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Ohio University 

 The primary purpose of this presentation is to demonstrate a new computer program that statistics instructors can 

use to help teach certain regression topics in their courses. In particular, a computer program was written in Borland 

Delphi 2007 and will run under most recent versions of the Microsoft Windows operating system, including XP and Vista. 

The program may be downloaded free of charge. 

he MCMR: Monte Carlo for Multiple Regression program performs Monte Carlo simulations of ordinary least 

squares multiple linear regression with up to 6 predictors. The program runs single sample analyses in addition to 

Monte Carlo simulations. For single samples, data can be saved and imported in comma-delimited text format. For 

Monte Carlo analyses, sampling distribution data can be saved for several regression statistics for further analyses 

elsewhere. The on-screen results from any analysis can be saved to a file and printed. The summary results provided from 

the Monte Carlo simulations include R-squared statistics, shrinkage statistics, regression coefficients, standard errors, and 

other relevant statistical results. Suggestions for use will be provided to help users understand how the program can be 

used effectively in intermediate statistics courses. 

 The MCMR Program is available at: http://oak.cats.ohiou.edu/~brooksg/software.htm 

 
This is the Opening Screen 

that appears when the program 

is started (or after the “Reset 

(F4)” menu option is chosen). 

3 sections require user input 

This is where we describe the population from which 

samples will be drawn in the Monte Carlo process. That 

is, the Monte Carlo process randomly generates samples 

of data that could come from the particular population 

described (using means, standard deviations, and 

correlations). 

 

Click “Run” (bottom right) or press F9 to begin the Monte 

Carlo analysis. 

 
 

Set sample size, alpha, number of simulations, and maybe 

a seed for the random number generator (if you use the 

same seed, you get the same results). 

T 
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Choose the number of predictors and Set the population 

means and standard deviations (Y is the dependent 

variable, X1 is predictor 1, etc.) 

 
 

Set the population correlations (rho). You can get a 

random matrix that meets certain criteria (described later). 

Some matrices will not work as proper CORRELATION 

MATRICES. If one is entered, and error message will pop 

up, saying that the matrix is not Positive Definite (see Get 

Matrix section below). 

After an analysis 

 

 

4 boxes contain results after an analysis, but not all are immediately obvious. Each section is described in greater detail 

below.  This analysis was done with a seed of 1932. All population correlations were 0.0. 
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The average ACTUAL means and standard deviations are 

reported in aqua. 

 

 
 

If you hit the “Show Actual Correlations” button, you can 

see the average ACTUAL correlations. (You must hit 

“Show Pop. Correlations” to run another analysis) 

 

 
 

The average ACTUAL regression coefficient information is reported in this box — except for the “Rejected” and 

“Proportion” columns, which report the number (and proportion) of samples in which the particular regression 

coefficient (represented by X1, X2, etc.) was statistically significant. 

 

“# samples w/at least 1 significant X” reports how many samples had at least one significant predictor. 

 

“after SIG model” reports how many samples had at least one significant predictor following a significant overall 

regression model (the idea being that we don’t usually examine the statistical significance of regression coefficients 

unless the model was first significant—but that doesn’t mean that some predictors weren’t significant anyway). 

 

B0 represents the CONSTANT in the regression equation. By default, B0 is not included in the 2 counts (above), but 

there is a menu option that will allow it to be included. 
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Model summary information is provided here. Again, these are AVERAGE results except for the “Rejections” and 

“Proportion Significant” columns, which report how many (and the proportion of) samples that had statistically 

significant overall regression models. 

 

 
 

While the Monte Carlo simulations are running, the bottom panel (progress bar) looks like this. You can stop the Monte 

Carlo analyses if you need to by clicking the “Stop Running” button. 

 
 

After the analysis is finished, the bottom panel will look like this. If you have aborted the process by pressing the “Stop 

Running” button, the number actually finished will appear in the panel. 

 
 

If you review the ACTUAL correlations by clicking on the “Show Actual Correlations” button, you will not be able to 

continue with additional Monte Carlo analyses until you press the “Show Pop. Correlations” button (which is actually 

the same button as the “Show Actual Correlations” button. 

