967). Many applications of 
multiple regression for predicting college grades are designed to create an equation (which is later 
referred to as a selection equation) for admission officers to objectively select or sort applicants based 
upon predicted academic performance. However, practitioners interested in prediction should be cautious 
about using regression equations to predict applicants’ grades. Specifically, using an estimated regression 
equation to select or sort applicants assumes the intercept and slope coefficients are statistically equal 
(i.e., invariant) across different demographic groups (Dorans, 2004). 
  Differential prediction, which occurs when the intercept and/or slope coefficients differ between two 
or more groups (Cleary, 1968; Humphreys, 1952), can impact admissions decisions that use quantitative 
information and multiple regression predictions. For instance, intercept differences indicate that one 
group’s academic performance is over-predicted and another group’s performance is under-predicted. 
Previous research suggests that racial/ethnic minority group performance is consistently over-predicted 
with a common regression equation (Breland, 1979; Burton & Ramist, 2001; Cleary, Humphreys, 
Kendrick, & Wesman, 1975; Duran, 1983; Linn, 1973; Stanley & Porter, 1967; Wilson, 1983; Young, 
2001). In this case, admission decisions are biased in favor of minorities; using one equation to predict 
academic performance will tend to over-predict minorities’ actual performance. In contrast, female’s 
performance is consistently under-predicted (Bridgeman, McCamley-Jenkins, & Ervin, 2000; Chou & 
Huberty, 1990; Elliott & Strenta, 1988; Noble, 2003; Pennock-Román, 1994; Ramist, Lewis, & 
McCamley-Jenkins, 1993; Young, 1994). 
  Slope differences provide evidence about the accuracy of different variables for predicting group 
outcomes. For example, Young’s (2001) review of differential prediction studies suggests that minority 
students tend to have smaller slope coefficients for academic predictors, such as test scores and high 
school grades, than their European American counterparts. Slope differences by race/ethnicity are often 
evidence that test scores and/or high school grades are less valuable indicators of minority students’ 
future academic performance and should be considered differently and perhaps with less value in 
admissions decisions. 
 Researchers and practitioners need to assess the presence of differential prediction to ensure 
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responsible multiple regression-based predictions. While multiple regression is used to assess differential 
prediction (the application of regression to assessing differential prediction is also referred to as 
moderated multiple regression, or MMR, see for example Saunders, 1956), research suggests that it is not 
a perfect tool for uncovering differential prediction. Aguinis and Stone-Romero (1997) note that the 
power to detect slope coefficient differences is smaller when certain artifacts are present (e.g., small 
sample sizes, relatively low representation of minorities in the sample, measurement error in the 
predictor and criterion, and range restriction in the predictor). That is, the likelihood of uncovering true 
differences in slope coefficients is less likely when the aforementioned artifacts are present. This 
translates into researchers being less likely to conclude that test scores and/or high school academic 
achievement are less valuable indicators for a given minority group (e.g., comparisons by race/ethnicity, 
gender, first-generation status, etc.) even when such an inference is true in the population. 
  Dana and Dawes (2004) offer an additional caution for statisticians and practitioners who make 
predictions with multiple regression. Through the use of statistical simulations, Dana and Dawes (2004) 
contributed evidence to an existing body of research (Davis & Sauser, 1991; Dawes, 1979; Dawes & 
Corrigan, 1974; Dawes, Faust, & Meehl, 1989) that equal weights (i.e., slope coefficients that are equal 
for every predictor) tend to outperform statistically optimal weights (i.e., standardized slope coefficients 
derived with ordinary least squares, or OLS) in cross-validation samples. Dana and Dawes (2004) boldly 
conclude that multiple regression should not be used for prediction purposes when the total variance 
explained is small (i.e., R

2
 is less than 0.25). Similarity, Einhorn and Hogarth (1975) suggest that 

regression should not be used when R
2
 < 0.50. 

