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The accuracy of parameter estimation of proportional hazards regression (PHR) has been a concern. To 
improve the accuracy of the estimation, the bootstrap has been used; unfortunately, prior research 
revealed inconsistent findings. The current study applies a new resampling method, the kernel resampling 
technique (KRT), to PHR. Two empirical datasets were employed to cross-validate and compare the 
accuracy and stability of the estimation results through multiple replications from KRT with those from 
the naïve bootstrap as well as the maximum likelihood method. The study results revealed that KRT 
outperformed the bootstrap and maximum likelihood method in estimating parameters of PHR. The 
application of KRT to PHR improved the accuracy of the parameter estimation. 

roportional hazards regression (PHR) (or Cox model) is a method for investigating the effect of 
several variables upon the time-specified outcome for an event to occur. PHR is most commonly 
applied in time-to-event studies (Cox, 1972). It assumes that the effects of the predictor variables 

upon survival are constant over time and are additive in one scale. If the assumptions are met, the PHR 
model can provide better estimates of survival probabilities and cumulative hazard than those provided by 
the Kaplan-Meier function; a log-rank test method for comparing survival curves in two or more groups 
(Cox). The PHR model has been used widely in medical studies and increasingly employed in a variety of 
disciplines under various rubrics, for example, “event-history analysis” in sociology (Allison, 1984), or 
“teacher survivals” and “student retention” in Education (cf. Adams, 1996; Adams & Dial, 1993; Plank, 
DeLuca, & Estacion, 2008). However, the accuracy of the estimation of the PHR model parameters has 
been a concern because estimating density functions or hazard rate functions is complicated (Burr, 1994). 
To improve the estimation accuracy from PHR models, the bootstrap method was implemented. 
Unfortunately, the effectiveness of this method is questionable due to the inconsistent findings of the 
performance of the bootstrap in the PHR model in prior research (Burr; Hjort, 1985; Singh, 1981).  
 Studies on the PHR model using the bootstrap are classified into two types: one for PHR model 
selections and the other for parameter estimation. The following is a brief review of these studies. Chen 
and George (1985) conducted a primary study using the bootstrap to investigate the variable selection in 
PHR, but they neither considered the prognostic implications for individuals nor discussed the accuracy 
of the parameter estimation. Extending Chen and George’s study, Sauerbrei and Schumacher (1992) 
proposed a bootstrap-model selection procedure, but this study still focused on the model selection 
without considering the use of the bootstrap procedures directly in the parameter estimation. Altman and 
Andersen (1989) explored the confidence interval estimation of hazard ratios while conducting a 
bootstrap investigation of the stability of the PHR model, and the results revealed that the bootstrap 
intervals were graphically wider than those obtained from the original model. Hjort (1985) discussed 
using the bootstrap in the PHR model and found that the bootstrap procedure was first-order equivalent to 
the standard procedure. This was consistent with later research findings (e.g., Burr, 1994).  
Burr (1994) presented a comprehensive study focusing on the methodological discussion about using the 
bootstrap procedures in PHR parameter estimation. This study compared bootstrap confidence intervals 
for the following three types of parameters in PHR: the regression parameters, the survival function at 
fixed time points, and the median survival time at fixed values of a covariate. The study revealed that the 
bootstrap-t intervals consistently outperformed both bootstrap percentile and hybrid interval estimations. 
The results also showed that the bootstrap did not improve the quality of regression parameter estimation 
on the asymptotic method, but it did improve the estimation of the survival function. Burr provided useful 
information to employ the bootstrap for parameter estimation in PHR; however, as Burr ( p. 1301) stated, 
“We would like to be able to recommend a single method appropriate for all parameters, but currently this 
is not possible.” Therefore, further research in this area is desirable. The current study aims at exploring 
the potential improvement of parameter estimation in PHR using kernel resampling procedures. 
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PHR Model 
  PHR for hazard rate was first introduced by Cox (1972) and it is often expressed as: 
 
 

λ(t; X) = λ0(t) exp(Xβ), 
 
 

where λ(t; X) is the hazard (risk of event) at time t with respect to covariate matrix X. The parameter β is 
a log relative risk and exp(β) is a relative risk of response. PHR is sometimes called relative risk 
regression, Cox regression, or Cox model. λ0(t) represents a reference point that depends on time, which is 
the “baseline” hazard (when covariates X are zero) just as β0 denotes an arbitrary reference point in other 
types of regression analysis. PHR is a useful tool for studying patient survival time in medical studies, 
historical event in social science, company bankruptcy in economic investigations, and students’ 
departure and teachers’ survival in educational research.      
 