 
 

Although not done in this example, when you run multiple SINGLE SAMPLE analyses, you will have the option of 

going backwards by one sample. Often, you get to clicking the “Run” button too quickly and you aren’t able to stop on 

a sample with interesting results. This “Back Up” button will allow you to go back 1 sample (but only 1). 

 

Another difference for SINGLE SAMPLE analyses is that 

statistically significant pairwise correlations are marked with 

asterisks when you click “Show Actual Correlations.” 
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For SINGLE SAMPLE analyses, the “Rejected” and “Proportion” columns change to the actual t statistics and p values 

(“Sig”) for each regression coefficient. 

 

By the way, “B” is the unstandardized regression coefficient, “SEB” is the standard error for the unstandardized 

regression coefficient, “Beta” is the standardized regression coefficient, “Zero-order” is the Pearson correlation 

between each predictor and Y, “Part Corr” is the part (or semi-partial) correlation between each predictor and Y 

GIVEN the other predictors in the model, and “VIF” is the variance inflation factor (1/Tolerance) used for diagnosing 

multicollinearity. 

 

The “At least 1 significant predictor (X) ?” box shows whether any of the regression coefficients was statistically 

significant (but not which one). 

 

Both bottom boxes turn from white to GREEN if “YES” 

 

 
 

For SINGLE SAMPLE analyses, the “Rejections” and “Proportion Significant” columns change to the actual F statistic 

and the actual p value significance of the regression model (“Sig”). 
 

If the model is statistically significant, the “F” and “Sig” boxes turn from yellow to GREEN. If Adjusted R
2
 or Cross-

validity R
2
 are negative they are set to 0.0 (theoretically, neither they nor R

2
 can be negative). 

 

By the way, the “Expected R
2
 if Null True” box uses the calculation presented by Herzberg (1969), k/(n-1), to show the 

bias of the R
2
 statistic. The “Options” menu allows you to change the information reported here to a few other things. 
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Menus 

 

“File,” “Options,” and “Help” show sub-menus (below), but “Reset (F4)” and “Run Analysis (F9)” just perform the 

given action. “Reset (F4)” will return the program to the main opening screen and “Run Analysis (F9)” will run the 

analysis, just like clicking the “Run (F9)” button or pressing the F9 key. 

 
 

“View and Save Analysis” will show a text version of the results in another window (below), which will also allow you 

to save and print the results of the analysis. 
 

 “View & Save Simulation Data for Models” will save the Model Summary statistics (e.g., R
2
, Standard Error of the 

Estimate) from all the Monte Carlo simulated samples (up to a maximum of 10,000) for analysis in any program that 

accepts Comma-Delimited text files. Variable names ARE included on the first line of the file. 
 

 “View & Save Simulation Data for Predictors” will save the Regression Coefficient statistics (e.g., B, SEB, Beta) from 

all the Monte Carlo simulated samples (up to a maximum of 10,000) for analysis in any program that accepts Comma-

Delimited text files. Variable names ARE included on the first line of the file. 
 

If you are running a SINGLE SAMPLE analysis, there is also an option to save SINGLE SAMPLE data. The data from 

the current single sample analysis is saved WITHOUT variable names on the first line. 
 

 “Import Comma Delimited Data” will allow you to read in data that you have previously saved with MCMR, or will 

allow you to import data saved in appropriate format from any other program (e.g., a spreadsheet or statistics program). 

The MCMR program assumes that NO variable names are listed on the first line—that is, the data begin on line 1. 
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All “View and Save” options will open this window. From here, you can “Save” or “Print” the information in the 

window (using the appropriate menu option).  

 

Currently, only analyses with the Constant 

Included in the Equation are permitted. 

 

There are 4 types of information that can be 

reported in the box that by default is labeled 

“Expected R
2
 if Null true” — 2 for expected R

2
 and 

2 for shrinkage. 

 

Precision Efficacy (Brooks, 1998) is calculated 

using Cross-Validity R
2
 by default, but could be 

calculated using Adjusted R
2
. (see help menu for 

additional information about Precision Efficacy) 

Different formulas can be used to calculate Cross-

Validity R
2
 — 6 are available here. 