  High school grades and standardized test scores tend to account for less than 50% of the total 
variation in college grades (and sometimes less than 25% of variation). This poses a challenge for 
researchers who wish to predict college grades and/or conduct differential prediction studies. In 
particular, differential prediction studies use MMR to test the extent to which subgroups’ differ in 
statistically optimal slope coefficients. Dana and Dawes’ (2004) findings provide evidence that 
comparing the equivalence of statistically optimal weights may be inadvisable when R2 is small. Indeed, 
if equal weights account for the majority of variance in college grades rather than statistically optimal 
weights, it may be more appropriate to determine the extent to which equal weights differentially predict 
college grades for different subgroups. 
 The goal of this paper is to show how an external profile analysis technique can be used to assess 
differential prediction by race, while concurrently examining the value of equal and statistically optimal 
weights. A simple application of a criterion profile methodology (CPM; Davison & Davenport, 2002) is 
presented to test the extent to which statistically optimal and equal weights differentially predict the 
college grades of two minority groups (African; Asian Americans) when compared to European 
Americans. 
  One goal of this study was to assess differential prediction in a way that accommodates Dana and 
Dawes’ (2004) concerns. Accordingly, the first section of this paper introduces the mathematical 
formulation of the CPM and describes how the CPM can address Dana and Dawes’ (2004) concerns.  
  The CPM is an external profile analysis technique (Davison & Davenport, 2002) that yields a 
predictor profile that differentiates between subjects with high and low scores on a criterion, such as 
college grades. So, another goal of this study was to introduce researchers to the CPM, since it is 
applicable to other research endeavors. The profile analysis feature of the CPM was described to clearly 
articulate the model. In this study, high school grades and ACT test scores were used to demonstrate 
individual and sub-group profile differences. The third section discusses the results of the differential 
prediction analysis as it relates to using the CPM and the last section provides concluding remarks. 
 

Description of the Criterion Profile Methodology 
 Profiles patterns identified with cluster analysis or multidimensional scaling have been criticized for 
not exhibiting criterion-related validity evidence (Watkins, 2000). The advantage of the CPM is that the 
identified profiles are explicitly related to a criterion, such as college grades in this study, and exhibit 
some degree of validity as determined by the strength of the relationship between the predictors and the 
criterion (Davison & Davenport, 2002). That is, the identified predictor patterns distinguish those low 
and high on the criterion variable. 
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  The CPM parses the variation in a criterion variable explained by a set of independent variables into 
two components: a level effect, which is characterized by an equally weighted linear composite of the 
predictors, and a pattern effect, which is the covariance between a subject’s predictor profile and the 
regression coefficients. The relationship between the level effect and equal weights versus the pattern 
effect and optimal weights is discussed below.  
  To formally define these two effects we start with the usual regression model in Equation 1 below: 

           pe
V

v
apvXvpY +∑

=
+=
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β          (1) 

where Yp represents the criterion score for person p, βv represents the regression coefficient for variable v 

(v = 1 to V where V is the number of predictors and V ≥  2), and Xpv is the score for subject p on predictor 
v. Finally, a is the intercept of the regression equation and ep is a random error term. The criterion profile 
is defined as the set of slope coefficients, β1, β2, … , and βv, for the p predictors. 
  Davison and Davenport (2002) prove that the regression model in equation 1 is equivalent to the 
following model: 

         peapXpCovpY +++=
21
γγ

         (2)
 

where, pX  is referred to as level, Covp is referred to as pattern, and γ1 and γ2 are their respective slope 

coefficients (these coefficients are standardized if Covp and pX  represent z-scores). The first term on the 

right of Equation 2 constitutes the pattern effect, and the second term is the level effect. Regardless of the 
original number of predictors, the original regression equation can be reduced to three terms, a, Covp, and 

pX . It is important to note that Yp and ep are the same in Equations 1 and 2, so that the level and pattern 

variables together account for the same proportion of variation in the criterion as the original variables. 
  The equations for level and pattern are presented below in Equations 3 and 4: 
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where the only new variable, β , in Equation 4 represents the average of the regression coefficients. 

Equation 3 shows that level, pX , is person p’s unweighted average on the independent variables, which 

suggests that individuals who tend to have larger (smaller) standardized values on the V predictors will 
also tend to have larger (smaller) values for level. 
 Pattern (Covp) is the covariance between person p’s predictor scores and the weights from the 
original regression, and it is a measure of the match between the observed score profile of person p and 
the pattern that distinguishes people with high scores on the criterion. Individuals with predictor scores 
whose pattern matches the configuration of the regression weights will have larger profile match 
statistics Covp and therefore higher predicted values.  
  Because it is a covariance measure, pattern is positive for subjects whose scores are consistent with 
the criterion profile (i.e., the configuration of the slope coefficients, βv) and negative for subjects whose 
scores are consistent with the mirror image of the criterion profile. The mirror image profile is defined by 
slope coefficients with the exact opposite configuration as the criterion profile. The coefficients for the 

mirror image profile (ψv) can be found with the following expression: ( )
vvv βββββψ −=−−= 2 . 