The Bootstrap and KRT 
  As a modern statistical technique, the bootstrap has been used in many procedures to improve the 
validity of studies through estimating more accurate standard errors (Efron & Tibshirani, 1993). The basic 
concept of the bootstrap is to construct empirical distributions of parameter estimates to assess the 
standard errors or confidence intervals to obtain improved statistical estimates. The bootstrap empirical 
distribution is usually constructed from bootstrap resamples, which are obtained through resampling from 
the original data with replacement. Existing studies have revealed the usefulness of the bootstrap in PHR 
(Gonzalez, Pena, & Delicado, 2010) 
  Kernel resampling technique (KRT) is an alternative resampling method which extends the bootstrap by 
sampling with random errors from Gaussian Kernels using a fixed bandwidth (Bai & Pan, 2009). KRT is 
a product of integrating the distribution theory into the smoothing technique. By design, KRT is 
fundamentally different from the bootstrap and its variant, the smoothed bootstrap, which requires 
researchers to find the optimal bandwidth to smooth the bootstrap distribution. KRT uses the Gaussian 
kernel technique to capture the covariance structure of multivariate data (Silverman, 1986; Simonoff, 
1996).  
  The multivariate Gaussian kernel is defined as 
 
 

K(x) ~ Nd(Xi, H2), 
 
 

where d is the number of variables, Xi (i = 1, …, n) are multivariate data or a vector from a d-dimensional 
space Rd, n is the number of cases, and H is the bandwidth matrix that can be chosen as an optimal one to 
minimize the mean integrated square error (MISE) (Silverman, 1986; Simonoff, 1996):  
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KRT has been successfully used in multiple regression models for increasing the accuracy of parameter 
estimation (Bai & Pan, 2009). 
 

Purpose of the Study 
  Considering the usefulness of the bootstrap in PHR (Gonzalez et al., 2010), the current study was 
proposed to use the KRT, an alternative to the bootstrap, to improve the accuracy of parameter estimation 
of PHR. The application of KRT to a multiple regression model has successfully provided more accurate 
parameter estimation than both naïve bootstrap and smoothed bootstrap (Bai, 2008; Bai & Pan, 2009); 
therefore, the purpose of the current study is to examine the performance of the application of KRT to 
PHR. Empirical data from education were employed for the methodological comparison through 
resampling at multiple numbers of replications to study the accuracy and stability of the estimation, while 
the medical data set was used to cross-validate the results. The findings from the applications of KRT to 
the PHR model using both data sets are compared with those from the bootstrap and the classical 
maximum likelihood (ML) method to determine which method is the most effective.  
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Studies with Empirical Data 
Study 1: Educational Data 
  The study data were collected from an urban public school district in the Southeast region of the United 
States after obtaining Institutional Review Board approval at the author’s university. This data set 
documented the departure records of 8462 students who departed from public schools between 2006 and 
2010 including regular graduations. There were conceivably seven ways of departure in the data set that 
are listed in Table 1. In the current study, the PHR model was used to study the hazard rate for students’ 
departure from public schools versus regular graduations.   
  For this study, two variables, student age 
and accumulated GPA, were used in the PHR 
as the covariates for the purpose of 
methodological evaluation of the 
performance of KRT application to PHR. The 
two variables were utilized as covariates (i.e., 
predictors in the PHR) because of their 
influential impacts on high school student 
departure based on the extant literature. 
Hauser, Simmons, and Pager (2000) stated 
that the likelihood of student departure 
increased with age in general; therefore, high 
school students tend to have a higher dropout rate than elementary and middle school students. The 
association between academic performance and dropout rates has been well studied (cf. Fagan & Pabon, 
1990; Krohn, Thornberry, Collins-Hall, & Lizotte, 1995; Rumberger, 1987).  Student academic 
performance is a major predictor of graduation rates and departure rates (Battin-Pearson et al., 2000). 
Prior studies examined and identified many influential factors or predictors for high school student 
departure including a variety of demographic, individual, family, and school characteristics (Neild, 
Stoner-Eby, & Furstenberg, 2008).  However, for the focus of the current study on methodological 
discussions, only two major factors were included, student age and cumulative GPA, in the model to 
compare the accuracy of the statistics from different statistical procedures with no intention of providing 
any statistical inferences from the empirical example.  The variables used in the model: 