 

You can choose to have significant B0 included in 

the counts reported (by default it is not). 
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The “Precision Efficacy (PEAR) Information” option will open a window that contains an except from a paper written 

in 1998 (see below). 

 

“Show Population Regression Equation” will show the STANDARDIZED regression model based on the Population 

Correlation matrix used to generate data for the analysis. 

 

“User Agreement” opens a window with LICENSE information (important). 

 

“About” provides some basic information about the MCMR program. 
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At any point, the user can 

request this pop-up window that 

shows the Population 

Standardized Regression model 

for comparison to current 

results. 

 

 
The User Agreement window, with important information about the legal use of the software. 

 
The ABOUT window with the full name of the program, copyright and contact information, and the web site from 

which this and other software programs may be obtained. 
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Secondary Window: Get a Population Matrix with certain Given Characteristics 

If you click the “Get Matrix for a Given R2" button, the following window 

will open — allowing you to get a correlation matrix that meets certain 

criteria. 

 
 

Each section is described more below. When you click “OK” a correlation matrix will be found with the given criteria 

(if possible) AND that correlation matrix will be transferred to the main MCMR program screen into the “Population 

Correlations (rho)” section. 
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You can choose any R
2
 for your POPULATION correlation matrix (so really this is a rho

2
 or ρ

2
 value), but buttons are 

provided for some common values (these are based on tables from Park & Dudycha, 1974). 

 

Remember, however, that this will derive a POPULATION correlation matrix, from which samples will be drawn 

during the Monte Carlo process. This value says nothing specific about any of the R
2
 values calculated in the samples 

(other than they should be from the population with the derived population correlation matrix). 

 

 
 

You can choose how close you want to approximate the population R
2
 set in the previous box. While it is indeed 

possible to approximate some matrices very closely, anything smaller than 0.001 will likely take a good deal of time. 

The values 0.01, or even 0.005, seem to work pretty well if you really want to get exact. 

 

Remember, however, that this is how closely you approximate the desired population R
2
 in the POPULATION 

correlation matrix, and says nothing about the samples drawn during the Monte Carlo process. 

 

 
 

You can set any value above 1.0 for the critical VIF threshold value. Most scholars choose 5.0 or 10.0, depending on 

how much MULTICOLLINEARITY(also called COLLINEARITY) you’re willing to tolerate. 

 

Recall that VIF = 1/Tolerance, where Tolerance = 1 – Rj
2
, where  Rj

2
 is the squared correlation when the j

th
 predictor 

acts as a temporary dependent variable being predicted by all the other predictors. 

 

 
 

This option will allow you to create a population correlation matrix with some (or many) negative correlations. 
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This box will allow you to request a certain level of multicollinearity in your population correlation matrix. 

$ “Absolutely None” requires that all intercorrelations among predictors are 0.0, but the correlations between the 

predictors and Y will be set randomly to provide the R
2
 given above. 

$ “No Worrisome Collinearity” will produce a population correlation matrix where all predictor intercorrelations 

will be non-zero, but will be probably smaller than the critical VIF set above. 

$ “1 or 2 predictors with VIF” will produce a population correlation matrix such that predictor intercorrelations 

will probably result in at least 1, but not more than 2, VIF values over the critical value 

$ “2 or 3 predictors with VIF” will produce a population correlation matrix such that predictor intercorrelations 

will probably result in at least 2, but not more than 3, VIF values over the critical value 

$ “4 or more predictors with VIF” will produce a population correlation matrix such that predictor 

intercorrelations will probably result in at least 4 VIF values over the critical value 

 

Note that “probably” was included in these descriptions. There are rare occasions, given certain starting correlations 

used in the algorithm, where the resulting correlation matrix does not match the criteria exactly. You can either go 

ahead and use the derived matrix, or simply try another. Different seeds used in each run of this sub-program result in 

different matrices being created. 

 
If the little pie ever fills in all GREEN during this process, you probably have a matrix that cannot be created. You can 

try a few more times, if you’d like, because sometimes different seeds do produce workable results. You can also allow 

the program to continue running for a while, which sometimes will produce a workable result (the algorithm continues 

to adjust itself a little as it runs, which sometimes allows results to work). 