Subjects with predictor profiles corresponding to the mirror image pattern tend to have lower predicted 
values after controlling for level. The criterion and mirror image profiles are discussed later during the 
application of the CPM with admissions data. 
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Value of the CPM for Differential Prediction Studies 
 The CPM is useful for identifying profiles that differentiate between individuals with high and low 
criterion values, such as first year cumulative grade point average in our case. However, the criterion 
profile is only useful for differentiating between high and low CGPA scorers when the pattern effect is 
statistically significant after controlling for level, which occurs when the statistically optimal weights add 
predictive value in addition to equal weights. In fact, pattern is generally statistically significant when 
variability exists among the standardized regression weights. In cases where pattern provides no 
additional prediction in the criterion over that of level, the equal weight profile differentiates between 
low and high scoring subjects, subjects with larger criterion scores tend to have high values on all the 
predictors rather than a configuration of predictor scores.   
 The pattern variable is also important, since it represents the extent to which practitioners should 
employ statistically optimal weights in decisions. Referring to Equation 4 again, we see that pattern is 
particularly important for assessing differential prediction.  The relative size of the regression weights 
vary along two extremes: the weights are either close to being equal or they differ substantially in 
magnitude.  Pattern will account for less variation in a criterion when the regression weights are similar 
or equal to each other, which would lead to equal weights outperforming statistically optimal weights. 
Conversely, statistically optimal weights are important for prediction purposes when pattern accounts for 
relatively more variation in a criterion than level, or equal weights. Pattern is useful to the extent that the 
optimal weights (betas) vary and this variance in weights accounts for differences in the criterion.   
  This study assesses the value of using equal vs. statistically optimal weights by estimating the 
amount of variation that is accounted for by level and pattern. More formally, the hypothesis is:  

H0: R
2

Level = R
2

Level + Pattern and H1: R
2

Level ≠ R
2

Level + Pattern; 
which is testable with the traditional F-test comparing parametric regression models with V-1 and N-V-1 
degrees of freedom where V is the number of independent variables and N is the sample size (Davison & 
Davenport, 2002).  Substantively, this test will provide evidence for whether or not statistically optimal 
weights provide predictive value above and beyond equal weights. 
 

Methods 
Sample 
 This study used data from the entering class of 2000 at a public research university. The data was 
collected from each student during the pre-college admissions process and provided to the researchers by 
the Office for Institutional Research. The sample consisted of 2,035 students who enrolled in the College 
of Liberal Arts (CLA) fall 2000 and persisted through one year of academic study. These 2,035 students 
were disaggregated by self-reported race/ethnicity. Of the 2,035 students, 68 were African American 
(AFA), 11 were American Indian, 186 were Asian American (ASA), 1,683 were European American 
(EA), 38 were Hispanic, 5 were International, and 44 were unidentified. Only the AFA, ASA and EA 
groups were included in the analyses, since there were small numbers of American Indians, Hispanics, 
International, and unidentified students in the sample. The final sample size included 1,933 students (four 
students had missing scores on at least one of the predictors).  
 

Variables 
 In this application of the CPM, the predictors of interest were students’ ACT English sub-score 
(ACTE), ACT math test sub-score (ACTM), and high school percentile rank (HSR) and the criterion was 
first-year cumulative grade point average (CGPA). The regression and CPM analyses were conducted by 
standardizing the predictors and criterion across racial subgroups onto a z-score scale with a mean of 
zero and variance of one. Table 1 reports descriptive statistics of the variables. Certainly, one could argue 
that ACTE, ACTM, and HSR predict first-year grades differently depending upon the type of coursework 
or degree program in which a student engages. It is important to note that the students in the CLA were 
chosen to reduce the potential heterogeneity in regression equations across different colleges within the 
university. 
 

Point of Caution 

  With respect to the CPM, there are no limitations of formulating the general linear model in 

terms of level and pattern. In fact, the reconfiguration of the general linear model into the CPM 

accounts for the same proportion of variance in the criterion. However, it is important to consider  
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Table 1. Multiple Regression and Criterion Profile Methodology Summary. 