• Departure and Graduation: Move to non-public schools, go nowhere, home school, adult program, 
move to other in-state public schools, or move to other states versus obtain a regular diploma. 

• Age: Student age was recorded at the time of departure.  
• Cumulative GPA: The student GPA measure was the accumulated GPA since the semester a 

student entered the public high school. 
• Survival Months: Months of staying in the public schools. 

 
PHR on Student Departure Data 
 A PHR model for the current study was defined as: 
 

Log[λ(t; X)] = log[λ0(t)] + βX, 
 

where X represents the predictors, age and Weighted Cumulative GPA, and β is the logarithm of the ratio 
of the hazard rate for students belonging to departure versus regular graduation in the hazard function.  
  The PHR model was fitted with age and Weighted Cumulative GPA to estimate the hazard ratio. No 
evidence was found that students’ departure in general depends on age (while adjusting only for Weighted 
Cumulative GPA) with χ2 = 0.13 (p = 0.98) (see Table 2); therefore, age was eliminated in the final 
model. 
 
Table 2. Estimates for Predictors 

Variable df β SE χ2 Pr > χ2 HazardRatio 95% CI 

AGE 1 0.02 0.06 0.13 0.72 0.980 0.88 1.09 
GPA 1 0.58 0.06 83.61 <0.001 0.562 0.50 0.63 

 

Table 1. The Numbers of Public High School  
Students’ Departure and Regular Graduation 
Type of Departure  Students Male/Female
Non-Public 277 156/121 
Nowhere 157 87/70 
Home School 255 128/127 
Adult Program 1770 1007/763 
Another District 1548 847/701 
Out of State 1257 638/619 
Regular Diploma 3398 1662/1736 
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Table 4. Localized Stage 
Status Patient N  
0:  Alive  2979 
1:  Dead: colon cancer 1734 
2:  Dead: other 1557 
3:  Lost to follow-up       4 

Table 3. Comparisons of Estimates, CIs, and Bias of PH Model with Asymptotic, Bootstrap, and KRT. 
 Estimates Replicates Estimate SE CI(2.5%) CI(97.5%) Bias 
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d 
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ML  0.5660 0.0333 0.5030  0.6360  

Bootstrap 
200  0.5694 0.0404  0.4983  0.6541 0.0034 
500  0.5685 0.0421  0.4966  0.6604 0.0025 

1000  0.5678 0.0421  0.4925  0.6593 0.0018 

KRT 
200  0.5700 0.0167  0.5384  0.6048 0.0040 
500  0.5678 0.0155  0.5353  0.5993 0.0018 

1000  0.5672 0.0130  0.5426  0.5918 0.0012 

G
PA

 

ML -0.5693 0.0598 -0.6889 -0.4498  

Bootstrap 
200 -0.5656 0.0703 -0.6966 -0.4245 0.0038 
500 -0.5675 0.0736 -0.6999 -0.4149 0.0018 