 
This error message will be shown whenever the “Stop” button is pushed (above), whenever the user has entered an 

inappropriate matrix, or on very rare occasions where rounding the derived correlations to 3 decimal places impacts the 

matrix enough to make it unusable. 
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Secondary Window: Get a Sample Size using the PEAR Method 

 

The user can change the parameters of the PEAR 

method (Brooks, 1998). By default, this window will 

provide the information for the analysis in the main 

window, if possible. For example, once the number of 

predictors is determined, it will be filled in here. Note 

that any number of predictors can be inserted. 

 

More information about Precision Efficacy (PE) and 

the Precision Efficacy Analysis for Regression (PEAR) 

sample size method can be found by clicking the 

“Click here for more information” button (see below).  

 

Briefly, however, Precision Efficacy is a complement 

to Proportional Shrinkage based on an appropriate 

Cross-validity R
2
 (RC

2
) formula. Shrinkage itself (ε, or 

epsilon) can be written as 

 

ε = R
2
 – RC

2
 

 

whereas Proportional Shrinkage (PS) might be written 

as  PS = (R
2
 – RC

2
) / R

2
 

 

 

Precision Efficacy would therefore be PE = 1 - PS, or 

 

PE = RC
2
 / R

2
 

 

Solving PE = 1 – ε/R² for ε, and replacing R² with an expected, a priori Re², results in the formula 

 

ε = RE
2
 – (PE)(RE

2
)  

 

where RE
2
 is often just set at the expected population ρ

2
. Because Precision Efficacy (PE) is usually set at .75 or .80, 

shrinkage would usually be .25ρ
2
 or .2ρ

2
, respectively. Note that shrinkage may also be set absolutely as something like 

ε = .05 or ε = .10. 

 

Once parameters are set, “Calculate” will determine the required sample size. The recommended sample size will 

appear in the YELLOW box underneath the "Calculate" button. 

 

“Close and Record N” will move this sample size to the main screen. 

 

“Cancel” (on the menu bar) will close the dialog window without making any changes to the main screen. 
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Although the PEAR method was derived using Cross-Validity R
2
 (Brooks, 1998), it is theoretically reasonable to apply 

the same idea to Precision Efficacy calculated using Adjusted R
2
  instead. Algina and Olejnik (2000) have discussed a 

similar idea, but different approach, to sample sizes for Adjusted R
2
. 

 

In this case, sample sizes would be determined such that the SHRINKAGE from R
2
 to Adjusted R

2
 would be 

maintained within a certain range. For example, if R
2
 is .25, then Adjusted R

2
 would be at least .20 when Precision 

Efficacy of .80 was used as the criterion. The formula for sample sizes to be used with such an approach would be 

 

N = (k + 1)(1 – RE
2
 + ε) / ε 

 

Where 

 

RE
2
 = expected population ρ

2
 

k = number of predictors 

ε = (R
2
 – RA

2
) 

 

as compared to 

 

N = (k + 1)(2 – 2RE
2
 + ε) / ε 

 

where  ε = (R
2
 – RC

2
) 

 

for Cross-Validity (see Brooks, 1998). Shrinkage tolerance can also be calculated as 

 

ε = (1 – PE) R
2
 

 

where, for PE = .80, it would simplify to (just like it would also for the Cross-Validity approach) 

 

ε = .2R
2
 

 

Recall that one of the options on the “Options” menu is to use Adjusted R
2
 in the Precision Efficacy formula instead of 

Cross-Validity R
2
.  

 

The key difference is that for Cross-validity Precision Efficacy, the idea is to INCREASE Cross-validity R
2
; however, 

for Adjusted R
2
, the idea is more to DECREASE R

2
, making it closer to the true population parameter (since Adjusted 

R
2
 is usually a good estimate of rho

2
).  

 

Either method helps make the model more generalizable by decreasing the standard errors for the regression 

coefficients. The Corss-validity approach is more stringent because it accounts for error not only in the regression 

model derivation sample, but also for the error in future samples to which the regression model is applied. 
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An Example: Multicollinearity and Inflation of Standard Errors 

 

 

Let’s assume that all predictor intercorrelations are 0.0, 

while predictor correlations with Y are non-zero such that 

rho
2
 = .25. 