  Std. Weight Sig. Part Corr. M SD 

Regression Model
a
      

ACT English 0.306 *** 0.261 24.3 4.30 

ACT Math 0.087 *** 0.074 24.6 4.08 

High School Rank 0.306 *** 0.302 80.8 11.50 

CPM Model
a
      

Level 0.496 *** 0.493 -0.0004 0.71 

Pattern 0.138 *** 0.137 -0.00003 0.05 

Cross-Validation Summary Sample 1 Sample 2   

R
2
, Level Only 0.233 0.229   

R
2
, Level + Pattern 0.259 0.242   

Note: Std Weight = Standardized slope coefficient, Sig. = Level of significance,  
Part Corr. = Part Correlation, M = average, SD = standard deviation.   
The average CGPA was 3.01 with a standard deviation equal to 0.59. 
a
The model R

2
 = 0.250 for both the regression and CPM models. 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 1. Pooled, within race/ethnicity, and equal weight criterion profiles. 

Note. R
2
 = 0.250 for the criterion profile and R

2
 = 0.231 for the equal weight profile. 

 

one issue to ensure meaningful CPM analyses, which is that the independent variables need to be on 

either a substantively meaningful scale, such as the number of credit hours in various mathematics 
courses (Davison & Davenport, 2002), or the same scale, such as z-scores, to yield regression 
coefficients that are comparable in the criterion profile. Failure to address the scaling of the predictors 
may produce misleading or substantively uninformative results (Davison & Davenport, 2002). 
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Results 
 The results section consists of two subsections. In an effort to further articulate and demonstrate the 
CPM, the first section applies the CPM to identify a profile pattern that distinguishes those high and low 
on the criterion variable. The second section uses the CPM to assess the extent to which equal and 
statistically optimal weights differentially predict CGPA.  
 

Profile Application of the Criterion Profile Methodology: Understanding Individual Differences.  
  Table 1 presents the regression summary of ACTE, ACTM, and HSR as predictors of CGPA. The 
regression model accounted for approximately 25.0% of the variation in CGPA. Furthermore, all the 
predictors were positively related to CGPA and were statistically significant at the 0.001 level. The 
standardized slope coefficients equaled 0.306, 0.087, and 0.306, for ACTE, ACTM, and HSR, 
respectively. The standardized slope coefficients define the criterion profile, which was characterized by 
larger weights for ACTE and HSR than for ACTM. The mirror image profile consisted of weights with 
an exact opposite configuration of the criterion profile. Figure 1 plots the criterion and mirror image 
profiles, in addition to the equal weight profile. 
 Figure 2 plots three subjects’ standardized predictor profiles to demonstrate how the CPM can be 
used to describe individual differences. Figure 2 shows that subject 261 more closely matched the 
criterion profile and subject 144 matched the mirror image profile. The average pattern was 
approximately zero with a corresponding standard deviation of 0.05. Subject 144 had a pattern value 
about two standard deviations below the mean (Cov 144 = -0.13) and subject 261 had a pattern value about 

two standard deviations above the mean (Cov 261 = 0.12). Subject 122’s standardized predictor profile 
resembled the equal weight profile, since the profile was nearly flat and the values for the three 
predictors were within one standard deviation of each other. Additionally, subject 122’s profile did not 
match either the criterion or mirror image profiles, as indicated by Cov 122 = -0.001. Moreover, subject 
122 had the largest level value and subject 261 had the smallest value for level.  
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Figure 2. Three subjects’ predictor profiles. 
 

 Figure 2 also includes information pertaining to the subjects’ CGPA, which were standardized to z-
scores. Of these three subjects, 122 performed the best academically (1.68) followed by Subject 144 (-
0.05), and Subject 261 (-0.63). It is important to determine the extent to which higher academic 
performance was associated with individual differences in level, individual differences in pattern, or  
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Figure 3. Average predictor profiles by race. 
 

individual differences in both level and pattern. To answer this question we need to understand the 
amount of variation that was captured by level and pattern independently (note that the bivariate 
correlation between level and pattern equaled -0.11, so the effects were nearly orthogonal). Table 1 
presents the standardized slope coefficients (later denoted as β), p-values, and part-correlations for level 
(β = 0.496; p < 0.001) and pattern (β = 0.138; p < 0.001). A significant F-test (F(2, 1,929) = 23.6; p < 
0.001) provided evidence that pattern accounted for variation in college grades after controlling for level.  
  The F-test results suggest that statistically optimal weights provided some predictive value that was 
not captured by equal weights. Still, the results suggest that the vast majority of variance accounted for in 
CGPA was attributed to level, or an equal weighting scheme. Squaring the part correlations in Table 1 
yields the change in R