1000 -0.5687 0.0737 -0.7082 -0.4166 0.0006 

KRT 
200 -0.5663 0.0289 -0.6210 -0.5073 0.0030 
500 -0.5686 0.0254 -0.6209 -0.5165 0.0007 

1000 -0.5680 0.0235 -0.6127 -0.5218 0.0014 
 
Results of Study 1 
  In order to conduct the methodological study, Weighted Cumulative GPA was selected to estimate the 
hazard ratio to examine the performance of KRT in PHR. Both KRT and the bootstrap procedures were 
used to obtain parameter estimates of Weighted Cumulative GPA and the estimate of hazard ratio for 
comparing the results. Two hundred, 500, and 1000 replications of both the bootstrap and KRT were 
conducted based on the original student departure data using the SAS macro (SAS Institute Inc., 2008) for 
parameter estimation and hazard ratio estimation of the PHR model. 
  From Table 3 we can see that the KRT estimates were comparable to the estimates for both hazard ratio 
and β for Weighted Cumulative GPA from the bootstrap and ML estimates; however, the standard errors 
from the KRT estimates for the hazard ratio and β for Weighted Cumulative GPA were systematically 
smaller than those from the bootstrap procedure and the Maximum Likelihood estimates across various 
numbers of replications with less biases in most cases. The confidence intervals (percentiles) for the 
estimates using the KRT procedure were narrower than those from both the bootstrap procedure and the 
Maximum Likelihood method.  
 

Study 2: Cross-Validating Data  
 To cross-validate the results of Study 1 for further evaluation on the performance of the application of 
KRT to PHR, a study was conducted using a large national medical data set, Localized colon carcinoma 
1975–1994, as the original input data collected by the Institute for Statistical and Epidemiological Cancer. 
Localized colon carcinoma 1975–1994 contains individual-level data of 6,274 patients diagnosed with 
localized tumors among 15,564 patients diagnosed with colon carcinoma in Finland 1975-1994 with 
follow-up to the end of 1995.  
  For the purpose of the methodological research focusing on 
comparison of the accuracy of the PHR model parameter 
estimations, the model selection is not discussed in the current 
study. With regard to the focus of the current study, the hazard 
ratio of mortality from colon cancer versus mortality due to 
other reasons was studied using the PHR model (i.e., mortality 
among the 6,274 patients diagnosed with localized tumors). 
 

Study Variables: 
 In the current study, four variables of interest were used: 

• Gender: Gender is defined as male or female. 
• Year of Diagnosis: The year diagnosed as having localized tumors. 
• Survival Months: Months survived since the time of diagnosed localized tumors.  
• Status: Vital status at last date of contact.  
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Table 5. Estimates for Predictors 
Variable df β SE χ2 Pr > χ2 Hazard Ratio             95% CI  

Gender 1 -0.002  0.049    0.020    0.966 0.998 0.907 1.098 
Year85--94  1 -0.232  0.049  22.258  <0.001 0.793 0.720 0.873 

 
PHR Model on Localized Colon Carcinoma Data 
  A PHR model for the current study was defined as: 
 

Log[λ(t; X)] = log[λ0(t)] + βX 
 

where X represents the predictors, gender and Year of Diagnosis, and β is the logarithm of the ratio of the 
hazard rate for patients belonging to the mortality from colon cancer group versus the mortality group 
because of other reasons in the hazard function. The PHR model was fitted with gender and Year of 
Diagnosis as predictors just for the purpose of the methodological discussion focus of this study. No 
evidence was found that mortality depends on gender while adjusting for year of diagnosis with χ2 = .02 
(p = .966) (see Table 5). Therefore, Year of Diagnosis was selected to estimate the parameters and the 
hazard ratio for examining the performance of KRT in the Cox model with respect to the preliminary 
model fitting information. The KRT, the bootstrap, and the Maximum Likelihood method were used to 
obtain parameter estimates of Year of Diagnosis and the estimate of hazard ratio for comparing the results 
for examining the performance of KRT in the PHR model.   
 