 

The seed is set to 1932, with N = 37, alpha = .05, and 

10,000 simulated samples are drawn. 
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In this case, the standard errors for the regression coefficients (“SEB”) are each approximately 0.153. Note that the 

Variance Inflation Factors (“VIF”) are all roughly 1.096—since there is no correlation among the predictors we would 

expect this to be near 1.0, but since each of the 10,000 samples drawn probably ad some minor correlation among the 

predictors, it will not be exactly 1.0. 

If we arbitrarily add some correlation among the predictors, BUT 

LEAVE THE CORRELATIONS BETWEEN THE PREDICTORS 

AND Y THE SAME, we introduce multicollinearity. 
 

Note that in this matrix, the rho
2
 is not exactly .250 any more. This 

is arbitrary, but will have some minor impact on our results. 
 

In particular, if you examine the model summary results (we won’t 

here), you would see some minor differences — especially in R
2
 and 

the Sum of Squares due to the regression (which impacts other 

things as well). This is not a REAL difference, but rather due to the 

different population conditions set by the slightly larger rho
2
. 

 

 
The most important differences in the results FOR THIS EXAMPLE are the “SEB” and “VIF” results. Note that all 

SEB values (except for B0) have increased due to the multicollinearity, as have the VIF values. 
 

Other important results, of course, include the regression coefficients (“B” and “Beta”) themselves, along with the 

number of times they were significant. Indeed, different predictors are significant more frequently before (X2 and X4) 

and after (X2 and X3) due to the multicollinearity introduced into the population, even though the pairwise 

relationships (zero-order correlations) between the predictors and the dependent variable have not changed. 
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An Example: Shrinkage and Sample Size 

 
 

Note that in this example, with a sample size of N = 42 (which provided statistical power for the model of 

approximately .80), shrinkage occurs from R
2
 = .32 down to Adjusted R

2
 = .25 

or down to Cross-Validity R
2
 = .16. 

 

Recall that Adjusted R
2
 represents the proportion of variance expected to be accounted for (explained) in the population 

if this particular regression model is used to predict scores in the population. It is generally considered a better 

SHRINKAGE estimate when explanation is the key purpose for the regression analysis. 

 

Cross-validity R
2
 represents the proportion of variance expected to be accounted for if this particular regression model 

is used in another sample of cases from the same population. It is generally considered a better SHRINKAGE estimate 

when prediction is the key purpose for the regression analysis. 
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If we use N = 60 (based on 15 cases per predictor), 

shrinkage is less, but perhaps still too much. 

 

 

 

  

 

If we use, N = 70, which gives us some comfort that 

Precision Efficacy (using Adjusted R2) will be at least 

.80, shrinkage is even less. 

 

 

  

 

If we use N = 150, which gives us comfort that Precision 

Efficacy (using Cross-validity R2) will be at least .80, 

reduces shrinkage even further. 

 

 

  

 

While there is no agreed-upon criterion for SHRINKAGE, several authors have recommended CROSS-VALIDATION 

as more appropriate methods for determining sample sizes than using statistical power (e.g., Algina & Keselman, 2000; 

Brooks & Barcikowski, 1999; Park & Dudycha, 1974; Stevens, 1996). 

 

Note that there are also other methods that exist for calculating sample sizes in regression, including statistical power 

for the t tests of the regression coefficients and size of the confidence intervals for the regression coefficients (and 

therefore size of the standard errors of the regression coefficients). 

 

There are many conventional rules (“rules of thumb”) that scholars have recommended over the years as well.  These 

can all be tested and compared using the Monte Carlo method with the MCMR program. 

 

Much more on the topic can be found in Brooks (1998). 
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An Example: Type I errors (and/or Statistical Power analyses) 

 

We can run SINGLE SAMPLE analyses to show all the 

possible combinations of Type I errors that occur in 

multiple regression.  

 

In this first example where all correlations are 0.0, one 

predictor (X3) is statistically significant, but the model 

is NOT statistically significant. Therefore, the count 

boxes show a GREEN YES for “At least 1 significant 

predictor (X)?” but a white NO for “after SIG model?” 
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In this second example where all correlations are 0.0, nothing was statistically significant. This is what we would 

expect most frequently when the Null Hypothesis is true. 