2
 effect-size. Level alone accounted for 23.1% of the total variance in CGPA or 

92.5% of the explained variance in CGPA (e.g., 0.231/0.250 = 0.925). Pattern accounted for 1.9% 
additional variance in CGPA or 7.5% of the explained variance in CGPA. This evidence suggests that 
individual differences in CGPA were more associated with differences in level than with pattern. From a 
prediction perspective, equal weights captured most of the variance in CGPA when compared to 
statistically optimal weights. 
  Davison and Davenport (2002) note that it is also important to cross-validate CPM findings to assess 
the value of level and pattern in a different sample. The total sample was randomly divided into two 
groups. Standardized test scores and high school rank were regressed onto CGPA and the resulting 
standardized slope coefficients were used to create pattern variables in the omitted sample. The bottom 
portion of Table 1 summarizes the cross-validation findings. In particular, level accounted for 23.3% and 
22.9% of the total variance in CGPA within each sample. Pattern accounted for an additional 2.6% and 
1.3% after controlling for level. The cross-validation results provide additional evidence that level 
accounted for the vast majority of variance in CGPA. Note that this cross-validation is especially 
important given sample fluctuations of regression weights and the fact that practitioners may use them as 
if they are stable.  
  This finding suggests that the differences among CGPA scores for the three subjects in Figure 2 were 
largely due to individual differences in level rather than pattern; i.e., subjects with higher academic 
performance in college tended to have higher scores on all of the predictors rather than a configuration of 
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predictor values that matched the criterion profile. For instance, Figure 2 shows that the subject who had 
the highest values on all of the predictors (Subject 122) also had the largest CGPA. Conversely, the two 
subjects that exhibited variability in their standardized predictor values had lower level values and lower 
academic performance. 
 
Differential Prediction Application of the Criterion Profile Methodology 
 The previous section presented a profile application of the CPM. This section focuses upon the use 
of the CPM as a means of comparing the predictive value of statistically optimal weights and/or equal 
weights in differential prediction studies. Previous research suggests that an equally weighted linear 
composite of the independent variables provides predictive power comparable to or better than 
statistically optimal weights (Dana & Dawes, 2004; Davis & Sauser, 1991; Dawes, 1979; Dawes & 
Corrigan, 1974; Dawes et al., 1989). The use of the CPM for differential prediction studies offers a way 
to examine whether equal weights and/or statistically optimal weights are differentially valid for different 
groups simultaneously.  
 The CPM statistical results in Table 1 provided evidence that equally weighting the independent 
variables accounted for nearly all of the variation in CGPA. Thus, the value in using statistically optimal 
weights after controlling for an equally weighted linear composite was limited. In this instance, where 
level accounts for the majority of variation in CGPA, it may not be appropriate to assess differential 
prediction of subgroups by comparing the statistically optimal regression equations. Instead, a more 
meaningful differential prediction study should independently compare the extent to which level, a 
composite that equally weights the independent predictors, and pattern differentially predicts CGPA for 
students of different races/ethnicities. 
Given the relative value of equal and statistically optimal weights in this study, it may be statistically 
appropriate to exclude pattern from the MMR model and only estimate whether level differential predicts 
college grades. Instead, pattern was included in the differential prediction model to demonstrate how 
researchers can use the CPM to address situations where level and pattern each account for a significant 
amount of variation in the criterion. 
  Table 2 presents CPM results for comparing the equivalence of subgroup regression equations. The 
estimated CPM-MMR model is shown below in Equation 5: 
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where the dummy variables: AFAp and ASAp, equal one for 
African American and Asian American students, 
respectively, and zero otherwise. Additionally, CGPA, level, 
and pattern were standardized. b0 represents the average EA 
CGPA in standard deviation units, since EA was the 
reference group. b1 and b2 represent the average difference 
in CGPA between AFA and EA and ASA and EA, 
respectively. In other words, these two parameters represent 
necessary intercept adjustments to better predict these two 
minority groups relative to the majority group. Furthermore, 
the EA coefficient for level was b3 and b5 and b6 denote the 
amount that the slope coefficient for level differed between 
AFA and EA and ASA and EA, respectively. Just as b1 and 
b2 represented adjustments, so does b5 and b6. b4 represents 
the contribution of pattern to the prediction equation for EA. 
b7 and b8 represent the corresponding adjustments to pattern 
for AFA and ASA, respectively.  