Cross-Validating Results from Study 2 
  Table 6 presents the parameter and hazard ratio estimation from the PHR model with 200, 500, and 
1000 replications of both the bootstrap and KRT and the results from the Maximum Likelihood applied to 
the original Localized Colon Carcinoma data. From Table 6 we can see that the KRT estimates were 
comparable to the estimates for both hazard ratio and β for Year of Diagnosis from the bootstrap and 
asymptotic estimates. With this in mind, it is evident that the standard errors from the KRT resamples 
were systematically smaller. The estimation biases were consistently less in most cases than those from 
both the bootstrap procedure and the conventional maximum likelihood method across of 200, 500, and 
1000 replications. The 95% confidence intervals (percentiles) for the estimates using the KRT procedure 
were narrower than those from both the bootstrap procedure and the conventional maximum likelihood 
estimates. Methodologically, the evaluation results from the cross-validating sample were consistent with 
the results from Study 1 from the educational data; therefore, the findings of the KRT application to PHR 
model were cross-validated and proved to be replicable. 
 

Table 6. Comparisons of Estimates, CIs, and Bias of Cox Model with the Conventional Asymptotic, 
Bootstrap, and KRT Methods 
 Estimates Replicates Estimate SE CI (2.5%) CI (97.5%) Bias 

H
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ML  0.7930  0.0383 0.7200  0.8730  

Bootstrap 
200 0.7947  0.0401  0.7246  0.8748  0.0017  
500 0.7936  0.0389  0.7194  0.8704 -0.0012 
1000 0.7932  0.0386  0.7201  0.8728 -0.0004 

KRT 
200 0.7938  0.0165  0.7651  0.8278  0.0007  
500 0.7930  0.0154  0.7653  0.8240 -0.0008 
1000 0.7945  0.0153  0.7688  0.8243   0.0015  

Y
ea

r o
f D

ia
gn

os
is

 ML  -0.2310  0.0503  -0.3222  -0.1338    

Bootstrap 
200 -0.2321  0.0492  -0.3311  0.1334 -0.0011 
500 -0.2324  0.0490  -0.3293  -0.1388 -0.0003 
1000 -0.2329  0.0487  -0.3284  -0.1360 -0.0005 

KRT 
200 -0.2296  0.0205  -0.2683  -0.1920   0.0033  
500 -0.2322  0.0180  -0.2653  -0.1961 -0.0027 
1000 -0.2329  0.0202  -0.2718  -0.1919 -0.0007 



Bai 

 
6                                                                                           Multiple Linear Regression Viewpoints, 2011, Vol. 37(1) 

Discussion and Further Study 
  Using data from different research areas, the findings from two studies provide strong evidence that the 
KRT outperformed both the bootstrap and the Maximum Likelihood method in the PHR parameter 
estimation. The application of KRT in PHR provided more accurate confidence interval estimation with 
narrower bands, smaller standard errors with less or comparable biases, and equivalent accurate point 
estimates. The KRT procedure produced stable estimation results across various replications. KRT 
application to PHR provides a solution for “a single method appropriate for all parameters” (Burr, 1994, 
p. 1301).  This study produced preliminary results of the KRT application in PHR models for parameter 
estimation. The findings suggest that applications of KRT to PHR models improve the accuracy of 
parameter estimation for more valid statistical inference in survival research.  
  Future studies are desired to compare the results of other types of confidence interval estimation. In the 
current study, only empirical datasets were used to study the performance of the application of the KRT 
in a PHR model. Even though the cross-validating study provided strong evidence of the current study 
findings, a simulation study is expected to provide more information and further confirmation of the study 
results in terms of the stability of the findings under other conditions. Future studies should engage in (1) 
comparison of the results of other types of confidence interval estimation and (2) simulation studies with 
different data conditions (e.g., sample sizes or distributions) to explore the stability of the application 
results. 

Significance of the Study 
  In education, teachers’ survival, students’ dropout, and on-time graduation are all important factors 
influencing the quality of education. Understanding these factors is crucial for educators and educational 
administrators to work on effective solutions. PHR is an appropriate and effective statistical analytical 
tool for studies in such areas, and applications of KRT to PHR will improve the accuracy of parameter 
estimation to provide more valid statistical inference in educational research.  
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