 
 

In this third example where all correlations are 0.0, the overall regression model was statistically significant and at least 

one (here, exactly one, X2) predictor was statistically significant. 

 

Note that different predictors are usually significant in different samples for Robustness (Type I error rate) analyses. 
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NOTE: This screen comes from an analysis 

with non-zero correlations, and therefore not a 

Type I error rate analysis. 

 

In this fourth example, the overall regression 

model was statistically significant, but NONE 

of the predictors was statistically significant. 

While this appears to be very rare when all 

correlations are 0.0 (a Type I error rate 

analysis), it occurs occasionally when the null 

hypothesis is not true. 

 

Finally, after running through 

several samples to show 

students what a Type I error 

analysis is like, we can tell 

them that instead of us going 

one-by-one through these 

single samples and keeping 

track, we can just have the 

computer do it for us and run 

10,000 samples all at once. 

 

This screen shows the Monte 

Carlo results for 10,000 

simulated samples. One can 

easily see the approximately 

.05 Type I error rate expected 

for all tests. 

 

 

 

We can also discuss the idea 

of a “Protected F” test by 

reviewing the count boxes. 

Here, the proportion of simulated samples that had at least one statistically significant predictor FOLLOWING a 

statistically significant overall regression model is about .049 (5%). However, the proportion of samples that had any 

number of predictors that were statistically significant was about .14 (14%). 
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An Example: Suppressor Variables 

 
 

If we arbitrarily set a population correlation matrix in which one predictor has zero (0.0) correlation with the dependent 

variable (DV) but has non-zero correlation with the other predictors, we can examine suppressor relationships. 

You can see a little better the correlations here. 

 

Note the population multiple rho
2
 for this correlation matrix is 

.279 
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We have an R2 value of .38 for this analysis. 

 

 
 

Note the VIF is high for X3, not the variable with 0.0 correlation with the dependent variable (which is X5). However, 

there is a strong correlation between X3 and X5. 

 

If we remove X5 from the analysis in an effort to remove the 

multicollinearity (because among the predictors, it has very 

little correlation with Y), we would have this correlation 

matrix. 

 

Note that rho
2
 is lower without X5 EVEN THOUGH it had no 

correlation with the Dependent Variable !! 
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Note that multicollinearity has been removed (as evidenced by all VIF < 10). 

 

 
 

However, the relationship in terms of R
2
 is not as high as it was with the apparently useless predictor (.38 then versus 

.30 now). 
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An Example: Impact of Means and Standard Deviations on Regression Results 

 

The important thing to notice as 

we change from all standardized 

data (above), to a Dependent 

Variable Mean of 50 (while 

standard deviation remains 1.0) 

is that only the CONSTANT B0 

and its statistical significance 

changed. 

 

NOTHING ELSE changed !! 

 



Brooks 

40                                                                                                             Multiple Linear Regression Viewpoints, 2008, Vol. 34(2) 

However, when the 

Dependent Variable 

Mean is 0.0, but the 

Standard Deviation 

changes to 10.0, 

several things change, 

most notably the 

regression coefficients 

and their significance 

and the SUMS OF 

SQUARES. 

 

But none of the other 

important model 

information changed 

(e.g., R
2
, F, rejections, 

Beta, VIF). 

 

Changing both the 

Mean and the 

Standard Deviation 

combines these 

previous two results. 

That is, all the 

information EXCEPT 

B0 remains the same 

as the previous 

example. But now 

with the Y mean at 50, 

B0 changed to match 

(and is significant 

more often). 
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If we change the 

predictor Means and 

Standard Deviations, 

but leave the 

Dependent Variable Y 

standardized, you can 

see several differences 

— most notably in the  

regression 

coefficients. 

 

The “Sum of Squares” 

values have returned 

to what they were in 

the first example. 

Finally, if everything 

changes, the regression 

coefficients all change, 

but note that all the 

MODEL summary 

information and the 

CORRELATION 

information remains the 

same. 

 

Means and Standard 

Deviations have not 

impact on the decisions 

regarding the Null 

Hypotheses for either 

coefficients or the 

model, nor on the 

interpretations of the 

value of the predictors 

or the model. 
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