Table 2. Criterion Profile Methodology  
Moderated Multiple Regression Summary 

         Slope Sig. 

Intercept       0.031  
African American    -0.040  
Asian American    -0.181 * 
Level        0.459 *** 
African American * Level   0.066  
Asian American * Level   0.182 * 
Pattern       0.140 *** 
African American * Pattern -0.015  
Asian American * Pattern   0.043   

Note. The model R
2
 = 0.259.   

Level and Pattern were standardized. 
* p < 0.05, ** p < 0.01, *** p < 0.001 



Culpepper et al. 

 
12                                                                                      Multiple Linear Regression Viewpoints, 2008, Vol. 34(2) 

  The extent to which all adjustments are non-significant indicates the degree to which one regression 
equation would be equally predictive for the three racial/ethnic groups. Statistically significant b5 and/or 
b6 parameters would indicate group differences in the accuracy of equal weights for predicting college 
grades. Similarly, statistically significant b7 and/or b8 parameters would suggest that the ethnic groups 
were not equal relative to using optimal weights as represented by the beta coefficients. 
 The evidence in Table 2 suggests that AFA and EA did not statistically differ in regression equations. 
None of the adjustments for the AFA group were significant which indicates that the estimates provided 
by the referent group, EA, were sufficient for AFA. That is, level (b5 = 0.066; p > 0.05) and pattern (b7 = 
-0.015; p > 0.05) predicted the same for AFA and EA and there were no intercept differences (b1 = -
0.040; p > 0.05), which indicated that the AFA and EA groups performed similarly academically after 
controlling for the three measures of pre-collegiate academic success. Conversely, ASA exhibited a 
statistically lower intercept than EA (b2 = -0.18; p < 0.05) and a larger slope coefficient for level (b6 = 
0.18; p < 0.05). The former finding suggests that the ASA group tended to earn lower CGPA than the EA 
group. The slope coefficients in equation 5 represent partial correlations, so the latter finding suggests 
that equal weights demonstrated more criterion-related validity for ASA students than for their EA 
counterparts. Moreover, in additional analyses, level accounted for 22.6% and 21.0% of the variance in 
CGPA for ASA and EA, respectively, which suggests that equal weights may have been slightly more 
accurate for ASA students. EA and ASA did not differ in the extent to which using statistically optimal 
weights related to the subsequent quality of the prediction. 
 
 

Conclusion 
 This paper used the CPM to: 1) conduct profile analysis to differentiate between individuals and 
groups who earn high and low college grades; and 2) explore differential predictability in the use of 
equal and statistically optimal weights. The results provided evidence that equal weights, or level, 
accounted for more variance in CGPA than statistically optimal weights, pattern. The criterion profile, or 
statistically optimal weights, provided little additional predictive ability for differentiating between 
students with high and low CGPA scores. Therefore, the best weighting scheme was one that treated test 
scores and high school rank equally rather than the statistically optimal weighting scheme that gave more 
weight to ACT English and high school rank than to ACT Math. Perhaps intuition or research would 
suggest that ACT Math is not as good of a predictor of academic performance for students in liberal arts, 
since their coursework may include less mathematics. The findings of this study suggest that using equal 
weights for all applicants will capture most of the variability in first-year grades; approximately 90% of 
the accounted for variance. From a practitioner’s perspective, the evidence suggests that ACT Math 
scores should be treated with the same weight or importance as ACT English scores, and high school 
rank in decisions for admitting applicants to the College of Liberal Arts.  
 This finding had direct relevance for assessing differential prediction. That is, statistically optimal 
weights accounted for very little variance in addition to equal weights. Thus, it was more appropriate to 
test the extent to which equal and statistically optimal weights differentially predicted grades for 
different racial groups. In fact, an equal weighting scheme was more valid for ASA than for EA. There 
was no evidence to suggest that AFA and EA equations differed, so the equal and statistically optimal 
weighting schemes provided similar predictive accuracy.  
 The use of equal or statistically optimal weights poses another methodological challenge for 
assessing differential prediction. Future differential prediction studies should determine the value of 
equal and statistically optimal weights by computing the variance accounted for by level and pattern in 
college grades in the full sample and in cross-validation samples. Failure to determine the relative value 
of equal and statistically optimal weights may result in researchers comparing the equivalence of groups 
in statistically optimal coefficients when equal weights account for the vast majority of variance in a 
criterion. This study demonstrated that the CPM is an appropriate method for addressing this 
methodological issue. 
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